mct-nightly 2.4.0.20250630.629__py3-none-any.whl → 2.4.0.20250702.605__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.4.0.20250630.629.dist-info → mct_nightly-2.4.0.20250702.605.dist-info}/METADATA +16 -16
- {mct_nightly-2.4.0.20250630.629.dist-info → mct_nightly-2.4.0.20250702.605.dist-info}/RECORD +75 -72
- model_compression_toolkit/__init__.py +1 -1
- model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -1
- model_compression_toolkit/core/common/framework_info.py +5 -32
- model_compression_toolkit/core/common/fusion/graph_fuser.py +12 -9
- model_compression_toolkit/core/common/graph/base_graph.py +20 -37
- model_compression_toolkit/core/common/graph/base_node.py +13 -106
- model_compression_toolkit/core/common/graph/functional_node.py +1 -1
- model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +12 -10
- model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +14 -9
- model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +9 -15
- model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/metric_calculators.py +2 -3
- model_compression_toolkit/core/common/network_editors/__init__.py +8 -1
- model_compression_toolkit/core/common/network_editors/actions.py +4 -96
- model_compression_toolkit/core/common/quantization/bit_width_config.py +10 -10
- model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +116 -56
- model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +1 -1
- model_compression_toolkit/core/common/quantization/node_quantization_config.py +55 -179
- model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +21 -1
- model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +8 -5
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +76 -70
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +10 -12
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +54 -30
- model_compression_toolkit/core/common/quantization/quantize_node.py +8 -8
- model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +93 -398
- model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +2 -5
- model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +2 -4
- model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +5 -6
- model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +12 -6
- model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +1 -1
- model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +1 -2
- model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +33 -33
- model_compression_toolkit/core/common/visualization/tensorboard_writer.py +2 -4
- model_compression_toolkit/core/graph_prep_runner.py +31 -20
- model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +5 -2
- model_compression_toolkit/core/keras/default_framework_info.py +0 -11
- model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +9 -6
- model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +3 -1
- model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +1 -1
- model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +2 -1
- model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +1 -1
- model_compression_toolkit/core/keras/quantization/activation_quantization_fn_factory.py +47 -0
- model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +3 -2
- model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +5 -2
- model_compression_toolkit/core/pytorch/default_framework_info.py +0 -12
- model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +5 -5
- model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +2 -0
- model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +1 -1
- model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +2 -1
- model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +1 -1
- model_compression_toolkit/core/pytorch/pytorch_implementation.py +1 -1
- model_compression_toolkit/core/pytorch/quantization/activation_quantization_fn_factory.py +45 -0
- model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +3 -2
- model_compression_toolkit/core/runner.py +1 -1
- model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +7 -3
- model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +1 -1
- model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +12 -3
- model_compression_toolkit/pruning/keras/pruning_facade.py +5 -9
- model_compression_toolkit/pruning/pytorch/pruning_facade.py +2 -5
- model_compression_toolkit/ptq/keras/quantization_facade.py +1 -1
- model_compression_toolkit/qat/keras/quantization_facade.py +1 -1
- model_compression_toolkit/qat/pytorch/quantization_facade.py +1 -1
- model_compression_toolkit/quantization_preparation/__init__.py +14 -0
- model_compression_toolkit/quantization_preparation/load_fqc.py +223 -0
- model_compression_toolkit/target_platform_capabilities/constants.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -78
- {mct_nightly-2.4.0.20250630.629.dist-info → mct_nightly-2.4.0.20250702.605.dist-info}/WHEEL +0 -0
- {mct_nightly-2.4.0.20250630.629.dist-info → mct_nightly-2.4.0.20250702.605.dist-info}/licenses/LICENSE.md +0 -0
- {mct_nightly-2.4.0.20250630.629.dist-info → mct_nightly-2.4.0.20250702.605.dist-info}/top_level.txt +0 -0
- /model_compression_toolkit/core/keras/{quantizer → quantization}/__init__.py +0 -0
- /model_compression_toolkit/core/keras/{quantizer → quantization}/fake_quant_builder.py +0 -0
- /model_compression_toolkit/core/keras/{quantizer → quantization}/lut_fake_quant.py +0 -0
- /model_compression_toolkit/core/pytorch/{quantizer → quantization}/__init__.py +0 -0
- /model_compression_toolkit/core/pytorch/{quantizer → quantization}/fake_quant_builder.py +0 -0
- /model_compression_toolkit/core/pytorch/{quantizer → quantization}/lut_fake_quant.py +0 -0
{mct_nightly-2.4.0.20250630.629.dist-info → mct_nightly-2.4.0.20250702.605.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mct-nightly
|
|
3
|
-
Version: 2.4.0.
|
|
3
|
+
Version: 2.4.0.20250702.605
|
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
|
5
5
|
Author-email: ssi-dnn-dev@sony.com
|
|
6
6
|
Classifier: Programming Language :: Python :: 3
|
|
@@ -35,7 +35,7 @@ Dynamic: summary
|
|
|
35
35
|
|
|
36
36
|
<div align="center" markdown="1">
|
|
37
37
|
<p>
|
|
38
|
-
<a href="https://
|
|
38
|
+
<a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization/" target="_blank">
|
|
39
39
|
<img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/mctHeader1-cropped.svg" width="1000"></a>
|
|
40
40
|
</p>
|
|
41
41
|
|
|
@@ -52,9 +52,9 @@ ______________________________________________________________________
|
|
|
52
52
|
<a href="#license">License</a>
|
|
53
53
|
</p>
|
|
54
54
|
<p align="center">
|
|
55
|
-
<a href="https://
|
|
56
|
-
<a href="https://
|
|
57
|
-
<a href="https://
|
|
55
|
+
<a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.3%20%7C%202.4%20%7C%202.5%20%7C%202.6-blue" /></a>
|
|
56
|
+
<a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/tensorflow-2.14%20%7C%202.15-blue" /></a>
|
|
57
|
+
<a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue" /></a>
|
|
58
58
|
<a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
|
|
59
59
|
<a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
|
|
60
60
|
|
|
@@ -85,9 +85,9 @@ MCT supports various quantization methods as appears below.
|
|
|
85
85
|
|
|
86
86
|
Quantization Method | Complexity | Computational Cost | API | Tutorial
|
|
87
87
|
-------------------- | -----------|--------------------|---------|--------
|
|
88
|
-
PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://
|
|
89
|
-
GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://
|
|
90
|
-
QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://
|
|
88
|
+
PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
|
89
|
+
GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
|
90
|
+
QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
|
91
91
|
|
|
92
92
|
</p>
|
|
93
93
|
</div>
|
|
@@ -130,13 +130,13 @@ Generates synthetic images based on the statistics stored in the model's batch n
|
|
|
130
130
|
The specifications of the method are detailed in the paper: _"**Data Generation for Hardware-Friendly Post-Training Quantization**"_ [5].
|
|
131
131
|
__________________________________________________________________________________________________________
|
|
132
132
|
### Structured Pruning [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
|
|
133
|
-
Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://
|
|
133
|
+
Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_pruning_experimental.html)).
|
|
134
134
|
__________________________________________________________________________________________________________
|
|
135
135
|
### **Debugging and Visualization**
|
|
136
136
|
**🎛️ Network Editor (Modify Quantization Configurations)** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
|
|
137
137
|
Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor.
|
|
138
138
|
|
|
139
|
-
**🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://
|
|
139
|
+
**🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html).
|
|
140
140
|
|
|
141
141
|
**🔑 XQuant (Explainable Quantization)** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
|
|
142
142
|
__________________________________________________________________________________________________________
|
|
@@ -146,15 +146,15 @@ The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhance
|
|
|
146
146
|
More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
|
|
147
147
|
|
|
148
148
|
## <div align="center">Resources</div>
|
|
149
|
-
* [User Guide](https://
|
|
149
|
+
* [User Guide](https://sonysemiconductorsolutions.github.io/mct-model-optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
|
|
150
150
|
|
|
151
|
-
* MCT's [API Docs](https://
|
|
151
|
+
* MCT's [API Docs](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/) is separated per quantization methods:
|
|
152
152
|
|
|
153
|
-
* [Post-training quantization](https://
|
|
154
|
-
* [Gradient-based post-training quantization](https://
|
|
155
|
-
* [Quantization-aware training](https://
|
|
153
|
+
* [Post-training quantization](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#ptq) | PTQ API docs
|
|
154
|
+
* [Gradient-based post-training quantization](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#gptq) | GPTQ API docs
|
|
155
|
+
* [Quantization-aware training](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#qat) | QAT API docs
|
|
156
156
|
|
|
157
|
-
* [Debug](https://
|
|
157
|
+
* [Debug](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
|
|
158
158
|
|
|
159
159
|
* [Release notes](https://github.com/sony/model_optimization/releases)
|
|
160
160
|
|
{mct_nightly-2.4.0.20250630.629.dist-info → mct_nightly-2.4.0.20250702.605.dist-info}/RECORD
RENAMED
|
@@ -1,5 +1,5 @@
|
|
|
1
|
-
mct_nightly-2.4.0.
