mct-nightly 2.4.0.20250630.629__py3-none-any.whl → 2.4.0.20250702.605__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (76) hide show
  1. {mct_nightly-2.4.0.20250630.629.dist-info → mct_nightly-2.4.0.20250702.605.dist-info}/METADATA +16 -16
  2. {mct_nightly-2.4.0.20250630.629.dist-info → mct_nightly-2.4.0.20250702.605.dist-info}/RECORD +75 -72
  3. model_compression_toolkit/__init__.py +1 -1
  4. model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -1
  5. model_compression_toolkit/core/common/framework_info.py +5 -32
  6. model_compression_toolkit/core/common/fusion/graph_fuser.py +12 -9
  7. model_compression_toolkit/core/common/graph/base_graph.py +20 -37
  8. model_compression_toolkit/core/common/graph/base_node.py +13 -106
  9. model_compression_toolkit/core/common/graph/functional_node.py +1 -1
  10. model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +12 -10
  11. model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +14 -9
  12. model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +9 -15
  13. model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/metric_calculators.py +2 -3
  14. model_compression_toolkit/core/common/network_editors/__init__.py +8 -1
  15. model_compression_toolkit/core/common/network_editors/actions.py +4 -96
  16. model_compression_toolkit/core/common/quantization/bit_width_config.py +10 -10
  17. model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +116 -56
  18. model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +1 -1
  19. model_compression_toolkit/core/common/quantization/node_quantization_config.py +55 -179
  20. model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +21 -1
  21. model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +8 -5
  22. model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +76 -70
  23. model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +10 -12
  24. model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +54 -30
  25. model_compression_toolkit/core/common/quantization/quantize_node.py +8 -8
  26. model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +93 -398
  27. model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +2 -5
  28. model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +2 -4
  29. model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +5 -6
  30. model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +12 -6
  31. model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +1 -1
  32. model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +1 -2
  33. model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +33 -33
  34. model_compression_toolkit/core/common/visualization/tensorboard_writer.py +2 -4
  35. model_compression_toolkit/core/graph_prep_runner.py +31 -20
  36. model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +5 -2
  37. model_compression_toolkit/core/keras/default_framework_info.py +0 -11
  38. model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +9 -6
  39. model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +3 -1
  40. model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +1 -1
  41. model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +2 -1
  42. model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +1 -1
  43. model_compression_toolkit/core/keras/quantization/activation_quantization_fn_factory.py +47 -0
  44. model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +3 -2
  45. model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +5 -2
  46. model_compression_toolkit/core/pytorch/default_framework_info.py +0 -12
  47. model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +5 -5
  48. model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +2 -0
  49. model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +1 -1
  50. model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +2 -1
  51. model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +1 -1
  52. model_compression_toolkit/core/pytorch/pytorch_implementation.py +1 -1
  53. model_compression_toolkit/core/pytorch/quantization/activation_quantization_fn_factory.py +45 -0
  54. model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +3 -2
  55. model_compression_toolkit/core/runner.py +1 -1
  56. model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +7 -3
  57. model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +1 -1
  58. model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +12 -3
  59. model_compression_toolkit/pruning/keras/pruning_facade.py +5 -9
  60. model_compression_toolkit/pruning/pytorch/pruning_facade.py +2 -5
  61. model_compression_toolkit/ptq/keras/quantization_facade.py +1 -1
  62. model_compression_toolkit/qat/keras/quantization_facade.py +1 -1
  63. model_compression_toolkit/qat/pytorch/quantization_facade.py +1 -1
  64. model_compression_toolkit/quantization_preparation/__init__.py +14 -0
  65. model_compression_toolkit/quantization_preparation/load_fqc.py +223 -0
  66. model_compression_toolkit/target_platform_capabilities/constants.py +1 -1
  67. model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -78
  68. {mct_nightly-2.4.0.20250630.629.dist-info → mct_nightly-2.4.0.20250702.605.dist-info}/WHEEL +0 -0
  69. {mct_nightly-2.4.0.20250630.629.dist-info → mct_nightly-2.4.0.20250702.605.dist-info}/licenses/LICENSE.md +0 -0
  70. {mct_nightly-2.4.0.20250630.629.dist-info → mct_nightly-2.4.0.20250702.605.dist-info}/top_level.txt +0 -0
  71. /model_compression_toolkit/core/keras/{quantizer → quantization}/__init__.py +0 -0
  72. /model_compression_toolkit/core/keras/{quantizer → quantization}/fake_quant_builder.py +0 -0
  73. /model_compression_toolkit/core/keras/{quantizer → quantization}/lut_fake_quant.py +0 -0
  74. /model_compression_toolkit/core/pytorch/{quantizer → quantization}/__init__.py +0 -0
  75. /model_compression_toolkit/core/pytorch/{quantizer → quantization}/fake_quant_builder.py +0 -0
  76. /model_compression_toolkit/core/pytorch/{quantizer → quantization}/lut_fake_quant.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mct-nightly
3
- Version: 2.4.0.20250630.629
3
+ Version: 2.4.0.20250702.605
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Author-email: ssi-dnn-dev@sony.com
6
6
  Classifier: Programming Language :: Python :: 3
@@ -35,7 +35,7 @@ Dynamic: summary
35
35
 
36
36
  <div align="center" markdown="1">
37
37
  <p>
38
- <a href="https://sony.github.io/model_optimization/" target="_blank">
38
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization/" target="_blank">
39
39
  <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/mctHeader1-cropped.svg" width="1000"></a>
40
40
  </p>
41
41
 
@@ -52,9 +52,9 @@ ______________________________________________________________________
52
52
  <a href="#license">License</a>
53
53
  </p>
54
54
  <p align="center">
55
- <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.3%20%7C%202.4%20%7C%202.5%20%7C%202.6-blue" /></a>
56
- <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/tensorflow-2.14%20%7C%202.15-blue" /></a>
57
- <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue" /></a>
55
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.3%20%7C%202.4%20%7C%202.5%20%7C%202.6-blue" /></a>
56
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/tensorflow-2.14%20%7C%202.15-blue" /></a>
57
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue" /></a>
58
58
  <a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
59
59
  <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
60
60
 
@@ -85,9 +85,9 @@ MCT supports various quantization methods as appears below.
85
85
 
86
86
  Quantization Method | Complexity | Computational Cost | API | Tutorial
87
87
  -------------------- | -----------|--------------------|---------|--------
88
- PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
89
- GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
90
- QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
88
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
89
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
90
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
91
91
 
92
92
  </p>
93
93
  </div>
@@ -130,13 +130,13 @@ Generates synthetic images based on the statistics stored in the model's batch n
130
130
  The specifications of the method are detailed in the paper: _"**Data Generation for Hardware-Friendly Post-Training Quantization**"_ [5].
131
131
  __________________________________________________________________________________________________________
132
132
  ### Structured Pruning [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
133
- Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_pruning_experimental.html)).
133
+ Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_pruning_experimental.html)).
134
134
  __________________________________________________________________________________________________________
135
135
  ### **Debugging and Visualization**
136
136
  **🎛️ Network Editor (Modify Quantization Configurations)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
137
137
  Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor.
138
138
 
139
- **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/guidelines/visualization.html).
139
+ **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html).
140
140
 
141
141
  **🔑 XQuant (Explainable Quantization)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
142
142
  __________________________________________________________________________________________________________
@@ -146,15 +146,15 @@ The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhance
146
146
  More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
147
147
 
148
148
  ## <div align="center">Resources</div>
149
- * [User Guide](https://sony.github.io/model_optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
149
+ * [User Guide](https://sonysemiconductorsolutions.github.io/mct-model-optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
150
150
 
151
- * MCT's [API Docs](https://sony.github.io/model_optimization/api/api_docs/) is separated per quantization methods:
151
+ * MCT's [API Docs](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/) is separated per quantization methods:
152
152
 
153
- * [Post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#ptq) | PTQ API docs
154
- * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#gptq) | GPTQ API docs
155
- * [Quantization-aware training](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | QAT API docs
153
+ * [Post-training quantization](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#ptq) | PTQ API docs
154
+ * [Gradient-based post-training quantization](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#gptq) | GPTQ API docs
155
+ * [Quantization-aware training](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#qat) | QAT API docs
156
156
 
157
- * [Debug](https://sony.github.io/model_optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
157
+ * [Debug](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
158
158
 
