mct-nightly 2.1.0.20240731.414__py3-none-any.whl → 2.1.0.20240802.429__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.1.0.20240731.414.dist-info → mct_nightly-2.1.0.20240802.429.dist-info}/METADATA +1 -1
- {mct_nightly-2.1.0.20240731.414.dist-info → mct_nightly-2.1.0.20240802.429.dist-info}/RECORD +51 -47
- model_compression_toolkit/__init__.py +1 -1
- model_compression_toolkit/constants.py +2 -1
- model_compression_toolkit/core/common/framework_implementation.py +5 -9
- model_compression_toolkit/core/common/graph/base_graph.py +1 -23
- model_compression_toolkit/core/common/graph/base_node.py +52 -33
- model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +6 -6
- model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +12 -12
- model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +2 -2
- model_compression_toolkit/core/common/quantization/node_quantization_config.py +17 -38
- model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +6 -4
- model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +19 -12
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +14 -14
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +14 -9
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +5 -27
- model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +25 -17
- model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +10 -6
- model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +1 -65
- model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +12 -5
- model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +7 -5
- model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +3 -3
- model_compression_toolkit/core/keras/keras_implementation.py +21 -17
- model_compression_toolkit/core/keras/tf_tensor_numpy.py +2 -2
- model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +3 -3
- model_compression_toolkit/core/pytorch/pytorch_implementation.py +15 -14
- model_compression_toolkit/core/pytorch/reader/node_holders.py +1 -1
- model_compression_toolkit/core/runner.py +1 -0
- model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +2 -2
- model_compression_toolkit/gptq/common/gptq_training.py +0 -35
- model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +1 -1
- model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +1 -1
- model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +32 -8
- model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +2 -2
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +5 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +2 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +2 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +2 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +2 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +2 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +2 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +2 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +16 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +235 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +132 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +112 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +2 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +2 -0
- {mct_nightly-2.1.0.20240731.414.dist-info → mct_nightly-2.1.0.20240802.429.dist-info}/LICENSE.md +0 -0
- {mct_nightly-2.1.0.20240731.414.dist-info → mct_nightly-2.1.0.20240802.429.dist-info}/WHEEL +0 -0
- {mct_nightly-2.1.0.20240731.414.dist-info → mct_nightly-2.1.0.20240802.429.dist-info}/top_level.txt +0 -0
@@ -58,7 +58,7 @@ class CandidateNodeQuantizationConfig(BaseNodeQuantizationConfig):
|
|
58
58
|
if activation_quantization_cfg is not None:
|
59
59
|
self.activation_quantization_cfg = activation_quantization_cfg
|
60
60
|
else:
|
61
|
-
if any(v is None for v in (qc, op_cfg, activation_quantization_fn, activation_quantization_params_fn)):
|
61
|
+
if any(v is None for v in (qc, op_cfg, activation_quantization_fn, activation_quantization_params_fn)): # pragma: no cover
|
62
62
|
Logger.critical(
|
63
63
|
"Missing required arguments to initialize a node activation quantization configuration. "
|
64
64
|
"Ensure QuantizationConfig, OpQuantizationConfig, activation quantization function, "
|
@@ -72,7 +72,7 @@ class CandidateNodeQuantizationConfig(BaseNodeQuantizationConfig):
|
|
72
72
|
if weights_quantization_cfg is not None:
|
73
73
|
self.weights_quantization_cfg = weights_quantization_cfg
|
74
74
|
else:
|
75
|
-
if any(v is None for v in (qc, op_cfg, node_attrs_list)):
|
75
|
+
if any(v is None for v in (qc, op_cfg, node_attrs_list)): # pragma: no cover
|
76
76
|
Logger.critical("Missing required arguments to initialize a node weights quantization configuration. "
|
77
77
|
"Ensure QuantizationConfig, OpQuantizationConfig, weights quantization function, "
|
78
78
|
"parameters function, and weights attribute quantization config are provided.")