|
|
2
|
-
model_compression_toolkit/__init__.py,sha256=
|
|
1
|
+
mct_nightly-2.4.0.20250702.605.dist-info/licenses/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
|
2
|
+
model_compression_toolkit/__init__.py,sha256=XSd4-JMveL8G0O7XoXMc0pOaAC01829I4jscOFpeT6s,1557
|
|
3
3
|
model_compression_toolkit/constants.py,sha256=KNgiNLpsMgSYyXMNEbHXd4bFNerQc1D6HH3vpbUq_Gs,4086
|
|
4
4
|
model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
|
|
5
5
|
model_compression_toolkit/logger.py,sha256=L3q7tn3Uht0i_7phnlOWMR2Te2zvzrt2HOz9vYEInts,4529
|
|
@@ -7,13 +7,13 @@ model_compression_toolkit/metadata.py,sha256=x_Bk4VpzILdsFax6--CZ3X18qUTP28sbF_A
|
|
|
7
7
|
model_compression_toolkit/verify_packages.py,sha256=l0neIRr8q_QwxmuiTI4vyCMDISDedK0EihjEQUe66tE,1319
|
|
8
8
|
model_compression_toolkit/core/__init__.py,sha256=HNverPpoqEyFKTa7iEdOqqY2P0Gq-7GMejNOi6ZPcQs,2042
|
|
9
9
|
model_compression_toolkit/core/analyzer.py,sha256=5P03LbkFy-mu31TMAiQoIKcsA1-DNz7cTzkGvRaXtbw,3505
|
|
10
|
-
model_compression_toolkit/core/graph_prep_runner.py,sha256=
|
|
10
|
+
model_compression_toolkit/core/graph_prep_runner.py,sha256=naZWayASraZ9PgmqCBFgFWWfDV3zLgPaIo6JLbInZc4,11361
|
|
11
11
|
model_compression_toolkit/core/quantization_prep_runner.py,sha256=tz91E1BaNc_K0lvVZGB8oS6ya5N4Z5TJLG4pSM3hx30,6229
|
|
12
|
-
model_compression_toolkit/core/runner.py,sha256=
|
|
12
|
+
model_compression_toolkit/core/runner.py,sha256=QpiJQmQXK6mWmnygNRdy6I8S48DHV-B0Kmr4TqOKbeA,12418
|
|
13
13
|
model_compression_toolkit/core/common/__init__.py,sha256=Wh127PbXcETZX_d1PQqZ71ETK3J9XO5A-HpadGUbj6o,1447
|
|
14
14
|
model_compression_toolkit/core/common/base_substitutions.py,sha256=xDFSmVVs_iFSZfajytI0cuQaNRNcwHX3uqOoHgVUvxQ,1666
|
|
15
15
|
model_compression_toolkit/core/common/framework_implementation.py,sha256=jrTupZbUbbSjjd8xxUYOuTE0WRWqJhlPYcm-LybtbwY,20240
|
|
16
|
-
model_compression_toolkit/core/common/framework_info.py,sha256=
|
|
16
|
+
model_compression_toolkit/core/common/framework_info.py,sha256=vPGV28gm-kvNSkkWI6jY3YeKBUYmn6UQ98HVUnl_-tM,5449
|
|
17
17
|
model_compression_toolkit/core/common/memory_computation.py,sha256=ixoSpV5ZYZGyzhre3kQcvR2sNA8KBsPZ3lgbkDnw9Cs,1205
|
|
18
18
|
model_compression_toolkit/core/common/model_builder_mode.py,sha256=jll9-59OPaE3ug7Y9-lLyV99_FoNHxkGZMgcm0Vkpss,1324
|
|
19
19
|
model_compression_toolkit/core/common/model_collector.py,sha256=A1uaGmxqj-392lMtE-F020FHFAyyKDJDdeJeZYtkv3Y,12755
|
|
@@ -22,7 +22,7 @@ model_compression_toolkit/core/common/node_prior_info.py,sha256=WXX_PrGVG9M9I_RE
|
|
|
22
22
|
model_compression_toolkit/core/common/similarity_analyzer.py,sha256=S3f6WgHyw62dGcxpX51FGKyfebe2zv9ABKbjtGyKRvY,9215
|
|
23
23
|
model_compression_toolkit/core/common/user_info.py,sha256=dSRMnT-oewmdOziIpEuW-s9K7vTSeyUBxT4z9neXurI,1648
|
|
24
24
|
model_compression_toolkit/core/common/back2framework/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
|
25
|
-
model_compression_toolkit/core/common/back2framework/base_model_builder.py,sha256=
|
|
25
|
+
model_compression_toolkit/core/common/back2framework/base_model_builder.py,sha256=yrIxT0ttDi9XViy8Zt8apnMCT8xDyVd5HZp0IttrGGQ,1775
|
|
26
26
|
model_compression_toolkit/core/common/collectors/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
|
|
27
27
|
model_compression_toolkit/core/common/collectors/base_collector.py,sha256=JoBTX3rRcRnUF3_Azjg848aiJt9drCJ5TsR9RahVI0Y,2591
|
|
28
28
|
model_compression_toolkit/core/common/collectors/histogram_collector.py,sha256=zra5V06Brpjc1cUNIMVVGqdoqAuro62_hGy2Zm5-XMQ,6754
|
|
@@ -32,15 +32,15 @@ model_compression_toolkit/core/common/collectors/statistics_collector.py,sha256=
|
|
|
32
32
|
model_compression_toolkit/core/common/collectors/weighted_histogram_collector.py,sha256=zp3dE7YTqWmkD5QWdRhsl9zD8W6Lr96G1Wjw1g2D3T0,4894
|
|
33
33
|
model_compression_toolkit/core/common/fusion/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
|
|
34
34
|
model_compression_toolkit/core/common/fusion/fusing_info.py,sha256=Z-O03-DlM4XyllVg5FaQlYeIgk5UqoC8dSA6IlRODNI,22693
|
|
35
|
-
model_compression_toolkit/core/common/fusion/graph_fuser.py,sha256=
|
|
35
|
+
model_compression_toolkit/core/common/fusion/graph_fuser.py,sha256=HxA0QI6fyXPx35oyoOWhudFtcRJyKVaqWzsW7CnGrnY,7897
|
|
36
36
|
model_compression_toolkit/core/common/graph/__init__.py,sha256=Xr-Lt_qXMdrCnnOaUS_OJP_3iTTGfPCLf8_vSrQgCs0,773
|
|
37
|
-
model_compression_toolkit/core/common/graph/base_graph.py,sha256=
|
|
38
|
-
model_compression_toolkit/core/common/graph/base_node.py,sha256=
|
|
37
|
+
model_compression_toolkit/core/common/graph/base_graph.py,sha256=sdYyOZAeAzBFU18VvQj0udeV1_ezmJHPJiZIAYt6Kko,39822
|
|
38
|
+
model_compression_toolkit/core/common/graph/base_node.py,sha256=LjGcjd04FxQEc5lIriPGAziQxvCsgM2W95KIQfW-qM0,30783
|
|
39
39
|
model_compression_toolkit/core/common/graph/edge.py,sha256=buoSEUZwilWBK3WeBKpJ-GeDaUA1SDdOHxDpxU_bGpk,3784
|
|
40
|
-
model_compression_toolkit/core/common/graph/functional_node.py,sha256=
|
|
40
|
+
model_compression_toolkit/core/common/graph/functional_node.py,sha256=Gj24D9m0ktv92JqX-h3QQrkyIwF24GjohSBtegqYZ5I,4731
|
|
41
41
|
model_compression_toolkit/core/common/graph/graph_matchers.py,sha256=CrDoHYq4iPaflgJWmoJ1K4ziLrRogJvFTVWg8P0UcDU,4744
|
|
42
42
|
model_compression_toolkit/core/common/graph/graph_searches.py,sha256=2oKuW6L8hP-oL0lFO9PhQFt9fEFgVJwpc1u4fHExAtE,5128
|
|
43
|
-
model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py,sha256=
|
|
43
|
+
model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py,sha256=6DvWdMgnMyf0SJ_Rq93G5WQ-wMpYK8SgiGILHqew6eQ,10242
|
|
44
44
|
model_compression_toolkit/core/common/graph/memory_graph/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
|
45
45
|
model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py,sha256=X6FK3C3y8ixFRPjC_wm3ClloCX8_06SOdA1TRi7o_LA,3800
|
|
46
46
|
model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py,sha256=oyz260JXDbvL8aI-DVtUvLHtLRWC2Yu4SBYlGL68c2Y,3498
|
|
@@ -63,8 +63,8 @@ model_compression_toolkit/core/common/matchers/walk_matcher.py,sha256=xqfLKk6xZt
|
|
|
63
63
|
model_compression_toolkit/core/common/mixed_precision/__init__.py,sha256=Vlpo9M_1u6LHdEjYE3-wGc1esoH2NVhRzi3n_HTYvHs,789
|
|
64
64
|
model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py,sha256=TuB1k3GS856UiYzdkjaMiGEP4hOrellxDpFFarUCUPQ,6609
|
|
65
65
|
model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py,sha256=LLDguK7afsbN742ucLpmJr5TUfTyFpK1vbf2bpVr1v0,882
|
|
66
|
-
model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py,sha256=
|
|
67
|
-
model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py,sha256=
|
|
66
|
+
model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py,sha256=s-HnZl35Z4wcxnSvCs0k3ibI_knktAhttk4I0jicK8k,5618
|
|
67
|
+
model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py,sha256=xI_Z0HdV4SILgtHNUnRMFBAqzvp9cmuusQgT8wQPE_A,3371