159
159
  * [Release notes](https://github.com/sony/model_optimization/releases)
160
160
 
@@ -1,5 +1,5 @@
1
- mct_nightly-2.4.0.20250630.629.dist-info/licenses/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
2
- model_compression_toolkit/__init__.py,sha256=U37SNq7CLT3Sh1xbJZNflkYAT_muV568LOtiRVpR0k8,1557
1
+ mct_nightly-2.4.0.20250702.605.dist-info/licenses/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
2
+ model_compression_toolkit/__init__.py,sha256=XSd4-JMveL8G0O7XoXMc0pOaAC01829I4jscOFpeT6s,1557
3
3
  model_compression_toolkit/constants.py,sha256=KNgiNLpsMgSYyXMNEbHXd4bFNerQc1D6HH3vpbUq_Gs,4086
4
4
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
5
5
  model_compression_toolkit/logger.py,sha256=L3q7tn3Uht0i_7phnlOWMR2Te2zvzrt2HOz9vYEInts,4529
@@ -7,13 +7,13 @@ model_compression_toolkit/metadata.py,sha256=x_Bk4VpzILdsFax6--CZ3X18qUTP28sbF_A
7
7
  model_compression_toolkit/verify_packages.py,sha256=l0neIRr8q_QwxmuiTI4vyCMDISDedK0EihjEQUe66tE,1319
8
8
  model_compression_toolkit/core/__init__.py,sha256=HNverPpoqEyFKTa7iEdOqqY2P0Gq-7GMejNOi6ZPcQs,2042
9
9
  model_compression_toolkit/core/analyzer.py,sha256=5P03LbkFy-mu31TMAiQoIKcsA1-DNz7cTzkGvRaXtbw,3505
10
- model_compression_toolkit/core/graph_prep_runner.py,sha256=8K5JWOiCJxd54nlyYQS7g5UJl30sE7VWuscxForJ3ZA,10526
10
+ model_compression_toolkit/core/graph_prep_runner.py,sha256=naZWayASraZ9PgmqCBFgFWWfDV3zLgPaIo6JLbInZc4,11361
11
11
  model_compression_toolkit/core/quantization_prep_runner.py,sha256=tz91E1BaNc_K0lvVZGB8oS6ya5N4Z5TJLG4pSM3hx30,6229
12
- model_compression_toolkit/core/runner.py,sha256=pmRJeIqB0dKnyNsNSoaBgAkHv_RhQZylknWRFmnoStM,12423
12
+ model_compression_toolkit/core/runner.py,sha256=QpiJQmQXK6mWmnygNRdy6I8S48DHV-B0Kmr4TqOKbeA,12418
13
13
  model_compression_toolkit/core/common/__init__.py,sha256=Wh127PbXcETZX_d1PQqZ71ETK3J9XO5A-HpadGUbj6o,1447
14
14
  model_compression_toolkit/core/common/base_substitutions.py,sha256=xDFSmVVs_iFSZfajytI0cuQaNRNcwHX3uqOoHgVUvxQ,1666
15
15
  model_compression_toolkit/core/common/framework_implementation.py,sha256=jrTupZbUbbSjjd8xxUYOuTE0WRWqJhlPYcm-LybtbwY,20240
16
- model_compression_toolkit/core/common/framework_info.py,sha256=XIxV4DY6JmTjbOft3VceHoZgiJlUW_4OIIr1z0Vc--4,6472
16
+ model_compression_toolkit/core/common/framework_info.py,sha256=vPGV28gm-kvNSkkWI6jY3YeKBUYmn6UQ98HVUnl_-tM,5449
17
17
  model_compression_toolkit/core/common/memory_computation.py,sha256=ixoSpV5ZYZGyzhre3kQcvR2sNA8KBsPZ3lgbkDnw9Cs,1205
18
18
  model_compression_toolkit/core/common/model_builder_mode.py,sha256=jll9-59OPaE3ug7Y9-lLyV99_FoNHxkGZMgcm0Vkpss,1324
19
19
  model_compression_toolkit/core/common/model_collector.py,sha256=A1uaGmxqj-392lMtE-F020FHFAyyKDJDdeJeZYtkv3Y,12755
@@ -22,7 +22,7 @@ model_compression_toolkit/core/common/node_prior_info.py,sha256=WXX_PrGVG9M9I_RE
22
22
  model_compression_toolkit/core/common/similarity_analyzer.py,sha256=S3f6WgHyw62dGcxpX51FGKyfebe2zv9ABKbjtGyKRvY,9215
23
23
  model_compression_toolkit/core/common/user_info.py,sha256=dSRMnT-oewmdOziIpEuW-s9K7vTSeyUBxT4z9neXurI,1648
24
24
  model_compression_toolkit/core/common/back2framework/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
25
- model_compression_toolkit/core/common/back2framework/base_model_builder.py,sha256=oW3xoMLMuAAMd2Zkzb3prpCgHXwiAPFYJhMNfjDE3Js,1854
25
+ model_compression_toolkit/core/common/back2framework/base_model_builder.py,sha256=yrIxT0ttDi9XViy8Zt8apnMCT8xDyVd5HZp0IttrGGQ,1775
26
26
  model_compression_toolkit/core/common/collectors/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
27
27
  model_compression_toolkit/core/common/collectors/base_collector.py,sha256=JoBTX3rRcRnUF3_Azjg848aiJt9drCJ5TsR9RahVI0Y,2591
28
28
  model_compression_toolkit/core/common/collectors/histogram_collector.py,sha256=zra5V06Brpjc1cUNIMVVGqdoqAuro62_hGy2Zm5-XMQ,6754
@@ -32,15 +32,15 @@ model_compression_toolkit/core/common/collectors/statistics_collector.py,sha256=
32
32
  model_compression_toolkit/core/common/collectors/weighted_histogram_collector.py,sha256=zp3dE7YTqWmkD5QWdRhsl9zD8W6Lr96G1Wjw1g2D3T0,4894
33
33
  model_compression_toolkit/core/common/fusion/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
34
34
  model_compression_toolkit/core/common/fusion/fusing_info.py,sha256=Z-O03-DlM4XyllVg5FaQlYeIgk5UqoC8dSA6IlRODNI,22693
35
- model_compression_toolkit/core/common/fusion/graph_fuser.py,sha256=yxxxuwrmQ4wLW-PlTu0MEW59LmNJEh1OWy9Li15YH-8,7520
35
+ model_compression_toolkit/core/common/fusion/graph_fuser.py,sha256=HxA0QI6fyXPx35oyoOWhudFtcRJyKVaqWzsW7CnGrnY,7897
36
36
  model_compression_toolkit/core/common/graph/__init__.py,sha256=Xr-Lt_qXMdrCnnOaUS_OJP_3iTTGfPCLf8_vSrQgCs0,773
37
- model_compression_toolkit/core/common/graph/base_graph.py,sha256=_bv_XeENRoJJLvro6raa-Cn57awgnl70TvMM4ZNjkyA,41449
38
- model_compression_toolkit/core/common/graph/base_node.py,sha256=wmhNY6bSM8920HAhl7hRZsMBKIi5h7g6DrytbEbuz18,35536
37
+ model_compression_toolkit/core/common/graph/base_graph.py,sha256=sdYyOZAeAzBFU18VvQj0udeV1_ezmJHPJiZIAYt6Kko,39822
38
+ model_compression_toolkit/core/common/graph/base_node.py,sha256=LjGcjd04FxQEc5lIriPGAziQxvCsgM2W95KIQfW-qM0,30783
39
39
  model_compression_toolkit/core/common/graph/edge.py,sha256=buoSEUZwilWBK3WeBKpJ-GeDaUA1SDdOHxDpxU_bGpk,3784
40
- model_compression_toolkit/core/common/graph/functional_node.py,sha256=wtX6CYzAwgzkt_gp3wByfYydIUZV4vjIHt9TU3Ps9nw,4731
40
+ model_compression_toolkit/core/common/graph/functional_node.py,sha256=Gj24D9m0ktv92JqX-h3QQrkyIwF24GjohSBtegqYZ5I,4731
41
41
  model_compression_toolkit/core/common/graph/graph_matchers.py,sha256=CrDoHYq4iPaflgJWmoJ1K4ziLrRogJvFTVWg8P0UcDU,4744
42
42
  model_compression_toolkit/core/common/graph/graph_searches.py,sha256=2oKuW6L8hP-oL0lFO9PhQFt9fEFgVJwpc1u4fHExAtE,5128
43
- model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py,sha256=P2LFWm7c4FIQI13DLEIbrv4MBR8GZjVLMdZp8_vHf-s,10056
43
+ model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py,sha256=6DvWdMgnMyf0SJ_Rq93G5WQ-wMpYK8SgiGILHqew6eQ,10242
44
44
  model_compression_toolkit/core/common/graph/memory_graph/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
45
45
  model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py,sha256=X6FK3C3y8ixFRPjC_wm3ClloCX8_06SOdA1TRi7o_LA,3800
46
46
  model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py,sha256=oyz260JXDbvL8aI-DVtUvLHtLRWC2Yu4SBYlGL68c2Y,3498
@@ -63,8 +63,8 @@ model_compression_toolkit/core/common/matchers/walk_matcher.py,sha256=xqfLKk6xZt
63
63
  model_compression_toolkit/core/common/mixed_precision/__init__.py,sha256=Vlpo9M_1u6LHdEjYE3-wGc1esoH2NVhRzi3n_HTYvHs,789
64
64
  model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py,sha256=TuB1k3GS856UiYzdkjaMiGEP4hOrellxDpFFarUCUPQ,6609
65
65
  model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py,sha256=LLDguK7afsbN742ucLpmJr5TUfTyFpK1vbf2bpVr1v0,882
66
- model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py,sha256=7dKMi5S0zQZ16m8NWn1XIuoXsKuZUg64G4-uK8-j1PQ,5177
67
- model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py,sha256=sRXk6t9P-8OOfUegySAUIf-nglgzwtQXe2VBOxSbM_U,3630
66
+ model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py,sha256=s-HnZl35Z4wcxnSvCs0k3ibI_knktAhttk4I0jicK8k,5618
67