|
@@ -96,6 +96,7 @@ class NodeActivationQuantizationConfig(BaseNodeQuantizationConfig):
|
|
96
96
|
self.activation_n_bits = op_cfg.activation_n_bits
|
97
97
|
self.relu_bound_to_power_of_2 = qc.relu_bound_to_power_of_2
|
98
98
|
self.enable_activation_quantization = op_cfg.enable_activation_quantization
|
99
|
+
self.is_signed = op_cfg.is_signed
|
99
100
|
self.activation_channel_equalization = qc.activation_channel_equalization
|
100
101
|
self.input_scaling = qc.input_scaling
|
101
102
|
self.min_threshold = qc.min_threshold
|
@@ -178,20 +179,6 @@ class NodeActivationQuantizationConfig(BaseNodeQuantizationConfig):
|
|
178
179
|
for param_name, param_value in activation_params.items():
|
179
180
|
self.activation_quantization_params[param_name] = param_value
|
180
181
|
|
181
|
-
def has_activation_quantization_params(self) -> bool:
|
182
|
-
"""
|
183
|
-
|
184
|
-
Returns: Whether NodeQuantizationConfig has a activation quantization params or not.
|
185
|
-
|
186
|
-
"""
|
187
|
-
return len(self.activation_quantization_params) > 0
|
188
|
-
|
189
|
-
def no_quantization(self) -> bool:
|
190
|
-
"""
|
191
|
-
Returns: Whether NodeQuantizationConfig does not have activation params.
|
192
|
-
"""
|
193
|
-
return (not self.has_activation_quantization_params())
|
194
|
-
|
195
182
|
def __eq__(self, other: Any) -> bool:
|
196
183
|
"""
|
197
184
|
Compares the object to another object to find if they are equal.
|
@@ -203,7 +190,7 @@ class NodeActivationQuantizationConfig(BaseNodeQuantizationConfig):
|
|
203
190
|
|
204
191
|
"""
|
205
192
|
if not isinstance(other, NodeActivationQuantizationConfig):
|
206
|
-
return False
|
193
|
+
return False # pragma: no cover
|
207
194
|
|
208
195
|
return self.activation_quantization_fn == other.activation_quantization_fn and \
|
209
196
|
self.activation_quantization_params_fn == other.activation_quantization_params_fn and \
|
@@ -340,14 +327,6 @@ class WeightsAttrQuantizationConfig:
|
|
340
327
|
else:
|
341
328
|
self.set_weights_quantization_param({})
|
342
329
|
|
343
|
-
def has_weights_quantization_params(self) -> bool:
|
344
|
-
"""
|
345
|
-
|
346
|
-
Returns: Whether NodeQuantizationConfig has weights quantization params or not.
|
347
|
-
|
348
|
-
"""
|
349
|
-
return len(self.weights_quantization_params) > 0
|
350
|
-
|
351
330
|
def __eq__(self, other: Any) -> bool:
|
352
331
|
"""
|
353
332
|
Compares the object to another object to find if they are equal.
|
@@ -359,7 +338,7 @@ class WeightsAttrQuantizationConfig:
|
|
359
338
|
|
360
339
|
"""
|
361
340
|
if not isinstance(other, WeightsAttrQuantizationConfig):
|
362
|
-
return False
|
341
|
+
return False # pragma: no cover
|
363
342
|
|
364
343
|
return self.weights_quantization_fn == other.weights_quantization_fn and \
|
365
344
|
self.weights_quantization_params_fn == other.weights_quantization_params_fn and \
|
@@ -419,11 +398,11 @@ class NodeWeightsQuantizationConfig(BaseNodeQuantizationConfig):
|
|
419
398
|
# In Tensorflow, the attribute name is composed of the framework attribute name and the layer name,
|
420
399
|
# therefore, we need to look for the attribute in the op_cfg that is contained in the node attribute's name.
|
421
400
|
attrs_included_in_name = {k: v for k, v in op_cfg.attr_weights_configs_mapping.items() if k in attr}
|
422
|
-
if len(attrs_included_in_name) > 1:
|
423
|
-
Logger.