|
|
68
68
|
model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py,sha256=qsFW_H3HiN3Mr1lwSg15CQb4cUBtGVfewdGzZoJVijo,6737
|
|
69
69
|
model_compression_toolkit/core/common/mixed_precision/mixed_precision_ru_helper.py,sha256=MMb7qTwk_141-mxz1xch3lMb5F6eQjBf_uILcqXs1wE,4887
|
|
70
70
|
model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py,sha256=XnSNyG6ZLrIW4Y4_t-ggFvzBjag2RNejfiwbGYfk_Rg,6155
|
|
@@ -77,11 +77,11 @@ model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools
|
|
|
77
77
|
model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
|
|
78
78
|
model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py,sha256=6Z6nQL9UH7B8dbcUR0cuCTEYFOKZAlvOb-SCk_cAZFA,6670
|
|
79
79
|
model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/__init__.py,sha256=5yxITHNJcCfeGKdIpAYbNbKDoXUSvENuRQm3OQu8Qf4,697
|
|
80
|
-
model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/metric_calculators.py,sha256=
|
|
80
|
+
model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/metric_calculators.py,sha256=Md4mpD5rdQgbtJGoK_iC-DoNQTpw-8A-_nI5J20WG7M,21642
|
|
81
81
|
model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/sensitivity_evaluation.py,sha256=agxMoAX8LoHB8b5ud59x3RkAk00OtChLvoQvUgrgZOg,8612
|
|
82
82
|
model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/set_layer_to_bitwidth.py,sha256=Zn6SgzGLWWKmuYGHd1YtKxZdYnQWRDeXEkKlBiTbHcs,2929
|
|
83
|
-
model_compression_toolkit/core/common/network_editors/__init__.py,sha256=
|
|
84
|
-
model_compression_toolkit/core/common/network_editors/actions.py,sha256=
|
|
83
|
+
model_compression_toolkit/core/common/network_editors/__init__.py,sha256=KhRItoveIt1eLTPy9PxqqNryruuJpWI0or7L8QUkCJk,1305
|
|
84
|
+
model_compression_toolkit/core/common/network_editors/actions.py,sha256=GPZ6KejR-gNv1L5Ia-OjFEvhl09BeWyqEzKjFHH3lZk,12763
|
|
85
85
|
model_compression_toolkit/core/common/network_editors/edit_network.py,sha256=Ay1q6Qlcy2N4nVzsr0m7yzBLWDvq6IuzTv7BawdIxwU,1499
|
|
86
86
|
model_compression_toolkit/core/common/network_editors/node_filters.py,sha256=Pc_MCohCIbibIKI8Sz8RuQjEAHn-vRZMpuWCCliMqFk,3236
|
|
87
87
|
model_compression_toolkit/core/common/pruning/__init__.py,sha256=DGJybkDQtKMSMFoZ-nZ3ZifA8uJ6G_D20wHhKHNlmU0,699
|
|
@@ -102,27 +102,26 @@ model_compression_toolkit/core/common/pruning/mask/__init__.py,sha256=huHoBUcKNB
|
|
|
102
102
|
model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py,sha256=x7a16O7iAqXmxixDqJ22Ikbax1BqycqERhM2_G1tFC8,4781
|
|
103
103
|
model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py,sha256=mpAOWGBqkeKcjkjkajnt4RqE-YU_pyNfIXTGIefLxSA,5727
|
|
104
104
|
model_compression_toolkit/core/common/quantization/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
|
|
105
|
-
model_compression_toolkit/core/common/quantization/bit_width_config.py,sha256=
|
|
106
|
-
model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py,sha256=
|
|
105
|
+
model_compression_toolkit/core/common/quantization/bit_width_config.py,sha256=HLHc56shQwsFx6gdaq4BF0Y4pxy0HThZ72eqCR3QNSo,13096
|
|
106
|
+
model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py,sha256=u4g07MOCfTx8od8E44NQlBC7uW4AR5BmfUDPgW-gbGA,6681
|
|
107
107
|
model_compression_toolkit/core/common/quantization/core_config.py,sha256=yxCzWqldcHoe8GGxrH0tp99bhrc5jDT7SgZftnMUUBE,2374
|
|
108
108
|
model_compression_toolkit/core/common/quantization/debug_config.py,sha256=uH45Uq3Tp9FIyMynex_WY2_y-Kv8LuPw2XXZydnpW5A,1649
|
|
109
|
-
model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py,sha256=
|
|
110
|
-
model_compression_toolkit/core/common/quantization/node_quantization_config.py,sha256=
|
|
109
|
+
model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py,sha256=FyYCYbfkAofEWO2mAvFIppPeq2I10f1ScPNiVa9F7x4,7687
|
|
110
|
+
model_compression_toolkit/core/common/quantization/node_quantization_config.py,sha256=fj1ebZgnK6xH-9LIAu93rOEU7siXK86U_VyAtUwu9nA,24869
|
|
111
111
|
model_compression_toolkit/core/common/quantization/quantization_config.py,sha256=UkSVW7d1OF_Px9gAjsqqK65aYhIBFWaBO-_IH6_AFfg,4403
|
|
112
|
-
model_compression_toolkit/core/common/quantization/quantization_fn_selection.py,sha256=
|
|
113
|
-
model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py,sha256=7eG7dl1TcbdnHwgmvyjarxLs0o6Lw_9VAjXAm4rsiBk,3791
|
|
112
|
+
model_compression_toolkit/core/common/quantization/quantization_fn_selection.py,sha256=VVq2cKjumlNWucUbaNw8s2J0IbI_vrQ-KR_eQPshGSg,3140
|
|
114
113
|
model_compression_toolkit/core/common/quantization/quantize_graph_weights.py,sha256=N005MSvx8UypVpa7XrxNrB2G732n2wHj3RmLyjTgd3I,2728
|
|
115
|
-
model_compression_toolkit/core/common/quantization/quantize_node.py,sha256=
|
|
116
|
-
model_compression_toolkit/core/common/quantization/set_node_quantization_config.py,sha256=
|
|
117
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py,sha256=
|
|
114
|
+
model_compression_toolkit/core/common/quantization/quantize_node.py,sha256=WJ-lsT_R_pqjbrMzgcposugACDNz7yZ09vSlltTb78A,3001
|
|
115
|
+
model_compression_toolkit/core/common/quantization/set_node_quantization_config.py,sha256=Oz9ZEZAwcxTmalIkuBCAifd-7ZYltGR0S_RnjUNsmCU,11185
|
|
116
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py,sha256=QsuQ4e1IKf_hIF3cFRR_POAxCoJjqwuXeXyirmRL1-k,1644
|
|
118
117
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py,sha256=_m-XkEMJMHf0gYwVIXAoHVjdRa2NXt_gYdwBlw76ZR8,24031
|
|
119
118
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py,sha256=RL-PklAjGyC-26anSt8fU07a6pB_LBQFQy9o4e9giN0,8739
|
|
120
119
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py,sha256=9gnfJV89jpGwAx8ImJ5E9NjCv3lDtbyulP4OtgWb62M,1772
|
|
121
120
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py,sha256=-cghHF5S11qbjTDRruHlc__uaDoofZHl7QTl8hCeKW0,11141
|
|
122
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py,sha256=
|
|
123
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py,sha256=
|
|
121
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py,sha256=3EAbtLHOgTJIMbGlfAzeki7xxjipAsMyAaVRFXqF228,7243
|
|
122
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py,sha256=27We8-tLL0dkDPYSDlhXe6ZKSO-kw2s5sD4q9I_ADmE,8401
|
|
124
123
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py,sha256=Nv_b3DECVjQnlrUet2kbuSvSKVnxcc-gf2zhFb2jSZk,43482
|
|
125
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py,sha256=
|
|
124
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py,sha256=jb9Q2WgjmMc6i8j3TXr850tWCdI0a8598bkTmMYfdAY,4529
|
|
126
125
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py,sha256=6tRNgWvn-4r8hiSHqND7Qms1Nje1DUR4MR0JeWCNyvI,12531
|
|
127
126
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py,sha256=xiZgCkoIrJ9xsR17x9pSl_sUbiuSta67kf7bQ4quFUI,10804
|
|
128
127
|