+ model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py,sha256=xI_Z0HdV4SILgtHNUnRMFBAqzvp9cmuusQgT8wQPE_A,3371
68
68
  model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py,sha256=qsFW_H3HiN3Mr1lwSg15CQb4cUBtGVfewdGzZoJVijo,6737
69
69
  model_compression_toolkit/core/common/mixed_precision/mixed_precision_ru_helper.py,sha256=MMb7qTwk_141-mxz1xch3lMb5F6eQjBf_uILcqXs1wE,4887
70
70
  model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py,sha256=XnSNyG6ZLrIW4Y4_t-ggFvzBjag2RNejfiwbGYfk_Rg,6155
@@ -77,11 +77,11 @@ model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools
77
77
  model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
78
78
  model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py,sha256=6Z6nQL9UH7B8dbcUR0cuCTEYFOKZAlvOb-SCk_cAZFA,6670
79
79
  model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/__init__.py,sha256=5yxITHNJcCfeGKdIpAYbNbKDoXUSvENuRQm3OQu8Qf4,697
80
- model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/metric_calculators.py,sha256=UkJCBpJfvrl4Bfdn1Oer4ZDN8DVfe1lgmhb2M1oSiyU,21663
80
+ model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/metric_calculators.py,sha256=Md4mpD5rdQgbtJGoK_iC-DoNQTpw-8A-_nI5J20WG7M,21642
81
81
  model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/sensitivity_evaluation.py,sha256=agxMoAX8LoHB8b5ud59x3RkAk00OtChLvoQvUgrgZOg,8612
82
82
  model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/set_layer_to_bitwidth.py,sha256=Zn6SgzGLWWKmuYGHd1YtKxZdYnQWRDeXEkKlBiTbHcs,2929
83
- model_compression_toolkit/core/common/network_editors/__init__.py,sha256=vZmu55bYqiaOQs3AjfwWDXHmuKZcLHt-wm7uR5fPEqg,1307
84
- model_compression_toolkit/core/common/network_editors/actions.py,sha256=syZblvyzD8cEi0x6rIcw2mzFiu6BVZXPvhesOd7vhdM,17424
83
+ model_compression_toolkit/core/common/network_editors/__init__.py,sha256=KhRItoveIt1eLTPy9PxqqNryruuJpWI0or7L8QUkCJk,1305
84
+ model_compression_toolkit/core/common/network_editors/actions.py,sha256=GPZ6KejR-gNv1L5Ia-OjFEvhl09BeWyqEzKjFHH3lZk,12763
85
85
  model_compression_toolkit/core/common/network_editors/edit_network.py,sha256=Ay1q6Qlcy2N4nVzsr0m7yzBLWDvq6IuzTv7BawdIxwU,1499
86
86
  model_compression_toolkit/core/common/network_editors/node_filters.py,sha256=Pc_MCohCIbibIKI8Sz8RuQjEAHn-vRZMpuWCCliMqFk,3236
87
87
  model_compression_toolkit/core/common/pruning/__init__.py,sha256=DGJybkDQtKMSMFoZ-nZ3ZifA8uJ6G_D20wHhKHNlmU0,699
@@ -102,27 +102,26 @@ model_compression_toolkit/core/common/pruning/mask/__init__.py,sha256=huHoBUcKNB
102
102
  model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py,sha256=x7a16O7iAqXmxixDqJ22Ikbax1BqycqERhM2_G1tFC8,4781
103
103
  model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py,sha256=mpAOWGBqkeKcjkjkajnt4RqE-YU_pyNfIXTGIefLxSA,5727
104
104
  model_compression_toolkit/core/common/quantization/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
105
- model_compression_toolkit/core/common/quantization/bit_width_config.py,sha256=034kgwe0ydyLXsV83KqxKyyHkoUQH06ai0leLyg0p8I,13019
106
- model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py,sha256=X9W_az8RQtOi4aFDLNzHxES_r6qs0kixB8OQ7seOVe8,4992
105
+ model_compression_toolkit/core/common/quantization/bit_width_config.py,sha256=HLHc56shQwsFx6gdaq4BF0Y4pxy0HThZ72eqCR3QNSo,13096
106
+ model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py,sha256=u4g07MOCfTx8od8E44NQlBC7uW4AR5BmfUDPgW-gbGA,6681
107
107
  model_compression_toolkit/core/common/quantization/core_config.py,sha256=yxCzWqldcHoe8GGxrH0tp99bhrc5jDT7SgZftnMUUBE,2374
108
108
  model_compression_toolkit/core/common/quantization/debug_config.py,sha256=uH45Uq3Tp9FIyMynex_WY2_y-Kv8LuPw2XXZydnpW5A,1649
109
- model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py,sha256=AFabyE57oL-XmI8jUhMA5p6ZVZGJW8dkI1BClN8Gu3w,7670
110
- model_compression_toolkit/core/common/quantization/node_quantization_config.py,sha256=Zy2Cz3vhRcjV_J7fqJf79J5dyBQHQy9AMGxD9RFuV9I,30250
109
+ model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py,sha256=FyYCYbfkAofEWO2mAvFIppPeq2I10f1ScPNiVa9F7x4,7687
110
+ model_compression_toolkit/core/common/quantization/node_quantization_config.py,sha256=fj1ebZgnK6xH-9LIAu93rOEU7siXK86U_VyAtUwu9nA,24869
111
111
  model_compression_toolkit/core/common/quantization/quantization_config.py,sha256=UkSVW7d1OF_Px9gAjsqqK65aYhIBFWaBO-_IH6_AFfg,4403
112
- model_compression_toolkit/core/common/quantization/quantization_fn_selection.py,sha256=HfBkSiRTOf9mNF-TNQHTCCs3xSg66F20no0O6vl5v1Y,2154
113
- model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py,sha256=7eG7dl1TcbdnHwgmvyjarxLs0o6Lw_9VAjXAm4rsiBk,3791
112
+ model_compression_toolkit/core/common/quantization/quantization_fn_selection.py,sha256=VVq2cKjumlNWucUbaNw8s2J0IbI_vrQ-KR_eQPshGSg,3140
114
113
  model_compression_toolkit/core/common/quantization/quantize_graph_weights.py,sha256=N005MSvx8UypVpa7XrxNrB2G732n2wHj3RmLyjTgd3I,2728
115
- model_compression_toolkit/core/common/quantization/quantize_node.py,sha256=cdzGNWfT4MRogIU8ehs0tr3lVjnzAI-jeoS9b4TwVBo,2854
116
- model_compression_toolkit/core/common/quantization/set_node_quantization_config.py,sha256=uD2LOfaWskV7rZ-3J06Xj9CgsNfdlybNc5-1C3NEm3Q,29912
117
- model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py,sha256=eCDGwsWYLU6z7qbEVb4TozMW_nd5VEP_iCJ6PcvyEPw,1486
114
+ model_compression_toolkit/core/common/quantization/quantize_node.py,sha256=WJ-lsT_R_pqjbrMzgcposugACDNz7yZ09vSlltTb78A,3001
115
+ model_compression_toolkit/core/common/quantization/set_node_quantization_config.py,sha256=Oz9ZEZAwcxTmalIkuBCAifd-7ZYltGR0S_RnjUNsmCU,11185
116
+ model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py,sha256=QsuQ4e1IKf_hIF3cFRR_POAxCoJjqwuXeXyirmRL1-k,1644
118
117
  model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py,sha256=_m-XkEMJMHf0gYwVIXAoHVjdRa2NXt_gYdwBlw76ZR8,24031
119
118
  model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py,sha256=RL-PklAjGyC-26anSt8fU07a6pB_LBQFQy9o4e9giN0,8739
120
119
  model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py,sha256=9gnfJV89jpGwAx8ImJ5E9NjCv3lDtbyulP4OtgWb62M,1772
121
120
  model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py,sha256=-cghHF5S11qbjTDRruHlc__uaDoofZHl7QTl8hCeKW0,11141
122
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py,sha256=ivtULTUBiFuE8TsomJOe87FXlnJ891bu97E0FWFQTw0,6973
123
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py,sha256=CcNzorFUZXptA8vL_wNrde8fmHRvJAFZxp4mjbgtOr4,8472
121
+ model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py,sha256=3EAbtLHOgTJIMbGlfAzeki7xxjipAsMyAaVRFXqF228,7243
122
+ model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py,sha256=27We8-tLL0dkDPYSDlhXe6ZKSO-kw2s5sD4q9I_ADmE,8401
124
123
  model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py,sha256=Nv_b3DECVjQnlrUet2kbuSvSKVnxcc-gf2zhFb2jSZk,43482
125
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py,sha256=UI-NW9K-yA6qxtk3Uin1wKmo59FNy0LUnySpxodgeEs,3796
124
+ model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py,sha256=jb9Q2WgjmMc6i8j3TXr850tWCdI0a8598bkTmMYfdAY,4529
126
125
  model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py,sha256=6tRNgWvn-4r8hiSHqND7Qms1Nje1DUR4MR0JeWCNyvI,12531
127
126
  model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py,sha256=xiZgCkoIrJ9xsR17x9pSl_sUbiuSta67kf7bQ4quFUI,10804
128
127