|
424
|
-
|
425
|
-
|
426
|
-
|
401
|
+
if len(attrs_included_in_name) > 1: # pragma: no cover
|
402
|
+
Logger.critical(f"Found multiple attribute in TPC OpConfig that are contained "
|
403
|
+
f"in the attribute name '{attr}'."
|
404
|
+
f"Please fix the TPC attribute names mapping such that each operator's attribute would "
|
405
|
+
f"have a unique matching name.")
|
427
406
|
if len(attrs_included_in_name) == 0:
|
428
407
|
attr_cfg = op_cfg.default_weight_attr_config
|
429
408
|
else:
|
@@ -446,8 +425,8 @@ class NodeWeightsQuantizationConfig(BaseNodeQuantizationConfig):
|
|
446
425
|
Returns: An attribute quantization configuration.
|
447
426
|
|
448
427
|
"""
|
449
|
-
if attr_name is None:
|
450
|
-
Logger.
|
428
|
+
if attr_name is None: # pragma: no cover
|
429
|
+
Logger.critical("Got 'None' attribute name for retrieving weights attribute quantization configuration.")
|
451
430
|
|
452
431
|
if isinstance(attr_name, int):
|
453
432
|
# this is a positional attribute
|
@@ -463,8 +442,8 @@ class NodeWeightsQuantizationConfig(BaseNodeQuantizationConfig):
|
|
463
442
|
# If no attribute with the exact name then an error would be thrown
|
464
443
|
attr_cfg = self.attributes_config_mapping.get(attr_name)
|
465
444
|
|
466
|
-
if attr_cfg is None:
|
467
|
-
Logger.
|
445
|
+
if attr_cfg is None: # pragma: no cover
|
446
|
+
Logger.critical(f"Weight attribute '{attr_name}' config could not be found.")
|
468
447
|
|
469
448
|
return attr_cfg
|
470
449
|
|
@@ -519,8 +498,8 @@ class NodeWeightsQuantizationConfig(BaseNodeQuantizationConfig):
|
|
519
498
|
f"{list(attrs_with_name.keys())}.")
|
520
499
|
return attrs_with_name
|
521
500
|
|
522
|
-
def set_quant_config_attr(self, config_parameter_name: str, config_parameter_value: Any,
|
523
|
-
*args: List[Any], **kwargs: Dict[str, Any]):
|
501
|
+
def set_quant_config_attr(self, config_parameter_name: str, config_parameter_value: Any,
|
502
|
+
attr_name: Union[str, int] = None, *args: List[Any], **kwargs: Dict[str, Any]):
|
524
503
|
"""
|
525
504
|
This method overrides the parent class set_quant_config_attr to enable setting a specific weights
|
526
505
|
attribute config parameter.
|
@@ -546,8 +525,8 @@ class NodeWeightsQuantizationConfig(BaseNodeQuantizationConfig):
|
|
546
525
|
else:
|
547
526
|
Logger.warning(f"Parameter {config_parameter_name} could not be found in the node quantization config of "
|
548
527
|
f"weights attribute {attr_name} and was not updated!")
|
549
|
-
else:
|
550
|
-
Logger.
|
528
|
+
else: # pragma: no cover
|
529
|
+
Logger.critical(f"Weights attribute {attr_name} could not be found to set parameter {config_parameter_name}.")
