metacountregressor 0.1.122__py3-none-any.whl → 0.1.124__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -2,7 +2,7 @@ import numpy as np
2
2
  import pandas as pd
3
3
  import csv
4
4
  import matplotlib.pyplot as plt
5
-
5
+ from sklearn.preprocessing import StandardScaler
6
6
 
7
7
  plt.style.use('https://github.com/dhaitz/matplotlib-stylesheets/raw/master/pitayasmoothie-dark.mplstyle')
8
8
 
@@ -219,6 +219,31 @@ def transform_dataframe(df, config):
219
219
 
220
220
  return output_df
221
221
 
222
+ # Helper function to guess column type and update `config`
223
+ def guess_column_type(column_name, series):
224
+ if series.dtype == 'object' or series.dtype.name == 'category':
225
+ # If the column is categorical (e.g., strings), assume one-hot encoding
226
+ return {'type': 'one-hot', 'prefix': column_name}
227
+ elif pd.api.types.is_numeric_dtype(series):
228
+ unique_values = series.nunique()
229
+ if unique_values < 10:
230
+ # If there are few unique values, assume binning with default bins
231
+ min_val, max_val = series.min(), series.max()
232
+ bins = np.linspace(min_val, max_val, num=unique_values + 1)
233
+ labels = [f'Bin_{i}' for i in range(1, len(bins))]
234
+ return {'type': 'bin', 'bins': bins, 'labels': labels, 'prefix': f'{column_name}_Binned'}
235
+ else:
236
+ # # Otherwise, assume continuous data with normalization
237
+ # Otherwise, fallback to continuous standardization
238
+ return {
239
+ 'type': 'continuous',
240
+ 'apply_func': (lambda x: (x - series.mean()) / series.std()) # Z-Score Standardization
241
+ }
242
+ else:
243
+ # Default fallback (leave the column unchanged)
244
+ return {'type': 'none'}
245
+
246
+
222
247
 
223
248
  def as_wide_factor(x_df, yes=1, min_factor=2, max_factor=8, keep_original=0, exclude=[]):
224
249
  if not yes:
@@ -389,7 +389,7 @@ def main(args, **kwargs):
389
389
  print('test') #FIXME
390
390
  else:
391
391
  print('PROCESS THE PACKAGE ARGUMENTS SIMULIAR TO HOW ONE WOULD DEFINE THE ENVIRONMENT')
392
- data_info =process_package_argumemnts()
392
+ data_info =process_package_arguments()
393
393
 
394
394
 
395
395
  if args['Keep_Fit'] == str(2) or args['Keep_Fit'] == 2:
@@ -8,7 +8,7 @@ with codecs.open("README.rst", encoding='utf8') as fh:
8
8
  setuptools.setup(name='metacountregressor',
9
9
  version='0.1.63',
10
10
  description='Extensions for a Python package for \
11
- GPU-accelerated estimation of mixed logit models.',
11
+ estimation of data count models.',
12
12
  long_description=long_description,
13
13
  long_description_content_type="text/x-rst",
14
14
  url='https://github.com/zahern/CountDataEstimation',
@@ -20,5 +20,6 @@ setuptools.setup(name='metacountregressor',
20
20
  python_requires='>=3.10',
21
21
  install_requires=[
22
22
  'numpy>=1.13.1',
23
- 'scipy>=1.0.0'
23
+ 'scipy>=1.0.0',
24
+ 'latextable'
24
25
  ])
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.122
3
+ Version: 0.1.124
4
4
  Summary: Extensions for a Python package for estimation of count models.
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -12,6 +12,7 @@ License-File: LICENSE.txt
12
12
  Requires-Dist: numpy>=1.13.1
13
13
  Requires-Dist: scipy>=1.0.0
14
14
  Requires-Dist: requests
15
+ Requires-Dist: latextable
15
16
  Dynamic: author
16
17
  Dynamic: author-email
17
18
  Dynamic: description
@@ -3,18 +3,18 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
3
3
  metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
4
4
  metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
5
5
  metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
6
- metacountregressor/helperprocess.py,sha256=mjdcuelR_9MKRSC--RnmgfQWMp9l9fybNZpSyDEWq-A,15016
7
- metacountregressor/main.py,sha256=rWUs3xY4wH6UBdn6nqyoOPTYDweRrye-ZfNMlBdbuHg,22714
6
+ metacountregressor/helperprocess.py,sha256=4aSoyKP1GfzjwCzZ_dXlTbokOiMt_8sbzB6_tu0GPDg,16290
7
+ metacountregressor/main.py,sha256=A3XGwbwhhKVgMxnEgbAmMpgYaWkS8Rk30-cYs3FxvEk,22713
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
9
  metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
10
10
  metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
11
11
  metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
12
- metacountregressor/setup.py,sha256=8w6IqX0tJsbYrOI1BJLIJCIvOnunKli5I9fsF5PhHv4,919
12
+ metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
14
  metacountregressor/solution.py,sha256=OJqB00cvGMLFei6RsjphPamOdLm3EWOOzK7k-uVbvFY,277671
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.122.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.122.dist-info/METADATA,sha256=FVjcOQD1_WwEKGYaen8netc1hx_Mxx1g71ajF-qVOJQ,23415
18
- metacountregressor-0.1.122.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
- metacountregressor-0.1.122.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.122.dist-info/RECORD,,
16
+ metacountregressor-0.1.124.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.124.dist-info/METADATA,sha256=8d5RG71XKfReAVDxLlVwVbDMJXZqnCEElx7AUwrY_2E,23441
18
+ metacountregressor-0.1.124.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
+ metacountregressor-0.1.124.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.124.dist-info/RECORD,,