metacountregressor 0.1.136__py3-none-any.whl → 0.1.139__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metacountregressor/helperprocess.py +73 -4
- metacountregressor/main.py +11 -6
- {metacountregressor-0.1.136.dist-info → metacountregressor-0.1.139.dist-info}/METADATA +1 -1
- {metacountregressor-0.1.136.dist-info → metacountregressor-0.1.139.dist-info}/RECORD +7 -7
- {metacountregressor-0.1.136.dist-info → metacountregressor-0.1.139.dist-info}/LICENSE.txt +0 -0
- {metacountregressor-0.1.136.dist-info → metacountregressor-0.1.139.dist-info}/WHEEL +0 -0
- {metacountregressor-0.1.136.dist-info → metacountregressor-0.1.139.dist-info}/top_level.txt +0 -0
@@ -1,9 +1,12 @@
|
|
1
|
+
from os.path import exists
|
2
|
+
|
1
3
|
import numpy as np
|
2
4
|
import pandas as pd
|
3
5
|
import csv
|
4
6
|
import matplotlib.pyplot as plt
|
5
7
|
from scipy import stats as st
|
6
8
|
from sklearn.preprocessing import StandardScaler
|
9
|
+
from win32comext.shell.demos.IActiveDesktop import existing_item
|
7
10
|
|
8
11
|
plt.style.use('https://github.com/dhaitz/matplotlib-stylesheets/raw/master/pitayasmoothie-dark.mplstyle')
|
9
12
|
|
@@ -179,15 +182,81 @@ config = {
|
|
179
182
|
}
|
180
183
|
}
|
181
184
|
'''
|
185
|
+
def null_handler(vari):
|
186
|
+
if vari in locals():
|
187
|
+
return vari
|
188
|
+
else:
|
189
|
+
print(f'{vari} does not exist, setting None..')
|
190
|
+
return None
|
191
|
+
|
192
|
+
|
193
|
+
def set_up_analyst_constraints(data_characteristic, model_terms, variable_decisions_alt = None):
|
182
194
|
|
183
195
|
|
196
|
+
name_data_characteristics = data_characteristic.columns.tolist()
|
197
|
+
# Get non-None values as a list
|
198
|
+
non_none_terms = [value for value in model_terms.values() if value is not None]
|
199
|
+
# how to make name_data_characteristics - non_none_terms
|
200
|
+
|
201
|
+
result = [item for item in name_data_characteristics if item not in non_none_terms]
|
202
|
+
distu = ['Normal', 'Uniform', 'Triangular']
|
203
|
+
tra = ['no', 'sqrt', 'arcsinh']
|
204
|
+
if model_terms.get('grouped') is None:
|
205
|
+
print('cant have grouped rpm, removing level 4 from every item')
|
206
|
+
MAKE_ALL_4_FALSE = True
|
207
|
+
else:
|
208
|
+
MAKE_ALL_4_FALSE = False
|
209
|
+
|
210
|
+
variable_decisions = {
|
211
|
+
name: {
|
212
|
+
'levels': list(range(6)),
|
213
|
+
'distributions': distu,
|
214
|
+
'transformations': tra
|
215
|
+
}
|
216
|
+
for name in result
|
217
|
+
}
|
218
|
+
# Override elements in the original dictionary with the alt dictionary
|
219
|
+
if variable_decisions_alt is not None:
|
220
|
+
for key, alt_value in variable_decisions_alt.items():
|
221
|
+
if key in variable_decisions:
|
222
|
+
# Update the existing entry
|
223
|
+
variable_decisions[key].update(alt_value)
|
224
|
+
else:
|
225
|
+
# Add new entry if it doesn't exist
|
226
|
+
variable_decisions[key] = alt_value
|
227
|
+
# Prepare the data for the DataFrame
|
228
|
+
rows = []
|
229
|
+
for column_name, details in variable_decisions.items():
|
230
|
+
# Create a row dictionary
|
231
|
+
row = {'Column': column_name}
|
232
|
+
|
233
|
+
# Add levels as True/False for Level 0 through Level 5
|
234
|
+
for level in range(6): # Assuming Level 0 to Level 5
|
235
|
+
|
236
|
+
if level == 4 and MAKE_ALL_4_FALSE:
|
237
|
+
row[f'Level {level}'] = False
|
238
|
+
else:
|
239
|
+
row[f'Level {level}'] = level in details['levels']
|
240
|
+
|
241
|
+
# Add distributions and transformations directly
|
242
|
+
row['distributions'] = details['distributions']
|
243
|
+
row['transformations'] = details['transformations']
|
244
|
+
|
245
|
+
rows.append(row)
|
246
|
+
|
247
|
+
# Create the DataFrame
|
248
|
+
df = pd.DataFrame(rows)
|
249
|
+
|
250
|
+
data_new = data_characteristic.rename(columns={v: k for k, v in model_terms.items() if v in data_characteristic.columns})
|
251
|
+
return df, data_new
|
252
|
+
|
184
253
|
# Function to guess Low, Medium, High ranges
|
185
254
|
def guess_low_medium_high(column_name, series):
|
186
255
|
# Compute the tertiles (33rd and 66th percentiles)
|
187
|
-
print('did it make it...')