|
551
530
|
|
552
531
|
def __eq__(self, other: Any) -> bool:
|
553
532
|
"""
|
@@ -560,7 +539,7 @@ class NodeWeightsQuantizationConfig(BaseNodeQuantizationConfig):
|
|
560
539
|
|
561
540
|
"""
|
562
541
|
if not isinstance(other, NodeWeightsQuantizationConfig):
|
563
|
-
return False
|
542
|
+
return False # pragma: no cover
|
564
543
|
|
565
544
|
return self.min_threshold == other.min_threshold and \
|
566
545
|
self.simd_size == other.simd_size and \
|
@@ -19,7 +19,7 @@ from sklearn.cluster import KMeans
|
|
19
19
|
|
20
20
|
import model_compression_toolkit.core.common.quantization.quantization_config as qc
|
21
21
|
from model_compression_toolkit.constants import LUT_VALUES, MIN_THRESHOLD, SCALE_PER_CHANNEL, \
|
22
|
-
LUT_VALUES_BITWIDTH, THRESHOLD, NUM_QPARAM_HESSIAN_SAMPLES
|
22
|
+
LUT_VALUES_BITWIDTH, THRESHOLD, NUM_QPARAM_HESSIAN_SAMPLES, SIGNED
|
23
23
|
from model_compression_toolkit.core.common.hessian import HessianInfoService
|
24
24
|
from model_compression_toolkit.core.common.quantization.quantizers.quantizers_helpers import \
|
25
25
|
max_power_of_two, int_quantization_with_threshold
|
@@ -110,7 +110,8 @@ def lut_kmeans_histogram(bins: np.ndarray,
|
|
110
110
|
constrained: bool = True,
|
111
111
|
n_iter: int = 20,
|
112
112
|
min_threshold: float = MIN_THRESHOLD,
|
113
|
-
quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE
|
113
|
+
quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE,
|
114
|
+
is_signed: bool = None) -> Dict:
|
114
115
|
"""
|
115
116
|
Finds quantization cluster points for non-uniform activation quantization.
|
116
117
|
The quantizer first finds the closest power-of-two number to the max value of the given histogram,
|
@@ -129,6 +130,7 @@ def lut_kmeans_histogram(bins: np.ndarray,
|
|
129
130
|
n_iter: Number of iteration ot search for the threshold (not used for this method).
|
130
131
|
min_threshold: Minimal threshold to use if threshold is too small.
|
131
132
|
quant_error_method: an error function to optimize the parameters' selection accordingly (not used for this method).
|
133
|
+
is_signed: Whether the quantization is signed or not. If None then compute SIGNED value.
|
132
134
|
|
133
135
|
Returns:
|
134
136
|
A dictionary containing the cluster assignments according to the k-means algorithm and
|
@@ -148,9 +150,9 @@ def lut_kmeans_histogram(bins: np.ndarray,
|
|
148
150
|
tensor_max = np.max(bins_with_values)
|
149
151
|
threshold = max_power_of_two(tensor_max, min_threshold)
|
150
152
|
|
151
|
-
signed = np.any(bins[:-1][counts != 0] < 0) # Whether histogram contains negative values or not.
|
153
|
+
signed = np.any(bins[:-1][counts != 0] < 0) if is_signed is None else is_signed # Whether histogram contains negative values or not.
