metacountregressor 0.1.136__py3-none-any.whl → 0.1.139__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- metacountregressor/helperprocess.py +73 -4
- metacountregressor/main.py +11 -6
- {metacountregressor-0.1.136.dist-info → metacountregressor-0.1.139.dist-info}/METADATA +1 -1
- {metacountregressor-0.1.136.dist-info → metacountregressor-0.1.139.dist-info}/RECORD +7 -7
- {metacountregressor-0.1.136.dist-info → metacountregressor-0.1.139.dist-info}/LICENSE.txt +0 -0
- {metacountregressor-0.1.136.dist-info → metacountregressor-0.1.139.dist-info}/WHEEL +0 -0
- {metacountregressor-0.1.136.dist-info → metacountregressor-0.1.139.dist-info}/top_level.txt +0 -0
@@ -1,9 +1,12 @@
|
|
1
|
+
from os.path import exists
|
2
|
+
|
1
3
|
import numpy as np
|
2
4
|
import pandas as pd
|
3
5
|
import csv
|
4
6
|
import matplotlib.pyplot as plt
|
5
7
|
from scipy import stats as st
|
6
8
|
from sklearn.preprocessing import StandardScaler
|
9
|
+
from win32comext.shell.demos.IActiveDesktop import existing_item
|
7
10
|
|
8
11
|
plt.style.use('https://github.com/dhaitz/matplotlib-stylesheets/raw/master/pitayasmoothie-dark.mplstyle')
|
9
12
|
|
@@ -179,15 +182,81 @@ config = {
|
|
179
182
|
}
|
180
183
|
}
|
181
184
|
'''
|
185
|
+
def null_handler(vari):
|
186
|
+
if vari in locals():
|
187
|
+
return vari
|
188
|
+
else:
|
189
|
+
print(f'{vari} does not exist, setting None..')
|
190
|
+
return None
|
191
|
+
|
192
|
+
|
193
|
+
def set_up_analyst_constraints(data_characteristic, model_terms, variable_decisions_alt = None):
|
182
194
|
|
183
195
|
|
196
|
+
name_data_characteristics = data_characteristic.columns.tolist()
|
197
|
+
# Get non-None values as a list
|
198
|
+
non_none_terms = [value for value in model_terms.values() if value is not None]
|
199
|
+
# how to make name_data_characteristics - non_none_terms
|
200
|
+
|
201
|
+
result = [item for item in name_data_characteristics if item not in non_none_terms]
|
202
|
+
distu = ['Normal', 'Uniform', 'Triangular']
|
203
|
+
tra = ['no', 'sqrt', 'arcsinh']
|
204
|
+
if model_terms.get('grouped') is None:
|
205
|
+
print('cant have grouped rpm, removing level 4 from every item')
|
206
|
+
MAKE_ALL_4_FALSE = True
|
207
|
+
else:
|
208
|
+
MAKE_ALL_4_FALSE = False
|
209
|
+
|
210
|
+
variable_decisions = {
|
211
|
+
name: {
|
212
|
+
'levels': list(range(6)),
|
213
|
+
'distributions': distu,
|
214
|
+
'transformations': tra
|
215
|
+
}
|
216
|
+
for name in result
|
217
|
+
}
|
218
|
+
# Override elements in the original dictionary with the alt dictionary
|
219
|
+
if variable_decisions_alt is not None:
|
220
|
+
for key, alt_value in variable_decisions_alt.items():
|
221
|
+
if key in variable_decisions:
|
222
|
+
# Update the existing entry
|
223
|
+
variable_decisions[key].update(alt_value)
|
224
|
+
else:
|
225
|
+
# Add new entry if it doesn't exist
|
226
|
+
variable_decisions[key] = alt_value
|
227
|
+
# Prepare the data for the DataFrame
|
228
|
+
rows = []
|
229
|
+
for column_name, details in variable_decisions.items():
|
230
|
+
# Create a row dictionary
|
231
|
+
row = {'Column': column_name}
|
232
|
+
|
233
|
+
# Add levels as True/False for Level 0 through Level 5
|
234
|
+
for level in range(6): # Assuming Level 0 to Level 5
|
235
|
+
|
236
|
+
if level == 4 and MAKE_ALL_4_FALSE:
|
237
|
+
row[f'Level {level}'] = False
|
238
|
+
else:
|
239
|
+
row[f'Level {level}'] = level in details['levels']
|
240
|
+
|
241
|
+
# Add distributions and transformations directly
|
242
|
+
row['distributions'] = details['distributions']
|
243
|
+
row['transformations'] = details['transformations']
|
244
|
+
|
245
|
+
rows.append(row)
|
246
|
+
|
247
|
+
# Create the DataFrame
|
248
|
+
df = pd.DataFrame(rows)
|
249
|
+
|
250
|
+
data_new = data_characteristic.rename(columns={v: k for k, v in model_terms.items() if v in data_characteristic.columns})
|
251
|
+
return df, data_new
|
252
|
+
|
184
253
|
# Function to guess Low, Medium, High ranges
|
185
254
|
def guess_low_medium_high(column_name, series):
|
186
255
|
# Compute the tertiles (33rd and 66th percentiles)
|
187
|
-
print('did it make it...')