|
188
|
-
mode_value = st.mode(series) # Get the most frequent value
|
189
|
-
print('good')
|
190
|
-
|
256
|
+
#print('did it make it...')
|
257
|
+
#mode_value = st.mode(series) # Get the most frequent value
|
258
|
+
#print('good')
|
259
|
+
# series = pd.to_numeric(series, errors='coerce').fillna(mode_value)
|
191
260
|
low_threshold = np.quantile(series, 0.33)
|
192
261
|
high_threshold = np.quantile(series,0.66)
|
193
262
|
|
metacountregressor/main.py
CHANGED
@@ -28,11 +28,16 @@ def convert_df_columns_to_binary_and_wide(df):
|
|
28
28
|
return df
|
29
29
|
|
30
30
|
|
31
|
+
|
32
|
+
|
33
|
+
|
34
|
+
|
31
35
|
def process_arguments(**kwargs):
|
32
36
|
'''
|
33
37
|
TRYING TO TURN THE CSV FILES INTO RELEVANT ARGS
|
34
38
|
'''
|
35
39
|
#dataset
|
40
|
+
'''
|
36
41
|
if kwargs.get('dataset_file', False
|
37
42
|
):
|
38
43
|
dataset = pd.read_csv(kwargs.get('dataset_file'))
|
@@ -71,15 +76,15 @@ def process_arguments(**kwargs):
|
|
71
76
|
|
72
77
|
update_constant = kwargs.get('analyst_constraints')
|
73
78
|
#update the decision_constraints
|
74
|
-
|
79
|
+
'''
|
75
80
|
data_characteristic = pd.read_csv(kwargs.get('problem_data', 'problem_data.csv'))
|
76
81
|
# Extract the column as a list of characteristic names
|
77
|
-
name_data_characteristics = data_characteristic.columns.tolist()
|
82
|
+
#name_data_characteristics = data_characteristic.columns.tolist()
|
78
83
|
|
79
84
|
# Create the dictionary
|
80
|
-
decision_constraints = {name: list(range(7)) for name in name_data_characteristics}
|
85
|
+
#decision_constraints = {name: list(range(7)) for name in name_data_characteristics}
|
81
86
|
|
82
|
-
print('this gets all the features, I need to remove...')
|
87
|
+
#print('this gets all the features, I need to remove...')
|
83
88
|
|
84
89
|
analyst_d = pd.read_csv(kwargs.get('decison_constraints', 'decisions.csv'))
|
85
90
|
hyper = pd.read_csv('setup_hyper.csv')
|
@@ -377,10 +382,10 @@ def main(args, **kwargs):
|
|
377
382
|
#data_info['data']['Panel'][0]
|
378
383
|
args['decisions'] = data_info['analyst']
|
379
384
|
|
380
|
-
if
|
385
|
+
if type(data_info['data']['Grouped'][0]) == str and len(data_info['data']['Grouped'][0]) >1:
|
381
386
|
args['group'] = data_info['data']['Grouped'][0]
|
382
387
|
args['ID'] = data_info['data']['Grouped'][0]
|
383
|
-
if
|
388
|
+
if type(data_info['data']['Panel'][0]) == str and len(data_info['data']['Panel'][0])>1:
|
384
389
|
args['panels'] = data_info['data']['Panel'][0]
|
385
390
|
|
386
391
|
df = pd.read_csv(str(data_info['data']['Problem'][0]))
|
@@ -3,8 +3,8 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
|
|
3
3
|
metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
|
4
4
|
metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
|
5
5
|
metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
|
6
|
-
metacountregressor/helperprocess.py,sha256=
|
7
|
-
metacountregressor/main.py,sha256=
|
6
|
+
metacountregressor/helperprocess.py,sha256=WiCItpiGJQJNxwczsNzWobDeltfmSKzSJKlxz8_9pxk,20504
|
7
|
+
metacountregressor/main.py,sha256=2Rx_mGIGzl4lhwkMb7DHvsBaawqEakKiVR1Yr2uG9Yo,22819
|
8
8
|
metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
|
9
9
|
metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
|
10
10
|
metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
|
@@ -13,8 +13,8 @@ metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,9
|
|
13
13
|
metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
|
14
14
|
metacountregressor/solution.py,sha256=6qAtCSKNvmrCpIpBCzp2Zt8wWKZBHRQtTriyiMHUo54,277519
|
15
15
|
metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
|
16
|
-
metacountregressor-0.1.
|
17
|
-
metacountregressor-0.1.
|
18
|
-
metacountregressor-0.1.
|
19
|
-
metacountregressor-0.1.
|
20
|
-
metacountregressor-0.1.
|
16
|
+
metacountregressor-0.1.139.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
17
|
+
metacountregressor-0.1.139.dist-info/METADATA,sha256=_jvPMVa-G1tSUPlH9VjpCAPT1nl6TCFWSsq6SMDwTw8,23434
|
18
|
+
metacountregressor-0.1.139.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
19
|
+
metacountregressor-0.1.139.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
|
20
|
+
metacountregressor-0.1.139.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|