model_compression_toolkit/core/common/quantization/quantizers/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
|
|
@@ -130,35 +129,35 @@ model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantiz
|
|
|
130
129
|
model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py,sha256=iEoWUPFQMcvZXHtLMe2_7L7IK25XcKiY6-d1_gArZs0,11880
|
|
131
130
|
model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py,sha256=wXExWHf5-0He7L4bpvFpKlx7FG4u3DAfNZiXPpOs_SQ,5521
|
|
132
131
|
model_compression_toolkit/core/common/statistics_correction/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
|
|
133
|
-
model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py,sha256=
|
|
134
|
-
model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py,sha256=
|
|
135
|
-
model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py,sha256=
|
|
136
|
-
model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py,sha256=
|
|
137
|
-
model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py,sha256=
|
|
132
|
+
model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py,sha256=oUa1Gv9jIICOoFljTiIaItFjJQPht7CBe-wEr3iBuLQ,4118
|
|
133
|
+
model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py,sha256=eGd0gaPz1K9tzfQf1UMBeshoydFwwZ4Ha2JKFCJ2eZc,4474
|
|
134
|
+
model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py,sha256=w9VkX0_XyE64zaYJrZqGEtVxaox7MwY-c8Ie1C0f6ZU,5093
|
|
135
|
+
model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py,sha256=289b2iwzp2hjsgpEZotQKNB2aPKjAZopRaGnbzErHV8,9263
|
|
136
|
+
model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py,sha256=08k7sqOLIya7Vvg2WMFdaSzLJ2FsgQlcKk0H_KoFoUg,10068
|
|
138
137
|
model_compression_toolkit/core/common/statistics_correction/statistics_correction.py,sha256=yB5Kxk74RAzcXxguFRVpvjFSWFrGrqL3JoU1qLst4PQ,5881
|
|
139
138
|
model_compression_toolkit/core/common/substitutions/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
|
|
140
139
|
model_compression_toolkit/core/common/substitutions/apply_substitutions.py,sha256=k-bifmakHIYZeZS-4T1QpZ1Et6AwAijMRgAKs7hmMKc,1390
|
|
141
140
|
model_compression_toolkit/core/common/substitutions/batchnorm_folding.py,sha256=wLlTT7sqUffKHwOrMG2VV5SktQkkP54l8taW1Fq0mh0,13392
|
|
142
|
-
model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py,sha256=
|
|
141
|
+
model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py,sha256=Qe-MYKL2GRQ3PX1Q-zpws5mEW3vrs2h19kjiUZTkKwI,8327
|
|
143
142
|
model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py,sha256=eCbhbAzgXWoVymMLbrupJ1qAcdhZDwkjKeja0fCymnY,9746
|
|
144
143
|
model_compression_toolkit/core/common/substitutions/linear_collapsing.py,sha256=iEtzbWCDXP6EDkTZCtREQ0rpMxhQ2kM9zlcP_0KLq9I,12367
|
|
145
144
|
model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py,sha256=uoauhmncQqUBNvD-qCLIXsIbl_IzrbxSKdxiMig-5W4,2406
|
|
146
145
|
model_compression_toolkit/core/common/substitutions/remove_identity.py,sha256=TKU1TIU52UIkVnl0EZvWnDhLV9nIVZ4hqi-w1i4NXMk,2637
|
|
147
146
|
model_compression_toolkit/core/common/substitutions/residual_collapsing.py,sha256=N82mso5j3EJQlKt9EMHjjEJ67FmdGQeCfN8U5grOFXo,4830
|
|
148
147
|
model_compression_toolkit/core/common/substitutions/scale_equalization.py,sha256=2_NmmBmUBZZwXuF5Od2S919_FgQKYIf-nSyNPawr0e4,9840
|
|
149
|
-
model_compression_toolkit/core/common/substitutions/shift_negative_activation.py,sha256=
|
|
148
|
+
model_compression_toolkit/core/common/substitutions/shift_negative_activation.py,sha256=Q9dQPLIKVtCp23yj-BmQmYkH94OBvAfV-19CYgqWSw0,32572
|
|
150
149
|
model_compression_toolkit/core/common/substitutions/softmax_shift.py,sha256=R-0ZqhYAuZLEFWHvB2UTPm52L6gWHGdRdEnwGxKSeGI,2625
|
|
151
150
|
model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py,sha256=cokiYPZB7504oHTlgZy8u2Xv_S-RK_oDSnGvYRX3JK4,4136
|
|
152
151
|
model_compression_toolkit/core/common/substitutions/weights_activation_split.py,sha256=vafrJ6eA37PrIzOs7uOsiJKIBmAVmNJ-wXsoe332BIw,4683
|
|
153
152
|
model_compression_toolkit/core/common/visualization/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
|
|
154
153
|
model_compression_toolkit/core/common/visualization/final_config_visualizer.py,sha256=6I10jKLesB-RQKaXA75Xgz2wPvylQUrnPtCcQZIynGo,6371
|
|
155
154
|
model_compression_toolkit/core/common/visualization/nn_visualizer.py,sha256=if1MMA9SkMEN3x5ZjXhxA8dMcA-T7DfLVoVYeXkrjQw,7081
|
|
156
|
-
model_compression_toolkit/core/common/visualization/tensorboard_writer.py,sha256=
|
|
155
|
+
model_compression_toolkit/core/common/visualization/tensorboard_writer.py,sha256=CZpxnAlUCauv-QXD3ukA500RCCXE3t8sTH1OZD5tfLs,23407
|
|
157
156
|
model_compression_toolkit/core/keras/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
|
|
158
157
|
model_compression_toolkit/core/keras/constants.py,sha256=dh4elQWt6Q6NYRht5k5RiiOcnLAq1v0MMBCJqMJzzFk,3225
|
|
159
158
|
model_compression_toolkit/core/keras/custom_layer_validation.py,sha256=f-b14wuiIgitBe7d0MmofYhDCTO3IhwJgwrh-Hq_t_U,1192
|
|
160
159
|
model_compression_toolkit/core/keras/data_util.py,sha256=jm54o-SlI1DJ-sEvRuX9OyLN68tEt0VxcqrdIjR98Ag,8366
|
|
161
|
-
model_compression_toolkit/core/keras/default_framework_info.py,sha256=
|
|
160
|
+
model_compression_toolkit/core/keras/default_framework_info.py,sha256=YhPSp153YcESp1Ho3GyvoEmxf2CpY9rjTnHAfN7Cpns,6175
|
|
162
161
|
model_compression_toolkit/core/keras/keras_implementation.py,sha256=x5EOYBrg2chC9-OUlrd0laLpnnHCFhYYAFNKRhVh6aQ,28526
|
|
163
162
|
model_compression_toolkit/core/keras/keras_model_validation.py,sha256=dMS9cqaYmliyzVu2-MrKx4AIubqz3HW3RY4if2TV6U8,1581
|
|
164
163
|
model_compression_toolkit/core/keras/keras_node_prior_info.py,sha256=k9cwu3S-OUGFaOHxH6cyYS2JjxAYHfBddz0laf6Quds,3311
|
|
@@ -170,7 +169,7 @@ model_compression_toolkit/core/keras/back2framework/float_model_builder.py,sha25
|
|
|
170
169
|
model_compression_toolkit/core/keras/back2framework/instance_builder.py,sha256=fBj13c6zkVoWX4JJG18_uXPptiEJqXClE_zFbaFB6Q8,4517
|
|
171
170
|
model_compression_toolkit/core/keras/back2framework/keras_model_builder.py,sha256=WxVCk-YOnajkiWf_wBKZ12ius7RDJX-pj-2cqutCvRI,17041
|
|
172
171
|
model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py,sha256=E7bT09HS4b8H6xc5EES1lRHu0YOR8_GpOt0_pU99d50,11306
|
|
173
|
-
model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py,sha256=
|
|
172
|
+
model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py,sha256=s1ha5KYOopYcFn_AtSZgUbSiTwTXQOczJ9d3xARPZeo,2568
|
|
174
173
|
model_compression_toolkit/core/keras/graph_substitutions/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
|
|
175
174
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
|
|
176
175
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py,sha256=Hs96qwrwhMqnMrjALN-jtsGiuiEU2ZtE6BmC1DoMV-Y,5160
|
|
@@ -180,7 +179,7 @@ model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm
|
|
|
180
179