  model_compression_toolkit/core/common/quantization/quantizers/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
@@ -130,35 +129,35 @@ model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantiz
130
129
  model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py,sha256=iEoWUPFQMcvZXHtLMe2_7L7IK25XcKiY6-d1_gArZs0,11880
131
130
  model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py,sha256=wXExWHf5-0He7L4bpvFpKlx7FG4u3DAfNZiXPpOs_SQ,5521
132
131
  model_compression_toolkit/core/common/statistics_correction/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
133
- model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py,sha256=VLqoAaoUYBGN9OF7rySJywiQ-R8EfMRyokPRNcTsMy8,4380
134
- model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py,sha256=Y8D-9N6ltLThtVwgHqO-JbrVdgkWofWN1-IGFdmy_hs,4611
135
- model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py,sha256=XkZhe4-eI_QGPDm0h732-2MOh0TGupXWv2h2IuOhn2g,5025
136
- model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py,sha256=7-gVlvdhydH8FgSPBW_YLCx6ziRY5yO4xwzgK-csGvw,8559
137
- model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py,sha256=sd7-5LP69wTT2uFm7CXW3FINkQAamEPljZi5koygvxQ,10069
132
+ model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py,sha256=oUa1Gv9jIICOoFljTiIaItFjJQPht7CBe-wEr3iBuLQ,4118
133
+ model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py,sha256=eGd0gaPz1K9tzfQf1UMBeshoydFwwZ4Ha2JKFCJ2eZc,4474
134
+ model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py,sha256=w9VkX0_XyE64zaYJrZqGEtVxaox7MwY-c8Ie1C0f6ZU,5093
135
+ model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py,sha256=289b2iwzp2hjsgpEZotQKNB2aPKjAZopRaGnbzErHV8,9263
136
+ model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py,sha256=08k7sqOLIya7Vvg2WMFdaSzLJ2FsgQlcKk0H_KoFoUg,10068
138
137
  model_compression_toolkit/core/common/statistics_correction/statistics_correction.py,sha256=yB5Kxk74RAzcXxguFRVpvjFSWFrGrqL3JoU1qLst4PQ,5881
139
138
  model_compression_toolkit/core/common/substitutions/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
140
139
  model_compression_toolkit/core/common/substitutions/apply_substitutions.py,sha256=k-bifmakHIYZeZS-4T1QpZ1Et6AwAijMRgAKs7hmMKc,1390
141
140
  model_compression_toolkit/core/common/substitutions/batchnorm_folding.py,sha256=wLlTT7sqUffKHwOrMG2VV5SktQkkP54l8taW1Fq0mh0,13392
142
- model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py,sha256=8SVqcIXCHfqRbNDZum_BqUmuD0ecqpac-BcZl0Q67R0,8439
141
+ model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py,sha256=Qe-MYKL2GRQ3PX1Q-zpws5mEW3vrs2h19kjiUZTkKwI,8327
143
142
  model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py,sha256=eCbhbAzgXWoVymMLbrupJ1qAcdhZDwkjKeja0fCymnY,9746
144
143
  model_compression_toolkit/core/common/substitutions/linear_collapsing.py,sha256=iEtzbWCDXP6EDkTZCtREQ0rpMxhQ2kM9zlcP_0KLq9I,12367
145
144
  model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py,sha256=uoauhmncQqUBNvD-qCLIXsIbl_IzrbxSKdxiMig-5W4,2406
146
145
  model_compression_toolkit/core/common/substitutions/remove_identity.py,sha256=TKU1TIU52UIkVnl0EZvWnDhLV9nIVZ4hqi-w1i4NXMk,2637
147
146
  model_compression_toolkit/core/common/substitutions/residual_collapsing.py,sha256=N82mso5j3EJQlKt9EMHjjEJ67FmdGQeCfN8U5grOFXo,4830
148
147
  model_compression_toolkit/core/common/substitutions/scale_equalization.py,sha256=2_NmmBmUBZZwXuF5Od2S919_FgQKYIf-nSyNPawr0e4,9840
149
- model_compression_toolkit/core/common/substitutions/shift_negative_activation.py,sha256=ZIuu91b49ZpaIgu2AExuNpFJNwnEk8TxiWm67F63hg4,32740
148
+ model_compression_toolkit/core/common/substitutions/shift_negative_activation.py,sha256=Q9dQPLIKVtCp23yj-BmQmYkH94OBvAfV-19CYgqWSw0,32572
150
149
  model_compression_toolkit/core/common/substitutions/softmax_shift.py,sha256=R-0ZqhYAuZLEFWHvB2UTPm52L6gWHGdRdEnwGxKSeGI,2625
151
150
  model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py,sha256=cokiYPZB7504oHTlgZy8u2Xv_S-RK_oDSnGvYRX3JK4,4136
152
151
  model_compression_toolkit/core/common/substitutions/weights_activation_split.py,sha256=vafrJ6eA37PrIzOs7uOsiJKIBmAVmNJ-wXsoe332BIw,4683
153
152
  model_compression_toolkit/core/common/visualization/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
154
153
  model_compression_toolkit/core/common/visualization/final_config_visualizer.py,sha256=6I10jKLesB-RQKaXA75Xgz2wPvylQUrnPtCcQZIynGo,6371
155
154
  model_compression_toolkit/core/common/visualization/nn_visualizer.py,sha256=if1MMA9SkMEN3x5ZjXhxA8dMcA-T7DfLVoVYeXkrjQw,7081
156
- model_compression_toolkit/core/common/visualization/tensorboard_writer.py,sha256=9A3LyMHu1eU34BbkWZi_eA1evSEVKnRbG_ekXfNEql4,23440
155
+ model_compression_toolkit/core/common/visualization/tensorboard_writer.py,sha256=CZpxnAlUCauv-QXD3ukA500RCCXE3t8sTH1OZD5tfLs,23407
157
156
  model_compression_toolkit/core/keras/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
158
157
  model_compression_toolkit/core/keras/constants.py,sha256=dh4elQWt6Q6NYRht5k5RiiOcnLAq1v0MMBCJqMJzzFk,3225
159
158
  model_compression_toolkit/core/keras/custom_layer_validation.py,sha256=f-b14wuiIgitBe7d0MmofYhDCTO3IhwJgwrh-Hq_t_U,1192
160
159
  model_compression_toolkit/core/keras/data_util.py,sha256=jm54o-SlI1DJ-sEvRuX9OyLN68tEt0VxcqrdIjR98Ag,8366
161
- model_compression_toolkit/core/keras/default_framework_info.py,sha256=n0fkMlQ0Cg9YelztzD2cccgFNtY_BnbQbvKUbnZDIg8,6946
160
+ model_compression_toolkit/core/keras/default_framework_info.py,sha256=YhPSp153YcESp1Ho3GyvoEmxf2CpY9rjTnHAfN7Cpns,6175
162
161
  model_compression_toolkit/core/keras/keras_implementation.py,sha256=x5EOYBrg2chC9-OUlrd0laLpnnHCFhYYAFNKRhVh6aQ,28526
163
162
  model_compression_toolkit/core/keras/keras_model_validation.py,sha256=dMS9cqaYmliyzVu2-MrKx4AIubqz3HW3RY4if2TV6U8,1581
164
163
  model_compression_toolkit/core/keras/keras_node_prior_info.py,sha256=k9cwu3S-OUGFaOHxH6cyYS2JjxAYHfBddz0laf6Quds,3311
@@ -170,7 +169,7 @@ model_compression_toolkit/core/keras/back2framework/float_model_builder.py,sha25
170
169
  model_compression_toolkit/core/keras/back2framework/instance_builder.py,sha256=fBj13c6zkVoWX4JJG18_uXPptiEJqXClE_zFbaFB6Q8,4517
171
170
  model_compression_toolkit/core/keras/back2framework/keras_model_builder.py,sha256=WxVCk-YOnajkiWf_wBKZ12ius7RDJX-pj-2cqutCvRI,17041
172
171
  model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py,sha256=E7bT09HS4b8H6xc5EES1lRHu0YOR8_GpOt0_pU99d50,11306
173
- model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py,sha256=xwnAXPyfDsUmnEBmzMihat22T38s4QCeUA3gz1hRe2Y,2204
172
+ model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py,sha256=s1ha5KYOopYcFn_AtSZgUbSiTwTXQOczJ9d3xARPZeo,2568
174
173
  model_compression_toolkit/core/keras/graph_substitutions/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
175
174
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
176
175
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py,sha256=Hs96qwrwhMqnMrjALN-jtsGiuiEU2ZtE6BmC1DoMV-Y,5160
@@ -180,7 +179,7 @@ model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm
180
179
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py,sha256=Hl4LEQ_bw_Vpmf3ZqHujYUqVdvTNsPlEMvr9dZhwg2U,2806
181
180
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py,sha256=vZr8Agj-tFKSX7TM2nZjwbHElJqSIyMAaR7FH-lp4YM,11691
182
