metacountregressor 0.1.122__py3-none-any.whl → 0.1.124__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2,7 +2,7 @@ import numpy as np
2
2
  import pandas as pd
3
3
  import csv
4
4
  import matplotlib.pyplot as plt
5
-
5
+ from sklearn.preprocessing import StandardScaler
6
6
 
7
7
  plt.style.use('https://github.com/dhaitz/matplotlib-stylesheets/raw/master/pitayasmoothie-dark.mplstyle')
8
8
 
@@ -219,6 +219,31 @@ def transform_dataframe(df, config):
219
219
 
220
220
  return output_df
221
221
 
222
+ # Helper function to guess column type and update `config`
223
+ def guess_column_type(column_name, series):
224
+ if series.dtype == 'object' or series.dtype.name == 'category':
225
+ # If the column is categorical (e.g., strings), assume one-hot encoding
226
+ return {'type': 'one-hot', 'prefix': column_name}
227
+ elif pd.api.types.is_numeric_dtype(series):
228
+ unique_values = series.nunique()
229
+ if unique_values < 10:
230
+ # If there are few unique values, assume binning with default bins
231
+ min_val, max_val = series.min(), series.max()
232
+ bins = np.linspace(min_val, max_val, num=unique_values + 1)
233
+ labels = [f'Bin_{i}' for i in range(1, len(bins))]
234
+ return {'type': 'bin', 'bins': bins, 'labels': labels, 'prefix': f'{column_name}_Binned'}
235
+ else:
236
+ # # Otherwise, assume continuous data with normalization
237
+ # Otherwise, fallback to continuous standardization
238
+ return {
239
+ 'type': 'continuous',
240
+ 'apply_func': (lambda x: (x - series.mean()) / series.std()) # Z-Score Standardization
241
+ }
242
+ else:
243
+ # Default fallback (leave the column unchanged)
244
+ return {'type': 'none'}
245
+
246
+
222
247
 
223
248
  def as_wide_factor(x_df, yes=1, min_factor=2, max_factor=8, keep_original=0, exclude=[]):
224
249
  if not yes:
@@ -389,7 +389,7 @@ def main(args, **kwargs):
389
389
  print('test') #FIXME
390
390
  else:
391
391
  print('PROCESS THE PACKAGE ARGUMENTS SIMULIAR TO HOW ONE WOULD DEFINE THE ENVIRONMENT')
392
- data_info =process_package_argumemnts()
392
+ data_info =process_package_arguments()
393
393
 
394
394
 
395
395
  if args['Keep_Fit'] == str(2) or args['Keep_Fit'] == 2:
@@ -8,7 +8,7 @@ with codecs.open("README.rst", encoding='utf8') as fh:
8
8
  setuptools.setup(name='metacountregressor',
9
9
  version='0.1.63',
10
10
  description='Extensions for a Python package for \
11
- GPU-accelerated estimation of mixed logit models.',
11
+ estimation of data count models.',
12
12
  long_description=long_description,
13
13
  long_description_content_type="text/x-rst",
14
14
  url='https://github.com/zahern/CountDataEstimation',
@@ -20,5 +20,6 @@ setuptools.setup(name='metacountregressor',
20
20
  python_requires='>=3.10',
21
21
  install_requires=[
22
22
  'numpy>=1.13.1',
23
- 'scipy>=1.0.0'
23
+ 'scipy>=1.0.0',
24
+ 'latextable'
24
25
  ])
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.122
3
+ Version: 0.1.124
4
4
  Summary: Extensions for a Python package for estimation of count models.
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -12,6 +12,7 @@ License-File: LICENSE.txt
12
12
  Requires-Dist: numpy>=1.13.1
13
13
  Requires-Dist: scipy>=1.0.0
14
14
  Requires-Dist: requests
15
+ Requires-Dist: latextable
15
16
  Dynamic: author
16
17
  Dynamic: author-email
17
18
  Dynamic: description
@@ -3,18 +3,18 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
3
3
  metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
4
4
  metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
5
5
  metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
6
- metacountregressor/helperprocess.py,sha256=mjdcuelR_9MKRSC--RnmgfQWMp9l9fybNZpSyDEWq-A,15016
7
- metacountregressor/main.py,sha256=rWUs3xY4wH6UBdn6nqyoOPTYDweRrye-ZfNMlBdbuHg,22714
6
+ metacountregressor/helperprocess.py,sha256=4aSoyKP1GfzjwCzZ_dXlTbokOiMt_8sbzB6_tu0GPDg,16290
7
+ metacountregressor/main.py,sha256=A3XGwbwhhKVgMxnEgbAmMpgYaWkS8Rk30-cYs3FxvEk,22713
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
9
  metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
10
10
  metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
11
11
  metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
12
- metacountregressor/setup.py,sha256=8w6IqX0tJsbYrOI1BJLIJCIvOnunKli5I9fsF5PhHv4,919
12
+ metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
14
  metacountregressor/solution.py,sha256=OJqB00cvGMLFei6RsjphPamOdLm3EWOOzK7k-uVbvFY,277671
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.122.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.122.dist-info/METADATA,sha256=FVjcOQD1_WwEKGYaen8netc1hx_Mxx1g71ajF-qVOJQ,23415
18
- metacountregressor-0.1.122.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
- metacountregressor-0.1.122.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.122.dist-info/RECORD,,
16
+ metacountregressor-0.1.124.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.124.dist-info/METADATA,sha256=8d5RG71XKfReAVDxLlVwVbDMJXZqnCEElx7AUwrY_2E,23441
18
+ metacountregressor-0.1.124.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
+ metacountregressor-0.1.124.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.124.dist-info/RECORD,,