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py,sha256=Hl4LEQ_bw_Vpmf3ZqHujYUqVdvTNsPlEMvr9dZhwg2U,2806
|
|
181
180
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py,sha256=vZr8Agj-tFKSX7TM2nZjwbHElJqSIyMAaR7FH-lp4YM,11691
|
|
182
181
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py,sha256=nJO-JUmOK1lLb560KMJgLFwY2IOI2Y3lpzUq7o2f7mQ,5707
|
|
183
|
-
model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py,sha256=
|
|
182
|
+
model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py,sha256=OwHoCLA-upKUnRpyVWrO_E6QmZcxk6-pOKNpiI7kYzI,6044
|
|
184
183
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py,sha256=AvquvVVVT8-ioeVn-gjqysK4L41L3I7TlNOEDfWjViY,8185
|
|
185
184
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py,sha256=9MZJp4GNTLesWN5uQ5eOQyAHLzLYDAHAjRi-LpNppSc,4257
|
|
186
185
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py,sha256=l9PUREBf4aRwWILiybdteveeUbh7js-i-hLt8Ma0e4c,26771
|
|
@@ -189,7 +188,7 @@ model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_id
|
|
|
189
188
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py,sha256=jhOLZDQ4_6-x6JHGsyzboX-CdtF3N-BkZjm2YwBsW4I,3208
|
|
190
189
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py,sha256=5P1wbJ80tX1cdi4PKjT_5aRcDUShmuUAspdLaqIILkQ,4838
|
|
191
190
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py,sha256=TEaHlIbXj_ZjIdT5TmAICD3WLD3u_7g0fLWQcNzTJuM,7941
|
|
192
|
-
model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py,sha256=
|
|
191
|
+
model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py,sha256=shPMX9BjpUyfY98hcjMqVVkE4LL79On0_ZQimFjdRX8,11176
|
|
193
192
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py,sha256=4Yf-sIj6oqYENdXs2FRxbvLCI1siDo29XpGb17mISBw,4062
|
|
194
193
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py,sha256=Qk5seDALj_th9dHJehY7ynZjvFjVfCv_mJ1enA5hX0c,1623
|
|
195
194
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py,sha256=wH9ocMLL725-uUPU-zCxdd8NwT5nyd0ZShmI7iuTwF8,1462
|
|
@@ -197,15 +196,16 @@ model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_a
|
|
|
197
196
|
model_compression_toolkit/core/keras/hessian/__init__.py,sha256=lNJ29DYxaLUPDstRDA1PGI5r9Fulq_hvrZMlhst1Z5g,697
|
|
198
197
|
model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py,sha256=qGEyOzC1_NIcnBmvvjA-GT7o9-PWo0Ko66vcEyLixhw,9180
|
|
199
198
|
model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py,sha256=1o7X9GXSfpEmuB5ee2AaBQ2sN2xzX4-smbrq_0qOGRU,4454
|
|
200
|
-
model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py,sha256
|
|
199
|
+
model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py,sha256=-8F1r9vELjDi4aX5gELATdWSNiwCWH7K0O18RXg2lFk,11441
|
|
201
200
|
model_compression_toolkit/core/keras/mixed_precision/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
|
|
202
|
-
model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py,sha256=
|
|
201
|
+
model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py,sha256=1p2DlMRmgzBAOUP-NeOzldTemjNLQQ3uf1Rov5iY-l8,5430
|
|
203
202
|
model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py,sha256=GtW0yars8PzqP9uL_vfXrtqHwKiStmOxPng20rYaIjU,6805
|
|
204
203
|
model_compression_toolkit/core/keras/pruning/__init__.py,sha256=3Lkr37Exk9u8811hw8hVqkGcbTQGcLjd3LLuLC3fa_E,698
|
|
205
|
-
model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py,sha256=
|
|
206
|
-
model_compression_toolkit/core/keras/
|
|
207
|
-
model_compression_toolkit/core/keras/
|
|
208
|
-
model_compression_toolkit/core/keras/
|
|
204
|
+
model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py,sha256=gqlssgSMN3TUzHD_Ple02m6rJHfcW9KpF2ZdTKlH4JM,11312
|
|
205
|
+
model_compression_toolkit/core/keras/quantization/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
|
|
206
|
+
model_compression_toolkit/core/keras/quantization/activation_quantization_fn_factory.py,sha256=RtQk5r-bZxUs10AFaJ813_rpkDmOwzWPv6zK6LbX4_8,1876
|
|
207
|
+
model_compression_toolkit/core/keras/quantization/fake_quant_builder.py,sha256=vfKwU0AfRH2KztmMF5bxcaBlGdnTePPGZsUqOHzED-U,6854
|
|
208
|
+
model_compression_toolkit/core/keras/quantization/lut_fake_quant.py,sha256=Up3-sbuAcaJ6kfe7Sz3XN6iiJ9hlxzOMncLCFEXJFjk,4475
|
|
209
209
|
model_compression_toolkit/core/keras/reader/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
|
|
210
210
|
model_compression_toolkit/core/keras/reader/common.py,sha256=eZWjBcvTDUX7fCWmy1OAH4lYLFTh59_UQ_nP_Gjp4yw,2594
|
|
211
211
|
model_compression_toolkit/core/keras/reader/connectivity_handler.py,sha256=AgF6qXZOJMeXvc-pBnGY23BJz7wPBx2aTYxHiO8efec,11303
|
|
@@ -218,14 +218,14 @@ model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py,sha256=
|
|
|
218
218
|
model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py,sha256=dUzvNVzamauDLjgyjHweWux6T2vRko3anAuPxnaGpX8,2408
|
|
219
219
|
model_compression_toolkit/core/keras/statistics_correction/__init__.py,sha256=9HIBmj8ROdCA-yvkpA8EcN6RHJe_2vEpLLW_gxOJtak,698
|
|
220
220
|
model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py,sha256=XNCtT9klMcsO1v5KA3MmCq_WgXOIT5QSzbfTOa9T-04,3060
|
|
221
|
-
model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py,sha256=
|
|
221
|
+
model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py,sha256=Xsoz-tbZf1v5EAH6FYCh7t0oh6GGHpFv3UdvF6u1XjU,3367
|
|
222
222
|
model_compression_toolkit/core/keras/visualization/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
|
|
223
223
|
model_compression_toolkit/core/pytorch/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
|
|
224
224
|
model_compression_toolkit/core/pytorch/constants.py,sha256=Sg0hkUaMe88mI2_pd3KqhVz5ORnA46S1uq9Tj5qhtHc,2828
|
|
225
225
|
model_compression_toolkit/core/pytorch/data_util.py,sha256=YYbT135HhlTt0q6XdD2JX7AS_L92f_uV2rWq2hsJOCA,6325
|
|
226
|
-
model_compression_toolkit/core/pytorch/default_framework_info.py,sha256=
|
|
226
|
+
model_compression_toolkit/core/pytorch/default_framework_info.py,sha256=pDUE-rwMhm1V1Y19_gwuZDfDCwKAu1ypBvU6XdURVjQ,4308
|
|
227
227
|
model_compression_toolkit/core/pytorch/pytorch_device_config.py,sha256=S25cuw10AW3SEN_fRAGRcG_I3wdvvQx1ehSJzPnn-UI,4404
|
|
228
|
-
model_compression_toolkit/core/pytorch/pytorch_implementation.py,sha256=
|
|
228
|
+
model_compression_toolkit/core/pytorch/pytorch_implementation.py,sha256=cUQOBGwtG_DWpkrUEOcYSwXtNSmQgYVBCTxTpFiF4mo,27213
|
|
229
229
|
model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py,sha256=5hsp0nl6TewfrKsT133m9Z7DVpTFFftEv6DeZoryDZw,3009
|
|
230
230
|
model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py,sha256=MnD959VB15mxl__5Hv2yN4I7UmRnrYF7Z55dpUknqhE,5565
|
|
231
231
|
model_compression_toolkit/core/pytorch/utils.py,sha256=xNVE7YMtHupLEimIJcxmfcMGM4XKB9I1v0-K8lDeLB8,3936
|
|
@@ -235,7 +235,7 @@ model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py,sha
|
|
|
235
235
|