|
152
154
|
tensor_for_kmeans = int_quantization_with_threshold(data=bins, threshold=threshold, n_bits=LUT_VALUES_BITWIDTH, signed=signed)
|
153
155
|
kmeans.fit(tensor_for_kmeans.reshape(-1, 1), sample_weight=np.insert(counts, 0, 0))
|
154
156
|
|
155
157
|
return {LUT_VALUES: np.float32(np.round(kmeans.cluster_centers_)),
|
156
|
-
THRESHOLD: threshold}
|
158
|
+
THRESHOLD: threshold, SIGNED: signed}
|
@@ -16,7 +16,7 @@ import numpy as np
|
|
16
16
|
from typing import Union, Tuple, Dict
|
17
17
|
|
18
18
|
import model_compression_toolkit.core.common.quantization.quantization_config as qc
|
19
|
-
from model_compression_toolkit.constants import MIN_THRESHOLD, THRESHOLD, NUM_QPARAM_HESSIAN_SAMPLES
|
19
|
+
from model_compression_toolkit.constants import MIN_THRESHOLD, THRESHOLD, NUM_QPARAM_HESSIAN_SAMPLES, SIGNED
|
20
20
|
from model_compression_toolkit.core.common.hessian import HessianInfoService
|
21
21
|
from model_compression_toolkit.core.common.quantization.quantization_params_generation.qparams_search import \
|
22
22
|
qparams_selection_tensor_search, qparams_selection_histogram_search
|
@@ -105,7 +105,8 @@ def power_of_two_selection_histogram(bins: np.ndarray,
|
|
105
105
|
constrained: bool = True,
|
106
106
|
n_iter: int = 20,
|
107
107
|
min_threshold: float = MIN_THRESHOLD,
|
108
|
-
quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE
|
108
|
+
quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE,
|
109
|
+
is_signed: bool = None) -> Dict:
|
109
110
|
"""
|
110
111
|
Compute the power of two threshold based on the provided QuantizationErrorMethod to quantize a histogram.
|
111
112
|
Different search is applied, depends on the value of the selected QuantizationErrorMethod.
|
@@ -121,6 +122,7 @@ def power_of_two_selection_histogram(bins: np.ndarray,
|
|
121
122
|
n_iter: Number of iteration ot search for the threshold (not used for this method).
|
122
123
|
min_threshold: Minimal threshold to use if threshold is too small (used only for kl threshold selection).
|
123
124
|
quant_error_method: an error function to optimize the parameters' selection accordingly.
|
125
|
+
is_signed: Whether the quantization is signed or not. If None then compute SIGNED value.
|
124
126
|
|
125
127
|
Returns:
|
126
128
|
Power of two threshold to quantize the histogram a power of 2 manner.
|
@@ -128,17 +130,20 @@ def power_of_two_selection_histogram(bins: np.ndarray,
|
|
128
130
|
if quant_error_method == qc.QuantizationErrorMethod.NOCLIPPING:
|
129
131
|
tensor_max = np.max(np.abs(bins)[1:][counts > 0])
|
130
132
|
threshold = max_power_of_two(tensor_max, min_threshold)
|
133
|
+
# Resolve is_signed in case it is None.
|
134
|
+
signed = (bins<0).any() if is_signed is None else is_signed
|
131
135
|
else:
|
132
136
|
error_function = get_threshold_selection_histogram_error_function(QuantizationMethod.POWER_OF_TWO,
|
133
137
|
quant_error_method, p)
|
134
|
-
threshold = qparams_selection_histogram_search(error_function,
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
138
|
+
threshold, signed = qparams_selection_histogram_search(error_function,
|
139
|
+
bins,
|
140
|
+
counts,
|
141
|
+
n_bits,
|
142
|
+
constrained=constrained,
|
143
|
+
n_iter=n_iter,
|
144
|
+
min_threshold=min_threshold,
|
145
|
+
is_signed=is_signed)
|
146
|
+
return {THRESHOLD: threshold, SIGNED: signed}
|
142
147
|
|
143
148
|
|
144
149
|
def power_of_two_no_clipping_selection_min_max(bins: np.ndarray,
|
@@ -151,7 +156,8 @@ def power_of_two_no_clipping_selection_min_max(bins: np.ndarray,
|
|
151
156
|
n_iter: int = 20,
|
152
157
|
min_threshold: float = MIN_THRESHOLD,
|
153
158
|
quant_error_method: qc.QuantizationErrorMethod =
|
154
|
-
qc.QuantizationErrorMethod.NOCLIPPING
|
159
|
+
qc.QuantizationErrorMethod.NOCLIPPING,
|
160
|
+
is_signed: bool = None) -> Dict:
|
155
161
|
"""
|
156
162
|
Gets a threshold between min and max numbers.
|
157
163
|
If computed threshold is less than min_threshold, min_threshold is returned.