181
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py,sha256=nJO-JUmOK1lLb560KMJgLFwY2IOI2Y3lpzUq7o2f7mQ,5707
183
- model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py,sha256=Nq_NCQ0SO8Gqt0gBAnFAKNn6_VksiKVLb3wV-nb1k_8,5891
182
+ model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py,sha256=OwHoCLA-upKUnRpyVWrO_E6QmZcxk6-pOKNpiI7kYzI,6044
184
183
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py,sha256=AvquvVVVT8-ioeVn-gjqysK4L41L3I7TlNOEDfWjViY,8185
185
184
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py,sha256=9MZJp4GNTLesWN5uQ5eOQyAHLzLYDAHAjRi-LpNppSc,4257
186
185
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py,sha256=l9PUREBf4aRwWILiybdteveeUbh7js-i-hLt8Ma0e4c,26771
@@ -189,7 +188,7 @@ model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_id
189
188
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py,sha256=jhOLZDQ4_6-x6JHGsyzboX-CdtF3N-BkZjm2YwBsW4I,3208
190
189
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py,sha256=5P1wbJ80tX1cdi4PKjT_5aRcDUShmuUAspdLaqIILkQ,4838
191
190
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py,sha256=TEaHlIbXj_ZjIdT5TmAICD3WLD3u_7g0fLWQcNzTJuM,7941
192
- model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py,sha256=a7Jnmt91EMT75OK_MQYbWuVv_3zI5FswJJf-x8qBBN0,10957
191
+ model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py,sha256=shPMX9BjpUyfY98hcjMqVVkE4LL79On0_ZQimFjdRX8,11176
193
192
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py,sha256=4Yf-sIj6oqYENdXs2FRxbvLCI1siDo29XpGb17mISBw,4062
194
193
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py,sha256=Qk5seDALj_th9dHJehY7ynZjvFjVfCv_mJ1enA5hX0c,1623
195
194
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py,sha256=wH9ocMLL725-uUPU-zCxdd8NwT5nyd0ZShmI7iuTwF8,1462
@@ -197,15 +196,16 @@ model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_a
197
196
  model_compression_toolkit/core/keras/hessian/__init__.py,sha256=lNJ29DYxaLUPDstRDA1PGI5r9Fulq_hvrZMlhst1Z5g,697
198
197
  model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py,sha256=qGEyOzC1_NIcnBmvvjA-GT7o9-PWo0Ko66vcEyLixhw,9180
199
198
  model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py,sha256=1o7X9GXSfpEmuB5ee2AaBQ2sN2xzX4-smbrq_0qOGRU,4454
200
- model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py,sha256=bZPG4FoTiLDA-nPAnHnosJRfcHypo8uDmEW3HnJGado,11442
199
+ model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py,sha256=-8F1r9vELjDi4aX5gELATdWSNiwCWH7K0O18RXg2lFk,11441
201
200
  model_compression_toolkit/core/keras/mixed_precision/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
202
- model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py,sha256=aB3y8vaiXSmy1bpvlqXDswL3-FTz019s5r-lcb4FKhE,5254
201
+ model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py,sha256=1p2DlMRmgzBAOUP-NeOzldTemjNLQQ3uf1Rov5iY-l8,5430
203
202
  model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py,sha256=GtW0yars8PzqP9uL_vfXrtqHwKiStmOxPng20rYaIjU,6805
204
203
  model_compression_toolkit/core/keras/pruning/__init__.py,sha256=3Lkr37Exk9u8811hw8hVqkGcbTQGcLjd3LLuLC3fa_E,698
205
- model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py,sha256=PtxhRGNWZFTNpkHwBJzPfPvZX8sL6-cXfvmLbeltyqk,11313
206
- model_compression_toolkit/core/keras/quantizer/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
207
- model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py,sha256=vfKwU0AfRH2KztmMF5bxcaBlGdnTePPGZsUqOHzED-U,6854
208
- model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py,sha256=Up3-sbuAcaJ6kfe7Sz3XN6iiJ9hlxzOMncLCFEXJFjk,4475
204
+ model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py,sha256=gqlssgSMN3TUzHD_Ple02m6rJHfcW9KpF2ZdTKlH4JM,11312
205
+ model_compression_toolkit/core/keras/quantization/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
206
+ model_compression_toolkit/core/keras/quantization/activation_quantization_fn_factory.py,sha256=RtQk5r-bZxUs10AFaJ813_rpkDmOwzWPv6zK6LbX4_8,1876
207
+ model_compression_toolkit/core/keras/quantization/fake_quant_builder.py,sha256=vfKwU0AfRH2KztmMF5bxcaBlGdnTePPGZsUqOHzED-U,6854
208
+ model_compression_toolkit/core/keras/quantization/lut_fake_quant.py,sha256=Up3-sbuAcaJ6kfe7Sz3XN6iiJ9hlxzOMncLCFEXJFjk,4475
209
209
  model_compression_toolkit/core/keras/reader/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
210
210
  model_compression_toolkit/core/keras/reader/common.py,sha256=eZWjBcvTDUX7fCWmy1OAH4lYLFTh59_UQ_nP_Gjp4yw,2594
211
211
  model_compression_toolkit/core/keras/reader/connectivity_handler.py,sha256=AgF6qXZOJMeXvc-pBnGY23BJz7wPBx2aTYxHiO8efec,11303
@@ -218,14 +218,14 @@ model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py,sha256=
218
218
  model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py,sha256=dUzvNVzamauDLjgyjHweWux6T2vRko3anAuPxnaGpX8,2408
219
219
  model_compression_toolkit/core/keras/statistics_correction/__init__.py,sha256=9HIBmj8ROdCA-yvkpA8EcN6RHJe_2vEpLLW_gxOJtak,698
220
220
  model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py,sha256=XNCtT9klMcsO1v5KA3MmCq_WgXOIT5QSzbfTOa9T-04,3060
221
- model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py,sha256=iBuFBlx5qvAJEMwZ3Z1PYulrGf1LbMJ4gj8eG40utHw,3175
221
+ model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py,sha256=Xsoz-tbZf1v5EAH6FYCh7t0oh6GGHpFv3UdvF6u1XjU,3367
222
222
  model_compression_toolkit/core/keras/visualization/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
223
223
  model_compression_toolkit/core/pytorch/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
224
224
  model_compression_toolkit/core/pytorch/constants.py,sha256=Sg0hkUaMe88mI2_pd3KqhVz5ORnA46S1uq9Tj5qhtHc,2828
225
225
  model_compression_toolkit/core/pytorch/data_util.py,sha256=YYbT135HhlTt0q6XdD2JX7AS_L92f_uV2rWq2hsJOCA,6325
226
- model_compression_toolkit/core/pytorch/default_framework_info.py,sha256=Vkr1zGCcaxkpB8LLzqf9b_6sLvvipgC9pvx5khIOvJo,5089
226
+ model_compression_toolkit/core/pytorch/default_framework_info.py,sha256=pDUE-rwMhm1V1Y19_gwuZDfDCwKAu1ypBvU6XdURVjQ,4308
227
227
  model_compression_toolkit/core/pytorch/pytorch_device_config.py,sha256=S25cuw10AW3SEN_fRAGRcG_I3wdvvQx1ehSJzPnn-UI,4404
228
- model_compression_toolkit/core/pytorch/pytorch_implementation.py,sha256=YgrvXcxU_JU8HJXsQ3txzNFCIyKK1mdO2exLKrhMQAs,27228
228
+ model_compression_toolkit/core/pytorch/pytorch_implementation.py,sha256=cUQOBGwtG_DWpkrUEOcYSwXtNSmQgYVBCTxTpFiF4mo,27213
229
229
  model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py,sha256=5hsp0nl6TewfrKsT133m9Z7DVpTFFftEv6DeZoryDZw,3009
230
230
  model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py,sha256=MnD959VB15mxl__5Hv2yN4I7UmRnrYF7Z55dpUknqhE,5565
231
231
  model_compression_toolkit/core/pytorch/utils.py,sha256=xNVE7YMtHupLEimIJcxmfcMGM4XKB9I1v0-K8lDeLB8,3936
@@ -235,7 +235,7 @@ model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py,sha
235
235
  model_compression_toolkit/core/pytorch/back2framework/instance_builder.py,sha256=BBHBfTqeWm7L3iDyPBpk0jxvj-rBg1QWI23imkjfIl0,1467
236
236
  model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py,sha256=v8tjcw7zvHKdJUb4TMSvs3Pi0xmDzxMPDCHtjeBtvas,11405
237
237
  model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py,sha256=GuKBtULEg8gAtV8dGjL2R3b9FdxX_S9Bd3bM1qI_6NE,21860
238