model_compression_toolkit/core/pytorch/back2framework/instance_builder.py,sha256=BBHBfTqeWm7L3iDyPBpk0jxvj-rBg1QWI23imkjfIl0,1467
|
|
236
236
|
model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py,sha256=v8tjcw7zvHKdJUb4TMSvs3Pi0xmDzxMPDCHtjeBtvas,11405
|
|
237
237
|
model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py,sha256=GuKBtULEg8gAtV8dGjL2R3b9FdxX_S9Bd3bM1qI_6NE,21860
|
|
238
|
-
model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py,sha256=
|
|
238
|
+
model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py,sha256=kl2RaxsrbhgvPKMASjvjODO--Hj-oE2qU2NI9RiXt0s,3547
|
|
239
239
|
model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
|
240
240
|
model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py,sha256=RgvgO93bGsUsYbFh2oM_yq57pn0HHje8usNtRKzpMLs,5641
|
|
241
241
|
model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py,sha256=F2hH2nbFQHtuS8CcG2GmNYfJ9gdrpHccnijHsX_CYgM,1640
|
|
@@ -253,13 +253,13 @@ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functio
|
|
|
253
253
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py,sha256=CXSMASpc_Zed3BJ2CsER69zKxE6ncFvvKQWDO1JxKYI,5849
|
|
254
254
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py,sha256=cYV-3Eik_0gv2sDZPdpUP-mXOT4E0I5wikr0C7z6omg,20309
|
|
255
255
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py,sha256=VNg-VgzCxSyqy2J3neEPl6U0SPO8UIVU_T47bGhz4FE,38459
|
|
256
|
-
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py,sha256=
|
|
256
|
+
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py,sha256=3KG-98IbIt2w4KXM9LRo-rjHYrDAzfRkKBfmUR9PegA,5606
|
|
257
257
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py,sha256=joHjwiUxccypMHkTy46rI91VyapLn9yJ2YRo5ISnOH4,1987
|
|
258
258
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py,sha256=hAZXzrEinHa-dJHLj39Hy_9Q-13QyO95rtYVSLrhvT8,4915
|
|
259
259
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py,sha256=DcJEIkGvBdIMOelNIwaJUZ5UsAHiGnDJPR20I464vWo,2929
|
|
260
260
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py,sha256=LehBhAhTTD5PAD1Knn-1vtzcpbsVHZUtryrDO2BS-LM,2951
|
|
261
261
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py,sha256=D1hxN3pZ5-_FLJSS30ZJUo-v8TqUWFcMjhMijFa9aSo,12407
|
|
262
|
-
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py,sha256=
|
|
262
|
+
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py,sha256=d7uf3ZkqpaqRg1-ivpcf3F7Ku1iN3YlngUzJ--DUhtQ,10762
|
|
263
263
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py,sha256=05lV4pIL3hJkZl4JQPV4wk_EFD0eYLG5b8cdzvZk4P8,1588
|
|
264
264
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py,sha256=EC9Dvp-_UlpDWnipnf8ds65wh_Y-T8pXAFIwRScWpiY,2044
|
|
265
265
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py,sha256=WmEa8Xjji-_tIbthDxlLAGSr69nWk-YKcHNaVqLa7sg,1375
|
|
@@ -267,22 +267,23 @@ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights
|
|
|
267
267
|
model_compression_toolkit/core/pytorch/hessian/__init__.py,sha256=lNJ29DYxaLUPDstRDA1PGI5r9Fulq_hvrZMlhst1Z5g,697
|
|
268
268
|
model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py,sha256=2plydAxW6Ne4O5OjzPO936hq-H4MgjazbFG1xsyWIrI,7529
|
|
269
269
|
model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py,sha256=8f_XlM8ZFVQPNGr1iECr1hv8QusYDrNU_vTkLQZE9RU,2477
|
|
270
|
-
model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py,sha256=
|
|
270
|
+
model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py,sha256=IX5Jdvf711bMaKMHTjeQOveTJRnk3qwIcUAZm934IZA,7792
|
|
271
271
|
model_compression_toolkit/core/pytorch/mixed_precision/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
|
|
272
|
-
model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py,sha256=
|
|
272
|
+
model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py,sha256=MTH7WsTpP-cTeMwaqrJPnhV_XdFKO6bySNalTONmr0w,4991
|
|
273
273
|
model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py,sha256=KDnwmbhvhJMfNg1IuTvvzBNEriPQH9bL9dJ5VvWTzpE,6631
|
|
274
274
|
model_compression_toolkit/core/pytorch/pruning/__init__.py,sha256=RAe8mgIr1V8dRIQtLf_dSG5zTUCKuQzxyybYx1dzEAs,697
|
|
275
|
-
model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py,sha256=
|
|
276
|
-
model_compression_toolkit/core/pytorch/
|
|
277
|
-
model_compression_toolkit/core/pytorch/
|
|
278
|
-
model_compression_toolkit/core/pytorch/
|
|
275
|
+
model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py,sha256=axcG6BKC8gALjjrgOFpiB8b1VbySUyXZIHmzRxQYDoc,13085
|
|
276
|
+
model_compression_toolkit/core/pytorch/quantization/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
|
|
277
|
+
model_compression_toolkit/core/pytorch/quantization/activation_quantization_fn_factory.py,sha256=arslrOgJ1l-fScDlp6jNJ-JukKh0uBLcxAzjpDWRw94,1878
|
|
278
|
+
model_compression_toolkit/core/pytorch/quantization/fake_quant_builder.py,sha256=D8_CEuFqKAhbUgKaRw7Jlxo0zlqgPTMu6CIIIM4LfS0,7045
|
|
279
|
+
model_compression_toolkit/core/pytorch/quantization/lut_fake_quant.py,sha256=uyeBtNokyDUikk-YkDP_mN_2DX0J5oPm3kSfdSUT2Ck,4420
|
|
279
280
|
model_compression_toolkit/core/pytorch/reader/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
|
|
280
281
|
model_compression_toolkit/core/pytorch/reader/graph_builders.py,sha256=ZASzWbYYojFYIx-ynqMTkg6mCpTrJg2oWYT-xXki4Mw,19763
|
|
281
282
|
model_compression_toolkit/core/pytorch/reader/node_holders.py,sha256=7XNc7-l1MZPJGcOESvtAwfIMxrU6kvt3YjF5B7qOqK4,1048
|
|
282
283
|
model_compression_toolkit/core/pytorch/reader/reader.py,sha256=fXno0BQrtjhe3YnkDyjQLdeCz0e1KD8yFXjpXjCPGZ4,7432
|
|
283
284
|
model_compression_toolkit/core/pytorch/statistics_correction/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
|
|
284
285
|
model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py,sha256=VgU24J3jf7QComHH7jonOXSkg6mO4TOch3uFkOthZvM,3261
|
|
285
|
-
model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py,sha256=
|
|
286
|
+
model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py,sha256=N_QkH7cRRuojrOrTcIPs6POW-PdzBkzf8QFS-0XezRg,3054
|
|
286
287
|
model_compression_toolkit/data_generation/__init__.py,sha256=9xLN7VE3lnYVjoroYfJ24dxK_-kGEbMmMVeS1PPkPEY,1513
|
|
287
288
|
model_compression_toolkit/data_generation/common/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
|
|
288
289
|
model_compression_toolkit/data_generation/common/constants.py,sha256=21e3ZX9WVYojexG2acTgklrBk8ZO9DjJnKpP4KHZC44,1018
|
|
@@ -336,9 +337,9 @@ model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py,s
|
|
|
336
337
|
model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py,sha256=uZ2RigbY9O2PJ0Il8wPpS_s7frgg9WUGd_SHeKGyl1A,699
|
|
337
338
|
model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py,sha256=9adOGG1nyviNzuL-1aJXyL0c_VQllSZWiG2gR-puywo,6420
|
|
338
339
|
model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py,sha256=bPevy6OBqng41PqytBR55e6cBEuyrUS0H8dWX4zgjQ4,967