|
@@ -168,4 +174,5 @@ def power_of_two_no_clipping_selection_min_max(bins: np.ndarray,
|
|
168
174
|
constrained,
|
169
175
|
n_iter,
|
170
176
|
min_threshold=min_threshold,
|
171
|
-
quant_error_method=qc.QuantizationErrorMethod.NOCLIPPING
|
177
|
+
quant_error_method=qc.QuantizationErrorMethod.NOCLIPPING,
|
178
|
+
is_signed=is_signed)
|
@@ -13,7 +13,7 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
import numpy as np
|
16
|
-
from typing import Dict
|
16
|
+
from typing import Dict, Union
|
17
17
|
|
18
18
|
from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod
|
19
19
|
from model_compression_toolkit.core.common.collectors.statistics_collector import BaseStatsCollector
|
@@ -25,7 +25,7 @@ from model_compression_toolkit.core.common.quantization.node_quantization_config
|
|
25
25
|
|
26
26
|
def get_activations_qparams(activation_quant_cfg: NodeActivationQuantizationConfig,
|
27
27
|
nodes_prior_info: NodePriorInfo,
|
28
|
-
out_stats_container: BaseStatsCollector) -> Dict[str, float]:
|
28
|
+
out_stats_container: BaseStatsCollector) -> Dict[str, Union[np.ndarray, float, bool]]:
|
29
29
|
"""
|
30
30
|
Compute the activations params for a given node in a graph according to a params function.
|
31
31
|
|
@@ -49,7 +49,9 @@ def get_activations_qparams(activation_quant_cfg: NodeActivationQuantizationConf
|
|
49
49
|
bins_counts)
|
50
50
|
min_value, max_value = out_stats_container.get_min_max_values()
|
51
51
|
|
52
|
-
if
|
52
|
+
if activation_quant_cfg.is_signed is not None:
|
53
|
+
signed = activation_quant_cfg.is_signed
|
54
|
+
elif nodes_prior_info.is_output_bounded():
|
53
55
|
signed = min_value < 0
|
54
56
|
else:
|
55
57
|
signed = np.any(bins_values[:-1][bins_counts > 0] < 0)
|
@@ -65,14 +67,12 @@ def get_activations_qparams(activation_quant_cfg: NodeActivationQuantizationConf
|
|
65
67
|
activation_quant_cfg.activation_quantization_params_fn = \
|
66
68
|
quantization_params_generation.uniform_no_clipping_selection_min_max
|
67
69
|
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
return activation_params
|
70
|
+
return activation_quant_cfg.activation_quantization_params_fn(bins_values,
|
71
|
+
bins_counts,
|
72
|
+
activation_quant_cfg.l_p_value,
|
73
|
+
activation_quant_cfg.activation_n_bits,
|
74
|
+
min_value,
|
75
|
+
max_value,
|
76
|
+
min_threshold=activation_quant_cfg.min_threshold,
|
77
|
+
quant_error_method=activation_quant_cfg.activation_error_method,
|
78
|
+
is_signed=signed)
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py
CHANGED
@@ -107,7 +107,8 @@ def qparams_selection_histogram_search(error_function: Callable,
|
|
107
107
|
n_bits: int,
|
108
108
|
constrained: bool = True,
|
109
109
|
n_iter: int = 10,
|
110
|
-
min_threshold: float = MIN_THRESHOLD
|
110
|
+
min_threshold: float = MIN_THRESHOLD,
|
111
|
+
is_signed: bool = None) -> Tuple[np.ndarray, bool]:
|
111
112
|
"""
|
112
113
|
Search for an optimal threshold to quantize a histogram of collected float values.
|
113
114
|
The search_methods starts with the constrained no-clipping threshold by the bins' maximal value, and continues with
|
@@ -123,13 +124,14 @@ def qparams_selection_histogram_search(error_function: Callable,
|
|
123
124
|
constrained: Whether the threshold should be constrained or not.