- model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py,sha256=dtPrHxnYsXmyMaN80gW86_3Ouzu1Ga1fZCYQmsFJmck,3173
238
+ model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py,sha256=kl2RaxsrbhgvPKMASjvjODO--Hj-oE2qU2NI9RiXt0s,3547
239
239
  model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
240
240
  model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py,sha256=RgvgO93bGsUsYbFh2oM_yq57pn0HHje8usNtRKzpMLs,5641
241
241
  model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py,sha256=F2hH2nbFQHtuS8CcG2GmNYfJ9gdrpHccnijHsX_CYgM,1640
@@ -253,13 +253,13 @@ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functio
253
253
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py,sha256=CXSMASpc_Zed3BJ2CsER69zKxE6ncFvvKQWDO1JxKYI,5849
254
254
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py,sha256=cYV-3Eik_0gv2sDZPdpUP-mXOT4E0I5wikr0C7z6omg,20309
255
255
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py,sha256=VNg-VgzCxSyqy2J3neEPl6U0SPO8UIVU_T47bGhz4FE,38459
256
- model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py,sha256=q1a3HieQtaOmWG2WGXp6GHYAvxa3CZ9dJUx9dqMAsS8,5695
256
+ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py,sha256=3KG-98IbIt2w4KXM9LRo-rjHYrDAzfRkKBfmUR9PegA,5606
257
257
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py,sha256=joHjwiUxccypMHkTy46rI91VyapLn9yJ2YRo5ISnOH4,1987
258
258
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py,sha256=hAZXzrEinHa-dJHLj39Hy_9Q-13QyO95rtYVSLrhvT8,4915
259
259
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py,sha256=DcJEIkGvBdIMOelNIwaJUZ5UsAHiGnDJPR20I464vWo,2929
260
260
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py,sha256=LehBhAhTTD5PAD1Knn-1vtzcpbsVHZUtryrDO2BS-LM,2951
261
261
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py,sha256=D1hxN3pZ5-_FLJSS30ZJUo-v8TqUWFcMjhMijFa9aSo,12407
262
- model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py,sha256=cvQg5Z4wHVGRmQQNj0wytbr5NYp_YnjF5JuiadKO9O8,10541
262
+ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py,sha256=d7uf3ZkqpaqRg1-ivpcf3F7Ku1iN3YlngUzJ--DUhtQ,10762
263
263
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py,sha256=05lV4pIL3hJkZl4JQPV4wk_EFD0eYLG5b8cdzvZk4P8,1588
264
264
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py,sha256=EC9Dvp-_UlpDWnipnf8ds65wh_Y-T8pXAFIwRScWpiY,2044
265
265
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py,sha256=WmEa8Xjji-_tIbthDxlLAGSr69nWk-YKcHNaVqLa7sg,1375
@@ -267,22 +267,23 @@ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights
267
267
  model_compression_toolkit/core/pytorch/hessian/__init__.py,sha256=lNJ29DYxaLUPDstRDA1PGI5r9Fulq_hvrZMlhst1Z5g,697
268
268
  model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py,sha256=2plydAxW6Ne4O5OjzPO936hq-H4MgjazbFG1xsyWIrI,7529
269
269
  model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py,sha256=8f_XlM8ZFVQPNGr1iECr1hv8QusYDrNU_vTkLQZE9RU,2477
270
- model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py,sha256=3heJz-Z_bjU8xtbtCdzbUopYljiXQRrlUP6Hfsso8Ao,7793
270
+ model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py,sha256=IX5Jdvf711bMaKMHTjeQOveTJRnk3qwIcUAZm934IZA,7792
271
271
  model_compression_toolkit/core/pytorch/mixed_precision/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
272
- model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py,sha256=DVQrEJbB7MKj_LitU92cBxDApwnAAkilYvQzkr79ffg,4813
272
+ model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py,sha256=MTH7WsTpP-cTeMwaqrJPnhV_XdFKO6bySNalTONmr0w,4991
273
273
  model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py,sha256=KDnwmbhvhJMfNg1IuTvvzBNEriPQH9bL9dJ5VvWTzpE,6631
274
274
  model_compression_toolkit/core/pytorch/pruning/__init__.py,sha256=RAe8mgIr1V8dRIQtLf_dSG5zTUCKuQzxyybYx1dzEAs,697
275
- model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py,sha256=qwZtgjgwsPzKHTWarUeXUy9F0b3nHlTtdLRZO-xMNKk,13086
276
- model_compression_toolkit/core/pytorch/quantizer/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
277
- model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py,sha256=D8_CEuFqKAhbUgKaRw7Jlxo0zlqgPTMu6CIIIM4LfS0,7045
278
- model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py,sha256=uyeBtNokyDUikk-YkDP_mN_2DX0J5oPm3kSfdSUT2Ck,4420
275
+ model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py,sha256=axcG6BKC8gALjjrgOFpiB8b1VbySUyXZIHmzRxQYDoc,13085
276
+ model_compression_toolkit/core/pytorch/quantization/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
277
+ model_compression_toolkit/core/pytorch/quantization/activation_quantization_fn_factory.py,sha256=arslrOgJ1l-fScDlp6jNJ-JukKh0uBLcxAzjpDWRw94,1878
278
+ model_compression_toolkit/core/pytorch/quantization/fake_quant_builder.py,sha256=D8_CEuFqKAhbUgKaRw7Jlxo0zlqgPTMu6CIIIM4LfS0,7045
279
+ model_compression_toolkit/core/pytorch/quantization/lut_fake_quant.py,sha256=uyeBtNokyDUikk-YkDP_mN_2DX0J5oPm3kSfdSUT2Ck,4420
279
280
  model_compression_toolkit/core/pytorch/reader/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
280
281
  model_compression_toolkit/core/pytorch/reader/graph_builders.py,sha256=ZASzWbYYojFYIx-ynqMTkg6mCpTrJg2oWYT-xXki4Mw,19763
281
282
  model_compression_toolkit/core/pytorch/reader/node_holders.py,sha256=7XNc7-l1MZPJGcOESvtAwfIMxrU6kvt3YjF5B7qOqK4,1048
282
283
  model_compression_toolkit/core/pytorch/reader/reader.py,sha256=fXno0BQrtjhe3YnkDyjQLdeCz0e1KD8yFXjpXjCPGZ4,7432
283
284
  model_compression_toolkit/core/pytorch/statistics_correction/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
284
285
  model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py,sha256=VgU24J3jf7QComHH7jonOXSkg6mO4TOch3uFkOthZvM,3261
285
- model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py,sha256=bL7b3sX5k0MbFrxqa8eGO04yV8p3kNin5LQfQmSPuRc,2860
286
+ model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py,sha256=N_QkH7cRRuojrOrTcIPs6POW-PdzBkzf8QFS-0XezRg,3054
286
287
  model_compression_toolkit/data_generation/__init__.py,sha256=9xLN7VE3lnYVjoroYfJ24dxK_-kGEbMmMVeS1PPkPEY,1513
287
288
  model_compression_toolkit/data_generation/common/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
288
289
  model_compression_toolkit/data_generation/common/constants.py,sha256=21e3ZX9WVYojexG2acTgklrBk8ZO9DjJnKpP4KHZC44,1018
@@ -336,9 +337,9 @@ model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py,s
336
337
  model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py,sha256=uZ2RigbY9O2PJ0Il8wPpS_s7frgg9WUGd_SHeKGyl1A,699
337
338
  model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py,sha256=9adOGG1nyviNzuL-1aJXyL0c_VQllSZWiG2gR-puywo,6420
338
339
  model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py,sha256=bPevy6OBqng41PqytBR55e6cBEuyrUS0H8dWX4zgjQ4,967
339
- model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py,sha256=H0vXDcnQhVXAy-WOpnoM8kjTs5gzmYmO2IiDECSUpd0,10239
340
- model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py,sha256=ksWV2A-Njo-wAxQ_Ye2sLIZXBWJ_WNyjT7-qFFwvV2o,2897
341
- model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py,sha256=pDBAsUSm3Dq5ZKFH1XftvZ5GZn_R63IJpuhUII9Z_k0,6759
340
+ model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py,sha256=Q2Dz5Y8dc_b5eKHywaJVColnPfyekouEhaxQ-qvBxZ4,10471
341
