metacountregressor 0.1.305__py3-none-any.whl → 0.1.307__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1156,16 +1156,16 @@ class ObjectiveFunction(object):
1156
1156
  x, 2) for x in self.pvalues]
1157
1157
  signif_list = self.pvalue_asterix_add(self.pvalues)
1158
1158
  if model == 1:
1159
-
1160
- #self.coeff_[-1] = 1/np.exp(self.coeff_[-1])
1159
+ # raise to the exponential
1160
+ self.coeff_[-1] = np.maximum([np.exp(self.coeff_[-1]),2])
1161
1161
  if self.no_extra_param:
1162
1162
  self.coeff_ = np.append(self.coeff_, self.nb_parma)
1163
1163
  self.stderr = np.append(self.stderr, 0.00001)
1164
1164
  self.zvalues = np.append(self.zvalues, 50)
1165
1165
 
1166
- elif self.coeff_[-1] < 0.25:
1166
+ #elif self.coeff_[-1] < 0.25:
1167
1167
  #print(self.coeff_[-1], 'Warning Check Dispersion')
1168
- print(f'dispession is para,aters {np.exp(self.coeff_[-1])}')
1168
+ #print(f'dispession is para,aters {np.exp(self.coeff_[-1])}')
1169
1169
  #self.coeff_[-1] = np.exp(self.coeff_[-1]) # min possible value for negbinom
1170
1170
 
1171
1171
 
@@ -1225,6 +1225,7 @@ class ObjectiveFunction(object):
1225
1225
  if model is not None:
1226
1226
  caption_parts = []
1227
1227
  if self.algorithm is not None:
1228
+
1228
1229
  caption_parts.append(
1229
1230
  f"{self._model_type_codes[model]} model found through the {self.algorithm} algorithm.")
1230
1231
 
@@ -1235,7 +1236,8 @@ class ObjectiveFunction(object):
1235
1236
  caption_parts.append(f"Log-Likelihood: {self.round_with_padding(self.log_lik, 2)}")
1236
1237
 
1237
1238
  if solution is not None:
1238
- caption_parts.append(f"{self._obj_2}: {self.round_with_padding(solution[self._obj_2], 2)}")
1239
+ if self.is_multi:
1240
+ caption_parts.append(f"{self._obj_2}: {self.round_with_padding(solution[self._obj_2], 2)}")
1239
1241
 
1240
1242
  caption = " ".join(caption_parts)
1241
1243
  # print(latextable.draw_latex(table, caption=caption, caption_above = True))
@@ -6223,7 +6225,7 @@ class ObjectiveFunction(object):
6223
6225
  # Dispersion adds one additional parameter if enabled
6224
6226
  dispersion_param = 1 if dispersion > 0 else 0
6225
6227
  return sum(self.get_num_params()) + dispersion_param
6226
- #return k + kr + kg + kh + dispersion_param
6228
+
6227
6229
  def _build_initial_params(self, num_coefficients, dispersion):
6228
6230
  """
6229
6231
  Build the initial parameter array for optimization.
@@ -6294,7 +6296,7 @@ class ObjectiveFunction(object):
6294
6296
  log_lik, aic, bic, stderr, zvalues, pvalues, in_sample_mae, out_sample_mae = self._postprocess_results(
6295
6297
  optimization_result, XX, XX_test, y, mod.get('y_test'), dispersion, mod
6296
6298
  )
6297
-
6299
+
6298
6300
  # Extract other outputs
6299
6301
  betas = optimization_result['x'] if optimization_result is not None else None
6300
6302
  is_halton = Xr is not None and Xr.size > 0 # Halton draws used if `Xr` is not empty
@@ -7343,7 +7345,7 @@ class ObjectiveFunction(object):
7343
7345
  obj_1[self._obj_1] = 10 ** 100
7344
7346
 
7345
7347
  else:
7346
- print('The model did not converge')
7348
+ print('Did not converge')
7347
7349
  obj_1[self._obj_1] = 10 ** 100
7348
7350
 
7349
7351
  self.significant = 3
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: metacountregressor
3
- Version: 0.1.305
3
+ Version: 0.1.307
4
4
  Summary: Extensive Testing for Estimation of Data Count Models
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -11,10 +11,10 @@ metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiL
11
11
  metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
12
12
  metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
- metacountregressor/solution.py,sha256=iRQDiIoLYs1NbWzzmYmL4OdfYGwOyurzc3nFYmWZ6EI,317471
14
+ metacountregressor/solution.py,sha256=3YaugVfEcOQnrtqY5chH-qhBl_2DmI8CatZyjFdQngA,317534
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.305.dist-info/licenses/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.305.dist-info/METADATA,sha256=sBsdECU898Hl9-UWO1XbA9CABw4QV45mit4eoqZJt-o,23581
18
- metacountregressor-0.1.305.dist-info/WHEEL,sha256=1tXe9gY0PYatrMPMDd6jXqjfpz_B-Wqm32CPfRC58XU,91
19
- metacountregressor-0.1.305.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.305.dist-info/RECORD,,
16
+ metacountregressor-0.1.307.dist-info/licenses/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.307.dist-info/METADATA,sha256=478JkHo4OCeggDG7O0ujZ0HMi_NLzHGpSBvGH3WIyBU,23581
18
+ metacountregressor-0.1.307.dist-info/WHEEL,sha256=1tXe9gY0PYatrMPMDd6jXqjfpz_B-Wqm32CPfRC58XU,91
19
+ metacountregressor-0.1.307.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.307.dist-info/RECORD,,