|
124
125
|
n_iter: Number of searching iterations.
|
125
126
|
min_threshold: Threshold to return if the computed threshold is smaller that min_threshold.
|
127
|
+
is_signed: Whether the quantization is signed or not. If None then compute SIGNED value.
|
126
128
|
|
127
129
|
Returns:
|
128
130
|
Optimal constrained threshold to quantize the tensor.
|
129
131
|
|
130
132
|
"""
|
131
133
|
|
132
|
-
signed =
|
134
|
+
signed = (bins < 0).any() if is_signed is None else is_signed # Whether histogram contains negative values or not.
|
133
135
|
tensor_data = np.abs(bins)
|
134
136
|
tensor_max = np.max(tensor_data)
|
135
137
|
if not constrained:
|
@@ -150,7 +152,7 @@ def qparams_selection_histogram_search(error_function: Callable,
|
|
150
152
|
error_list.append(error)
|
151
153
|
|
152
154
|
# Return the threshold with the minimal error.
|
153
|
-
return np.maximum(threshold_list[np.argmin(error_list)], min_threshold)
|
155
|
+
return np.maximum(threshold_list[np.argmin(error_list)], min_threshold), signed
|
154
156
|
|
155
157
|
|
156
158
|
def qparams_symmetric_iterative_minimization(x0: np.ndarray,
|
@@ -537,7 +539,8 @@ def qparams_symmetric_selection_histogram_search(error_function: Callable,
|
|
537
539
|
counts: np.ndarray,
|
538
540
|
n_bits: int,
|
539
541
|
n_iter: int = SYMMETRIC_HISTOGRAM_N_ITER,
|
540
|
-
min_threshold: float = MIN_THRESHOLD
|
542
|
+
min_threshold: float = MIN_THRESHOLD,
|
543
|
+
is_signed: bool = None) -> Tuple[np.ndarray, bool]:
|
541
544
|
"""
|
542
545
|
search for optimal threshold (per-channel or per-tensor) for symmetric quantization of a histogram,
|
543
546
|
using the iterative optimizer method.
|
@@ -550,12 +553,13 @@ def qparams_symmetric_selection_histogram_search(error_function: Callable,
|
|
550
553
|
n_bits: Number of bits to quantize the tensor.
|
551
554
|
n_iter: Number of searching iterations.
|
552
555
|
min_threshold: Threshold to return if the computed threshold is smaller that min_threshold.
|
556
|
+
is_signed: Whether the quantization is signed or not. If None then compute SIGNED value.
|
553
557
|
|
554
558
|
Returns:
|
555
559
|
Optimized threshold for quantifying the histogram.
|
556
560
|
|
557
561
|
"""
|
558
|
-
signed = np.any(bins[:-1][counts != 0] < 0) # Whether histogram contains negative values or not.
|
562
|
+
signed = np.any(bins[:-1][counts != 0] < 0) if is_signed is None else is_signed # Whether histogram contains negative values or not.
|
559
563
|
|
560
564
|
res = qparams_symmetric_iterative_minimization(x0=get_init_threshold(min_threshold, tensor_max),
|
561
565
|
x=bins,
|
@@ -570,7 +574,7 @@ def qparams_symmetric_selection_histogram_search(error_function: Callable,
|
|
570
574
|
n_iter=SYMMETRIC_HISTOGRAM_N_ITER,
|
571
575
|
dec_freq=SYMMETRIC_HISTOGRAM_DEC_FREQ,
|
572
576
|
per_channel=False)
|
573
|
-
return max(min_threshold, res['param'])
|
577
|
+
return max(min_threshold, res['param']), signed
|
574
578
|
|
575
579
|
|
576
580
|
def kl_qparams_symmetric_selection_histogram_search(error_function: Callable,
|
@@ -579,7 +583,8 @@ def kl_qparams_symmetric_selection_histogram_search(error_function: Callable,
|
|
579
583
|
counts: np.ndarray,
|
580
584
|
n_bits: int,
|
581
585
|
n_iter: int = SYMMETRIC_HISTOGRAM_N_ITER,
|
582
|
-
min_threshold: float = MIN_THRESHOLD
|
586
|
+
min_threshold: float = MIN_THRESHOLD,
|
587
|
+
is_signed: bool = None) -> Tuple[np.ndarray, bool]:
|
583
588
|
"""
|
584
589
|
Search for optimal threshold (per-channel or per-tensor) for symmetric quantization of a histogram,
|
585
590
|
with KL-Divergence loss function (needs a separate search function
|
@@ -599,7 +604,7 @@ def kl_qparams_symmetric_selection_histogram_search(error_function: Callable,
|
|
599
604
|
Optimized threshold for quantifying the histogram.