|
|
339
|
-
model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py,sha256=
|
|
340
|
-
model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py,sha256=
|
|
341
|
-
model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py,sha256=
|
|
340
|
+
model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py,sha256=Q2Dz5Y8dc_b5eKHywaJVColnPfyekouEhaxQ-qvBxZ4,10471
|
|
341
|
+
model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py,sha256=y8H2RD7V9GoQ9d0mi_-kr6J_j0ncMj3bmhRRUjaM_6Y,2916
|
|
342
|
+
model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py,sha256=ueOc8N5-8ijA9jpEPlSHC-3cHvdTk79e_1NibtFgB-E,7427
|
|
342
343
|
model_compression_toolkit/exporter/model_wrapper/__init__.py,sha256=7CF2zvpTrIEm8qnbuHnLZyTZkwBBxV24V8QA0oxGbh0,1187
|
|
343
344
|
model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py,sha256=pKAdbTCFM_2BrZXUtTIw0ouKotrWwUDF_hP3rPwCM2k,696
|
|
344
345
|
model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py,sha256=Bd3QhAR__YC9Xmobd5qHv9ofh_rPn_eTFV0sXizcBnY,2297
|
|
@@ -396,20 +397,20 @@ model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py,sha256
|
|
|
396
397
|
model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py,sha256=DOlLc4C05TTQN0hZ7xRuqV6wgGp9r2xq7JYun_Hi5jM,8712
|
|
397
398
|
model_compression_toolkit/pruning/__init__.py,sha256=lQMZS8G0pvR1LVi53nnJHNXgLNTan_MWMdwsVxhjrow,1106
|
|
398
399
|
model_compression_toolkit/pruning/keras/__init__.py,sha256=3Lkr37Exk9u8811hw8hVqkGcbTQGcLjd3LLuLC3fa_E,698
|
|
399
|
-
model_compression_toolkit/pruning/keras/pruning_facade.py,sha256=
|
|
400
|
+
model_compression_toolkit/pruning/keras/pruning_facade.py,sha256=tSkeVA4fcgY0rJbdT6zrbPsqfzLgqlKhyIFupB4nEC0,8885
|
|
400
401
|
model_compression_toolkit/pruning/pytorch/__init__.py,sha256=pKAdbTCFM_2BrZXUtTIw0ouKotrWwUDF_hP3rPwCM2k,696
|
|
401
|
-
model_compression_toolkit/pruning/pytorch/pruning_facade.py,sha256=
|
|
402
|
+
model_compression_toolkit/pruning/pytorch/pruning_facade.py,sha256=YxRtJGzD6SjZ4e1pf_cgAeYuaWBEg6MA3t200Ys7xJQ,9604
|
|
402
403
|
model_compression_toolkit/ptq/__init__.py,sha256=Z_hkmTh7aLFei1DJKV0oNVUbrv_Q_0CTw-qD85Xf8UM,904
|
|
403
404
|
model_compression_toolkit/ptq/runner.py,sha256=1tVx3Yj5X4ZjTH0REm6fuAmv4QZ4u_vixLsgjBwBzxc,2326
|
|
404
405
|
model_compression_toolkit/ptq/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
|
405
|
-
model_compression_toolkit/ptq/keras/quantization_facade.py,sha256=
|
|
406
|
+
model_compression_toolkit/ptq/keras/quantization_facade.py,sha256=_Do07apQ091WCOnVkgJcvnOX812AtXlW0HWx6q3SeRE,11587
|
|
406
407
|
model_compression_toolkit/ptq/pytorch/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
|
407
408
|
model_compression_toolkit/ptq/pytorch/quantization_facade.py,sha256=RruQVxS4ylBjSH1KMh8ZCV8jk3OvtSrQl24m3Q4xs_8,10065
|
|
408
409
|
model_compression_toolkit/qat/__init__.py,sha256=AaC4KBha4jDW_tyg2SOxZaKh_idIz0gZtDK3_zxs64E,1241
|
|
409
410
|
model_compression_toolkit/qat/common/__init__.py,sha256=6tLZ4R4pYP6QVztLVQC_jik2nES3l4uhML0qUxZrezk,829
|
|
410
411
|
model_compression_toolkit/qat/common/qat_config.py,sha256=QNXj2OcKIJOGvGEGzR2GCifI5Ho7FS7zFc2fkj6PJAc,2750
|
|
411
412
|
model_compression_toolkit/qat/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
|
412
|
-
model_compression_toolkit/qat/keras/quantization_facade.py,sha256=
|
|
413
|
+
model_compression_toolkit/qat/keras/quantization_facade.py,sha256=V3-hAO9olSrLCDVezmH1WI8sLrg7q9OrPribL6wn7vI,17429
|
|
413
414
|
model_compression_toolkit/qat/keras/quantizer/__init__.py,sha256=zmYyCa25_KLCSUCGUDRslh3RCIjcRMxc_oXa54Aui-4,996
|
|
414
415
|
model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py,sha256=EbIt4lMlh6cU4awFLMBp0IlZ2zUUp-WtnlW5Wn19FDM,1793
|
|
415
416
|
model_compression_toolkit/qat/keras/quantizer/quant_utils.py,sha256=cBULOgWUodcBO1lHevZggdTevuDYI6tQceV86U2x6DA,2543
|
|
@@ -421,7 +422,7 @@ model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py,sha256=cc
|
|
|
421
422
|
model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py,sha256=lXeMPI-n24jbZDGrtOs5eQZ14QvmhFd0e7Y1_QRQxw0,8214
|
|
422
423
|
model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py,sha256=ZdZwMwLa1Ws2eo3DiQYYTvPS1JfiswZL1xlQPtRnIgE,7067
|
|
423
424
|
model_compression_toolkit/qat/pytorch/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
|
424
|
-
model_compression_toolkit/qat/pytorch/quantization_facade.py,sha256=
|
|
425
|
+
model_compression_toolkit/qat/pytorch/quantization_facade.py,sha256=uRRHA3_qUfldpKqhA9ktbdsEoYy-zOMFlQp83eCQ_oQ,13713
|
|
425
426
|
model_compression_toolkit/qat/pytorch/quantizer/__init__.py,sha256=xYa4C8pr9cG1f3mQQcBXO_u3IdJN-zl7leZxuXDs86w,1003
|
|
426
427
|
model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py,sha256=gjzrnBAZr5c_OrDpSjxpQYa_jKImv7ll52cng07_2oE,1813
|
|
427
428
|
model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py,sha256=f8-TuAHyWU4R2Mxb4DoTIwGnxYjUG7sgmlyLY_Ixf2A,5892
|
|
@@ -431,8 +432,10 @@ model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py,sha256=KefO2Z
|
|
|
431
432
|
model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
|
|
432
433
|
model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py,sha256=p1JqtBZZVHTV5caR1U0d1t2UcTz0ACNyLcJTBFUEq98,6173
|
|
433
434
|
model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py,sha256=wWehe5R0xVHSm3ruMrUc8RzW5UVAVCMgUTUMPDsvy9g,5487
|
|
435
|
+
model_compression_toolkit/quantization_preparation/__init__.py,sha256=5yxITHNJcCfeGKdIpAYbNbKDoXUSvENuRQm3OQu8Qf4,697
|
|
436
|
+
model_compression_toolkit/quantization_preparation/load_fqc.py,sha256=f3vGT7HkZQg7DB9bgelCNgJoYvV8pE7lxUIskezGR4E,10450
|
|
434
437
|
model_compression_toolkit/target_platform_capabilities/__init__.py,sha256=8RVOriZg-XNjSt53h_4Yum0oRgOe2gp5H45dfG_lZxE,1415
|
|
435
|
-
model_compression_toolkit/target_platform_capabilities/constants.py,sha256=
|
|
438
|
+
model_compression_toolkit/target_platform_capabilities/constants.py,sha256=eOmkUh4V2cRM5F4WxSNOCLJtN20TVvkHHBC06NZ31V0,1547
|
|
436
439
|
model_compression_toolkit/target_platform_capabilities/immutable.py,sha256=YhROBiXEIB3TU-bAFrnL3qbAsb1yuWPBAQ_CLOJbYUU,1827
|
|
437
440
|
model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py,sha256=hFBq-qKUM9qKZGaMmrxsEmurTV_D1kWIXI1rTERZsbk,5241
|
|
438
441
|
model_compression_toolkit/target_platform_capabilities/schema/__init__.py,sha256=pKAdbTCFM_2BrZXUtTIw0ouKotrWwUDF_hP3rPwCM2k,696
|
|
@@ -529,7 +532,7 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
|
|
|
529
532
|
model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=Y0oBl8qPFsdNrK49XczwmVacInJcOPHslVnFBs-iTCc,3742
|
|
530
533
|
model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
|
|
531
534
|
model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=n0HvWBzkBkUJZlS3WeynhpsRTps2qQkjlq7luliBHNU,9627
|
|
532
|
-
mct_nightly-2.4.0.