|
188
|
-
mode_value = st.mode(series) # Get the most frequent value
|
189
|
-
print('good')
|
190
|
-
|
256
|
+
#print('did it make it...')
|
257
|
+
#mode_value = st.mode(series) # Get the most frequent value
|
258
|
+
#print('good')
|
259
|
+
# series = pd.to_numeric(series, errors='coerce').fillna(mode_value)
|
191
260
|
low_threshold = np.quantile(series, 0.33)
|
192
261
|
high_threshold = np.quantile(series,0.66)
|
193
262
|
|
metacountregressor/main.py
CHANGED
@@ -28,11 +28,16 @@ def convert_df_columns_to_binary_and_wide(df):
|
|
28
28
|
return df
|
29
29
|
|
30
30
|
|
31
|
+
|
32
|
+
|
33
|
+
|
34
|
+
|
31
35
|
def process_arguments(**kwargs):
|
32
36
|
'''
|
33
37
|
TRYING TO TURN THE CSV FILES INTO RELEVANT ARGS
|
34
38
|
'''
|
35
39
|
#dataset
|
40
|
+
'''
|
36
41
|
if kwargs.get('dataset_file', False
|
37
42
|
):
|
38
43
|
dataset = pd.read_csv(kwargs.get('dataset_file'))
|
@@ -71,15 +76,15 @@ def process_arguments(**kwargs):
|
|
71
76
|
|
72
77
|
update_constant = kwargs.get('analyst_constraints')
|
73
78
|
#update the decision_constraints
|
74
|
-
|
79
|
+
'''
|
75
80
|
data_characteristic = pd.read_csv(kwargs.get('problem_data', 'problem_data.csv'))
|
76
81
|
# Extract the column as a list of characteristic names
|
77
|
-
name_data_characteristics = data_characteristic.columns.tolist()
|
82
|
+
#name_data_characteristics = data_characteristic.columns.tolist()
|
78
83
|
|
79
84
|
# Create the dictionary
|
80
|
-
decision_constraints = {name: list(range(7)) for name in name_data_characteristics}
|
85
|
+
#decision_constraints = {name: list(range(7)) for name in name_data_characteristics}
|
81
86
|
|
82
|
-
print('this gets all the features, I need to remove...')
|
87
|
+
#print('this gets all the features, I need to remove...')
|
83
88
|
|
84
89
|
analyst_d = pd.read_csv(kwargs.get('decison_constraints', 'decisions.csv'))
|
85
90
|
hyper = pd.read_csv('setup_hyper.csv')
|
@@ -377,10 +382,10 @@ def main(args, **kwargs):
|
|
377
382
|
#data_info['data']['Panel'][0]
|
378
383
|
args['decisions'] = data_info['analyst']
|
379
384
|
|
380
|
-
if
|
385
|
+
if type(data_info['data']['Grouped'][0]) == str and len(data_info['data']['Grouped'][0]) >1:
|
381
386
|
args['group'] = data_info['data']['Grouped'][0]
|
382
387
|
args['ID'] = data_info['data']['Grouped'][0]
|
383
|
-
if
|
388
|
+
if type(data_info['data']['Panel'][0]) == str and len(data_info['data']['Panel'][0])>1:
|
384
389
|
args['panels'] = data_info['data']['Panel'][0]
|
385
390
|
|
386
391
|
df = pd.read_csv(str(data_info['data']['Problem'][0]))
|
@@ -3,8 +3,8 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
|
|
3
3
|
metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
|
4
4
|
metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
|
5
5
|
metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
|
6
|
-
metacountregressor/helperprocess.py,sha256=
|
7
|
-
metacountregressor/main.py,sha256=
|
6
|
+
metacountregressor/helperprocess.py,sha256=WiCItpiGJQJNxwczsNzWobDeltfmSKzSJKlxz8_9pxk,20504
|
7
|
+
metacountregressor/main.py,sha256=2Rx_mGIGzl4lhwkMb7DHvsBaawqEakKiVR1Yr2uG9Yo,22819
|
8
8
|
metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
|
9
9
|
metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
|
10
10
|
metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
|
@@ -13,8 +13,8 @@ metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,9
|
|
13
13
|
metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
|
14
14
|
metacountregressor/solution.py,sha256=6qAtCSKNvmrCpIpBCzp2Zt8wWKZBHRQtTriyiMHUo54,277519
|
15
15
|
metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
|
16
|
-
metacountregressor-0.1.
|
17
|
-
metacountregressor-0.1.
|
18
|
-
metacountregressor-0.1.
|
19
|
-
metacountregressor-0.1.
|
20
|
-
metacountregressor-0.1.
|
16
|
+
metacountregressor-0.1.139.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
17
|
+
metacountregressor-0.1.139.dist-info/METADATA,sha256=_jvPMVa-G1tSUPlH9VjpCAPT1nl6TCFWSsq6SMDwTw8,23434
|
18
|
+
metacountregressor-0.1.139.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
19
|
+
metacountregressor-0.1.139.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
|
20
|
+
metacountregressor-0.1.139.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|