metacountregressor 0.1.305__py3-none-any.whl → 0.1.307__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metacountregressor/solution.py +10 -8
- {metacountregressor-0.1.305.dist-info → metacountregressor-0.1.307.dist-info}/METADATA +1 -1
- {metacountregressor-0.1.305.dist-info → metacountregressor-0.1.307.dist-info}/RECORD +6 -6
- {metacountregressor-0.1.305.dist-info → metacountregressor-0.1.307.dist-info}/WHEEL +0 -0
- {metacountregressor-0.1.305.dist-info → metacountregressor-0.1.307.dist-info}/licenses/LICENSE.txt +0 -0
- {metacountregressor-0.1.305.dist-info → metacountregressor-0.1.307.dist-info}/top_level.txt +0 -0
metacountregressor/solution.py
CHANGED
@@ -1156,16 +1156,16 @@ class ObjectiveFunction(object):
|
|
1156
1156
|
x, 2) for x in self.pvalues]
|
1157
1157
|
signif_list = self.pvalue_asterix_add(self.pvalues)
|
1158
1158
|
if model == 1:
|
1159
|
-
|
1160
|
-
|
1159
|
+
# raise to the exponential
|
1160
|
+
self.coeff_[-1] = np.maximum([np.exp(self.coeff_[-1]),2])
|
1161
1161
|
if self.no_extra_param:
|
1162
1162
|
self.coeff_ = np.append(self.coeff_, self.nb_parma)
|
1163
1163
|
self.stderr = np.append(self.stderr, 0.00001)
|
1164
1164
|
self.zvalues = np.append(self.zvalues, 50)
|
1165
1165
|
|
1166
|
-
elif self.coeff_[-1] < 0.25:
|
1166
|
+
#elif self.coeff_[-1] < 0.25:
|
1167
1167
|
#print(self.coeff_[-1], 'Warning Check Dispersion')
|
1168
|
-
print(f'dispession is para,aters {np.exp(self.coeff_[-1])}')
|
1168
|
+
#print(f'dispession is para,aters {np.exp(self.coeff_[-1])}')
|
1169
1169
|
#self.coeff_[-1] = np.exp(self.coeff_[-1]) # min possible value for negbinom
|
1170
1170
|
|
1171
1171
|
|
@@ -1225,6 +1225,7 @@ class ObjectiveFunction(object):
|
|
1225
1225
|
if model is not None:
|
1226
1226
|
caption_parts = []
|
1227
1227
|
if self.algorithm is not None:
|
1228
|
+
|
1228
1229
|
caption_parts.append(
|
1229
1230
|
f"{self._model_type_codes[model]} model found through the {self.algorithm} algorithm.")
|
1230
1231
|
|
@@ -1235,7 +1236,8 @@ class ObjectiveFunction(object):
|
|
1235
1236
|
caption_parts.append(f"Log-Likelihood: {self.round_with_padding(self.log_lik, 2)}")
|
1236
1237
|
|
1237
1238
|
if solution is not None:
|
1238
|
-
|
1239
|
+
if self.is_multi:
|
1240
|
+
caption_parts.append(f"{self._obj_2}: {self.round_with_padding(solution[self._obj_2], 2)}")
|
1239
1241
|
|
1240
1242
|
caption = " ".join(caption_parts)
|
1241
1243
|
# print(latextable.draw_latex(table, caption=caption, caption_above = True))
|
@@ -6223,7 +6225,7 @@ class ObjectiveFunction(object):
|
|
6223
6225
|
# Dispersion adds one additional parameter if enabled
|
6224
6226
|
dispersion_param = 1 if dispersion > 0 else 0
|
6225
6227
|
return sum(self.get_num_params()) + dispersion_param
|
6226
|
-
|
6228
|
+
|
6227
6229
|
def _build_initial_params(self, num_coefficients, dispersion):
|
6228
6230
|
"""
|
6229
6231
|
Build the initial parameter array for optimization.
|
@@ -6294,7 +6296,7 @@ class ObjectiveFunction(object):
|
|
6294
6296
|
log_lik, aic, bic, stderr, zvalues, pvalues, in_sample_mae, out_sample_mae = self._postprocess_results(
|
6295
6297
|
optimization_result, XX, XX_test, y, mod.get('y_test'), dispersion, mod
|
6296
6298
|
)
|
6297
|
-
|
6299
|
+
|
6298
6300
|
# Extract other outputs
|
6299
6301
|
betas = optimization_result['x'] if optimization_result is not None else None
|
6300
6302
|
is_halton = Xr is not None and Xr.size > 0 # Halton draws used if `Xr` is not empty
|
@@ -7343,7 +7345,7 @@ class ObjectiveFunction(object):
|
|
7343
7345
|
obj_1[self._obj_1] = 10 ** 100
|
7344
7346
|
|
7345
7347
|
else:
|
7346
|
-
print('
|
7348
|
+
print('Did not converge')
|
7347
7349
|
obj_1[self._obj_1] = 10 ** 100
|
7348
7350
|
|
7349
7351
|
self.significant = 3
|
@@ -11,10 +11,10 @@ metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiL
|
|
11
11
|
metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
|
12
12
|
metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
|
13
13
|
metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
|
14
|
-
metacountregressor/solution.py,sha256=
|
14
|
+
metacountregressor/solution.py,sha256=3YaugVfEcOQnrtqY5chH-qhBl_2DmI8CatZyjFdQngA,317534
|
15
15
|
metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
|
16
|
-
metacountregressor-0.1.
|
17
|
-
metacountregressor-0.1.
|
18
|
-
metacountregressor-0.1.
|
19
|
-
metacountregressor-0.1.
|
20
|
-
metacountregressor-0.1.
|
16
|
+
metacountregressor-0.1.307.dist-info/licenses/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
17
|
+
metacountregressor-0.1.307.dist-info/METADATA,sha256=478JkHo4OCeggDG7O0ujZ0HMi_NLzHGpSBvGH3WIyBU,23581
|
18
|
+
metacountregressor-0.1.307.dist-info/WHEEL,sha256=1tXe9gY0PYatrMPMDd6jXqjfpz_B-Wqm32CPfRC58XU,91
|
19
|
+
metacountregressor-0.1.307.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
|
20
|
+
metacountregressor-0.1.307.dist-info/RECORD,,
|
File without changes
|
{metacountregressor-0.1.305.dist-info → metacountregressor-0.1.307.dist-info}/licenses/LICENSE.txt
RENAMED
File without changes
|
File without changes
|