|
|
533
|
-
mct_nightly-2.4.0.
|
|
534
|
-
mct_nightly-2.4.0.
|
|
535
|
-
mct_nightly-2.4.0.
|
|
535
|
+
mct_nightly-2.4.0.20250702.605.dist-info/METADATA,sha256=44tut0NAQxjM7vDUtJmnkWNwzAjJX3t4QBGNhPvi9hs,25555
|
|
536
|
+
mct_nightly-2.4.0.20250702.605.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
537
|
+
mct_nightly-2.4.0.20250702.605.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
|
538
|
+
mct_nightly-2.4.0.20250702.605.dist-info/RECORD,,
|
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
|
27
27
|
from model_compression_toolkit import pruning
|
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
|
29
29
|
|
|
30
|
-
__version__ = "2.4.0.
|
|
30
|
+
__version__ = "2.4.0.20250702.000605"
|
|
@@ -15,7 +15,6 @@
|
|
|
15
15
|
from abc import ABC, abstractmethod
|
|
16
16
|
from typing import Any, Tuple
|
|
17
17
|
|
|
18
|
-
from model_compression_toolkit.core.common.framework_info import FrameworkInfo
|
|
19
18
|
from model_compression_toolkit.core import common
|
|
20
19
|
from model_compression_toolkit.core.common.user_info import UserInformation
|
|
21
20
|
|
|
@@ -13,20 +13,10 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
# ==============================================================================
|
|
15
15
|
|
|
16
|
-
|
|
17
|
-
from collections.abc import Callable
|
|
18
16
|
from enum import Enum
|
|
19
|
-
from typing import Dict, Any, Tuple, NamedTuple
|
|
17
|
+
from typing import Dict, Any, Tuple, NamedTuple, Optional
|
|
20
18
|
from abc import ABC, abstractmethod
|
|
21
19
|
|
|
22
|
-
from mct_quantizers import QuantizationMethod
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
# Default value to use for ops without kernel.
|
|
26
|
-
# This is a weird default, but it's used all over the place, so for now only extract it to const so that it can be
|
|
27
|
-
# referenced by variable instead of hard-coded.
|
|
28
|
-
DEFAULT_KERNEL_ATTRIBUTE = None
|
|
29
|
-
|
|
30
20
|
|
|
31
21
|
class ChannelAxis(Enum):
|
|
32
22
|
"""
|
|
@@ -58,24 +48,21 @@ class FrameworkInfo(ABC):
|
|
|
58
48
|
no_quantization_ops:Layers that should not get quantized (e.g., Reshape, Transpose, etc.)
|
|
59
49
|
|
|
60
50
|
Fields:
|
|
61
|
-
activation_quantizer_mapping (Dict[QuantizationMethod, Callable]): A dictionary mapping from QuantizationMethod to a quantization function.
|
|
62
51
|
kernel_channels_mapping (Dict): Dictionary from a layer to a tuple of its kernel in/out channels indices.
|
|
63
52
|
kernel_ops_attribute_mapping (Dict): Dictionary from a framework operator to its weight attribute to quantize.
|
|
64
53
|
out_channel_axis_mapping (Dict): Dictionary of output channels of the model's layers (for computing statistics per-channel).
|
|
65
54
|
_layer_min_max_mapping (Dict[Any, tuple]): Dictionary from a layer to its min/max output values.
|
|
66
|
-
|
|
67
55
|
"""
|
|
68
56
|
|
|
69
|
-
activation_quantizer_mapping: Dict[QuantizationMethod, Callable]
|
|
70
|
-
kernel_channels_mapping: Dict[Any, ChannelAxisMapping]
|
|
71
57
|
kernel_ops_attribute_mapping: Dict[Any, str]
|
|
58
|
+
kernel_channels_mapping: Dict[Any, ChannelAxisMapping]
|
|
72
59
|
out_channel_axis_mapping: Dict[Any, int]
|
|
73
|
-
_layer_min_max_mapping: Dict[Any, tuple]
|
|
74
60
|
|
|
61
|
+
_layer_min_max_mapping: Dict[Any, tuple]
|
|
75
62
|
_default_channel_mapping = ChannelAxisMapping(None, None)
|
|
76
63
|
|
|
77
64
|
@classmethod
|
|
78
|
-
def get_kernel_op_attribute(cls, node_type: Any) -> str:
|
|
65
|
+
def get_kernel_op_attribute(cls, node_type: Any) -> Optional[str]:
|
|
79
66
|
"""
|
|
80
67
|
Get attribute of a layer's weight to quantize.
|
|
81
68
|
|
|
@@ -85,20 +72,7 @@ class FrameworkInfo(ABC):
|
|
|
85
72
|
Returns:
|
|
86
73
|
Attribute the layer has and should be quantized.
|
|
87
74
|
"""
|
|
88
|
-
return cls.kernel_ops_attribute_mapping.get(node_type
|
|
89
|
-
|
|
90
|
-
@classmethod
|
|
91
|
-
def is_kernel_op(cls, node_type: Any) -> bool:
|
|
92
|
-
"""
|
|
93
|
-
Check is the node is a kernel operation.
|
|
94
|
-
|
|
95
|
-
Args:
|
|
96
|
-
node_type: Layer to get its attributes.
|
|
97
|
-
|
|
98
|
-
Returns:
|
|
99
|
-
True if node type is a kernel operation, else False.
|
|
100
|
-
"""
|
|
101
|
-
return node_type in cls.kernel_ops_attribute_mapping
|
|
75
|
+
return cls.kernel_ops_attribute_mapping.get(node_type)
|
|
102
76
|
|
|
103
77
|
@classmethod
|
|
104
78
|
def get_layer_min_max(cls, layer: Any, fw_attrs: Dict) -> Tuple[float, float]:
|
|
@@ -169,7 +143,6 @@ def get_fw_info():
|
|
|
169
143
|
Returns: FrameworkInfo class.
|
|
170
144
|
"""
|
|
171
145
|
assert _current_framework_info is not None, "fw_info isn't initialized."
|
|
172
|
-
assert issubclass(_current_framework_info, FrameworkInfo), "fw_info isn't initialized to a FrameworkInfo class."
|
|
173
146
|
return _current_framework_info
|
|
174
147
|
|
|
175
148
|
|