+ model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py,sha256=y8H2RD7V9GoQ9d0mi_-kr6J_j0ncMj3bmhRRUjaM_6Y,2916
342
+ model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py,sha256=ueOc8N5-8ijA9jpEPlSHC-3cHvdTk79e_1NibtFgB-E,7427
342
343
  model_compression_toolkit/exporter/model_wrapper/__init__.py,sha256=7CF2zvpTrIEm8qnbuHnLZyTZkwBBxV24V8QA0oxGbh0,1187
343
344
  model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py,sha256=pKAdbTCFM_2BrZXUtTIw0ouKotrWwUDF_hP3rPwCM2k,696
344
345
  model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py,sha256=Bd3QhAR__YC9Xmobd5qHv9ofh_rPn_eTFV0sXizcBnY,2297
@@ -396,20 +397,20 @@ model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py,sha256
396
397
  model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py,sha256=DOlLc4C05TTQN0hZ7xRuqV6wgGp9r2xq7JYun_Hi5jM,8712
397
398
  model_compression_toolkit/pruning/__init__.py,sha256=lQMZS8G0pvR1LVi53nnJHNXgLNTan_MWMdwsVxhjrow,1106
398
399
  model_compression_toolkit/pruning/keras/__init__.py,sha256=3Lkr37Exk9u8811hw8hVqkGcbTQGcLjd3LLuLC3fa_E,698
399
- model_compression_toolkit/pruning/keras/pruning_facade.py,sha256=KX8SQ2RP6rWGtsHKeqdxRjCAFN7N5dbA1FI6yM3yIls,9260
400
+ model_compression_toolkit/pruning/keras/pruning_facade.py,sha256=tSkeVA4fcgY0rJbdT6zrbPsqfzLgqlKhyIFupB4nEC0,8885
400
401
  model_compression_toolkit/pruning/pytorch/__init__.py,sha256=pKAdbTCFM_2BrZXUtTIw0ouKotrWwUDF_hP3rPwCM2k,696
401
- model_compression_toolkit/pruning/pytorch/pruning_facade.py,sha256=7aDsFqznkFFhR77Vkf1WdvRJ6ggvArLAXURA4D9zZJo,9952
402
+ model_compression_toolkit/pruning/pytorch/pruning_facade.py,sha256=YxRtJGzD6SjZ4e1pf_cgAeYuaWBEg6MA3t200Ys7xJQ,9604
402
403
  model_compression_toolkit/ptq/__init__.py,sha256=Z_hkmTh7aLFei1DJKV0oNVUbrv_Q_0CTw-qD85Xf8UM,904
403
404
  model_compression_toolkit/ptq/runner.py,sha256=1tVx3Yj5X4ZjTH0REm6fuAmv4QZ4u_vixLsgjBwBzxc,2326
404
405
  model_compression_toolkit/ptq/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
405
- model_compression_toolkit/ptq/keras/quantization_facade.py,sha256=2r6xXkzOuFmEG71bQUIjc40AHYEP7T7WYRBudTlP0AA,11561
406
+ model_compression_toolkit/ptq/keras/quantization_facade.py,sha256=_Do07apQ091WCOnVkgJcvnOX812AtXlW0HWx6q3SeRE,11587
406
407
  model_compression_toolkit/ptq/pytorch/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
407
408
  model_compression_toolkit/ptq/pytorch/quantization_facade.py,sha256=RruQVxS4ylBjSH1KMh8ZCV8jk3OvtSrQl24m3Q4xs_8,10065
408
409
  model_compression_toolkit/qat/__init__.py,sha256=AaC4KBha4jDW_tyg2SOxZaKh_idIz0gZtDK3_zxs64E,1241
409
410
  model_compression_toolkit/qat/common/__init__.py,sha256=6tLZ4R4pYP6QVztLVQC_jik2nES3l4uhML0qUxZrezk,829
410
411
  model_compression_toolkit/qat/common/qat_config.py,sha256=QNXj2OcKIJOGvGEGzR2GCifI5Ho7FS7zFc2fkj6PJAc,2750
411
412
  model_compression_toolkit/qat/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
412
- model_compression_toolkit/qat/keras/quantization_facade.py,sha256=xNGEOiCBM4XiyRdFdBFvHySv6Ef2jMeVF39qZYzRzaM,17403
413
+ model_compression_toolkit/qat/keras/quantization_facade.py,sha256=V3-hAO9olSrLCDVezmH1WI8sLrg7q9OrPribL6wn7vI,17429
413
414
  model_compression_toolkit/qat/keras/quantizer/__init__.py,sha256=zmYyCa25_KLCSUCGUDRslh3RCIjcRMxc_oXa54Aui-4,996
414
415
  model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py,sha256=EbIt4lMlh6cU4awFLMBp0IlZ2zUUp-WtnlW5Wn19FDM,1793
415
416
  model_compression_toolkit/qat/keras/quantizer/quant_utils.py,sha256=cBULOgWUodcBO1lHevZggdTevuDYI6tQceV86U2x6DA,2543
@@ -421,7 +422,7 @@ model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py,sha256=cc
421
422
  model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py,sha256=lXeMPI-n24jbZDGrtOs5eQZ14QvmhFd0e7Y1_QRQxw0,8214
422
423
  model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py,sha256=ZdZwMwLa1Ws2eo3DiQYYTvPS1JfiswZL1xlQPtRnIgE,7067
423
424
  model_compression_toolkit/qat/pytorch/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
424
- model_compression_toolkit/qat/pytorch/quantization_facade.py,sha256=_aSMrxnOiqSURg1fo4NMWzBzuxLI450JmO9502ndD2w,13687
425
+ model_compression_toolkit/qat/pytorch/quantization_facade.py,sha256=uRRHA3_qUfldpKqhA9ktbdsEoYy-zOMFlQp83eCQ_oQ,13713
425
426
  model_compression_toolkit/qat/pytorch/quantizer/__init__.py,sha256=xYa4C8pr9cG1f3mQQcBXO_u3IdJN-zl7leZxuXDs86w,1003
426
427
  model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py,sha256=gjzrnBAZr5c_OrDpSjxpQYa_jKImv7ll52cng07_2oE,1813
427
428
  model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py,sha256=f8-TuAHyWU4R2Mxb4DoTIwGnxYjUG7sgmlyLY_Ixf2A,5892
@@ -431,8 +432,10 @@ model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py,sha256=KefO2Z
431
432
  model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
432
433
  model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py,sha256=p1JqtBZZVHTV5caR1U0d1t2UcTz0ACNyLcJTBFUEq98,6173
433
434
  model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py,sha256=wWehe5R0xVHSm3ruMrUc8RzW5UVAVCMgUTUMPDsvy9g,5487
435
+ model_compression_toolkit/quantization_preparation/__init__.py,sha256=5yxITHNJcCfeGKdIpAYbNbKDoXUSvENuRQm3OQu8Qf4,697
436
+ model_compression_toolkit/quantization_preparation/load_fqc.py,sha256=f3vGT7HkZQg7DB9bgelCNgJoYvV8pE7lxUIskezGR4E,10450
434
437
  model_compression_toolkit/target_platform_capabilities/__init__.py,sha256=8RVOriZg-XNjSt53h_4Yum0oRgOe2gp5H45dfG_lZxE,1415
435
- model_compression_toolkit/target_platform_capabilities/constants.py,sha256=JRz9DoxLRpkqvu532TFkIvv0595Bfb9NtU4pRp4urDY,1540
438
+ model_compression_toolkit/target_platform_capabilities/constants.py,sha256=eOmkUh4V2cRM5F4WxSNOCLJtN20TVvkHHBC06NZ31V0,1547
436
439
  model_compression_toolkit/target_platform_capabilities/immutable.py,sha256=YhROBiXEIB3TU-bAFrnL3qbAsb1yuWPBAQ_CLOJbYUU,1827
437
440
  model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py,sha256=hFBq-qKUM9qKZGaMmrxsEmurTV_D1kWIXI1rTERZsbk,5241
438
441
  model_compression_toolkit/target_platform_capabilities/schema/__init__.py,sha256=pKAdbTCFM_2BrZXUtTIw0ouKotrWwUDF_hP3rPwCM2k,696
@@ -529,7 +532,7 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
529
532
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=Y0oBl8qPFsdNrK49XczwmVacInJcOPHslVnFBs-iTCc,3742
530
533
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
531
534
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=n0HvWBzkBkUJZlS3WeynhpsRTps2qQkjlq7luliBHNU,9627
532
- mct_nightly-2.4.0.20250630.629.dist-info/METADATA,sha256=ED9ujwoXGZ6ySkOusVdI6z8gOJyh1xRTu0sAxvOlJBg,25087
533
- mct_nightly-2.4.0.20250630.629.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
534
- mct_nightly-2.4.0.20250630.629.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
535
- mct_nightly-2.4.0.20250630.629.dist-info/RECORD,,
535
+ mct_nightly-2.4.0.20250702.605.dist-info/METADATA,sha256=44tut0NAQxjM7vDUtJmnkWNwzAjJX3t4QBGNhPvi9hs,25555
536
+ mct_nightly-2.4.0.20250702.605.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
537
+ mct_nightly-2.4.0.20250702.605.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
538
+ mct_nightly-2.4.0.20250702.605.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.4.0.20250630.000629"
30
+ __version__ = "2.4.0.20250702.000605"
@@ -15,7 +15,6 @@
15
15
  from abc import ABC, abstractmethod
16
16
  from typing import Any, Tuple
17
17
 
18
- from model_compression_toolkit.core.common.framework_info import FrameworkInfo
19
18
  from model_compression_toolkit.core import common
20
19
  from model_compression_toolkit.core.common.user_info import UserInformation
21
20
 
@@ -13,20 +13,10 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
-
17
- from collections.abc import Callable
18
16
  from enum import Enum
19
- from typing import Dict, Any, Tuple, NamedTuple
17
+ from typing import Dict, Any, Tuple, NamedTuple, Optional
20
18
  from abc import ABC, abstractmethod
21
19
 
22
- from mct_quantizers import QuantizationMethod
23
-
24
-
25
- # Default value to use for ops without kernel.
26
- # This is a weird default, but it's used all over the place, so for now only extract it to const so that it can be
27
- # referenced by variable instead of hard-coded.
28
- DEFAULT_KERNEL_ATTRIBUTE = None
29
-
30
20
 
31
21
  class ChannelAxis(Enum):
32
22
  """
@@ -58,24 +48,21 @@ class FrameworkInfo(ABC):
58
48
  no_quantization_ops:Layers that should not get quantized (e.g., Reshape, Transpose, etc.)
59
49
 
60
50
  Fields:
61
- activation_quantizer_mapping (Dict[QuantizationMethod, Callable]): A dictionary mapping from QuantizationMethod to a quantization function.
62
51
  kernel_channels_mapping (Dict): Dictionary from a layer to a tuple of its kernel in/out channels indices.
63
52
  kernel_ops_attribute_mapping (Dict): Dictionary from a framework operator to its weight attribute to quantize.
64
53
  out_channel_axis_mapping (Dict): Dictionary of output channels of the model's layers (for computing statistics per-channel).
65
54
  _layer_min_max_mapping (Dict[Any, tuple]): Dictionary from a layer to its min/max output values.
66
-
67
55
  """
68
56
 
69
- activation_quantizer_mapping: Dict[QuantizationMethod, Callable]
70
- kernel_channels_mapping: Dict[Any, ChannelAxisMapping]
71
57
  kernel_ops_attribute_mapping: Dict[Any, str]
58
+ kernel_channels_mapping: Dict[Any, ChannelAxisMapping]
72
59
  out_channel_axis_mapping: Dict[Any, int]
73
- _layer_min_max_mapping: Dict[Any, tuple]
74
60
 
61
+ _layer_min_max_mapping: Dict[Any, tuple]
75
62
  _default_channel_mapping = ChannelAxisMapping(None, None)
76
63
 
77
64
  @classmethod
78
- def get_kernel_op_attribute(cls, node_type: Any) -> str:
65
+ def get_kernel_op_attribute(cls, node_type: Any) -> Optional[str]:
79
66
  """
80
67
  Get attribute of a layer's weight to quantize.
81
68
 
@@ -85,20 +72,7 @@ class FrameworkInfo(ABC):
85
72
  Returns:
86
73
  Attribute the layer has and should be quantized.
87
74
  """
88
- return cls.kernel_ops_attribute_mapping.get(node_type, DEFAULT_KERNEL_ATTRIBUTE)
89
-
90
- @classmethod
91
- def is_kernel_op(cls, node_type: Any) -> bool:
92
- """
93
- Check is the node is a kernel operation.
94
-
95
- Args:
96
- node_type: Layer to get its attributes.
97
-
98
- Returns:
99
- True if node type is a kernel operation, else False.
100
- """
101
- return node_type in cls.kernel_ops_attribute_mapping
75
+ return cls.kernel_ops_attribute_mapping.get(node_type)
102
76
 
103
77
  @classmethod
104
78
  def get_layer_min_max(cls, layer: Any, fw_attrs: Dict) -> Tuple[float, float]:
@@ -169,7 +143,6 @@ def get_fw_info():
169
143
  Returns: FrameworkInfo class.
170
144
  """
171
145
  assert _current_framework_info is not None, "fw_info isn't initialized."
172
- assert issubclass(_current_framework_info, FrameworkInfo), "fw_info isn't initialized to a FrameworkInfo class."
173
146
  return _current_framework_info
174
147
 
175
148