|
600
605
|
|
601
606
|
"""
|
602
|
-
signed = np.any(bins[:-1][counts != 0] < 0) # Whether histogram contains negative values or not.
|
607
|
+
signed = np.any(bins[:-1][counts != 0] < 0) if is_signed is None else is_signed # Whether histogram contains negative values or not.
|
603
608
|
res = qparams_symmetric_iterative_minimization(x0=get_init_threshold(min_threshold, tensor_max),
|
604
609
|
x=bins,
|
605
610
|
loss_fn=lambda x, q_x, t:
|
@@ -617,7 +622,7 @@ def kl_qparams_symmetric_selection_histogram_search(error_function: Callable,
|
|
617
622
|
n_iter=SYMMETRIC_HISTOGRAM_N_ITER,
|
618
623
|
dec_freq=SYMMETRIC_HISTOGRAM_DEC_FREQ,
|
619
624
|
per_channel=False)
|
620
|
-
return max(min_threshold, res['param'])
|
625
|
+
return max(min_threshold, res['param']), signed
|
621
626
|
|
622
627
|
|
623
628
|
def qparams_uniform_selection_histogram_search(error_function: Callable,
|
@@ -22,10 +22,7 @@ from model_compression_toolkit.defaultdict import DefaultDict
|
|
22
22
|
from model_compression_toolkit.core.common.framework_info import FrameworkInfo
|
23
23
|
from model_compression_toolkit.core.common.quantization.node_quantization_config import NodeWeightsQuantizationConfig, \
|
24
24
|
WeightsAttrQuantizationConfig
|
25
|
-
|
26
|
-
# If the quantization config does not contain kernel channel mapping or the weights
|
27
|
-
# quantization is not per-channel, we use a dummy channel mapping.
|
28
|
-
dummy_channel_mapping = DefaultDict(default_value=(None, None))
|
25
|
+
from model_compression_toolkit.logger import Logger
|
29
26
|
|
30
27
|
|
31
28
|
def get_weights_qparams(weights_attr_values: np.ndarray,
|
@@ -64,29 +61,10 @@ def get_weights_qparams(weights_attr_values: np.ndarray,
|
|
64
61
|
node=node,
|
65
62
|
hessian_info_service=hessian_info_service,
|
66
63
|
num_hessian_samples=num_hessian_samples)
|
67
|
-
else:
|
64
|
+
else: # pragma: no cover
|
65
|
+
Logger.error(f"Requested weights quantization parameters computation for node {node.name} without providing a "
|
66
|
+
f"weights_quantization_params_fn."
|
67
|
+
f"Returning an empty dictionary since no quantization parameters were computed.")
|
68
68
|
weights_params = {}
|
69
69
|
|
70
70
|
return weights_params, output_channels_axis
|
71
|
-
|
72
|
-
|
73
|
-
def _get_kernel_channels_mapping(fw_info:FrameworkInfo,
|
74
|
-
use_dummy: bool) -> DefaultDict:
|
75
|
-
"""
|
76
|
-
Get a kernel channel mapping from the framework info, or use dummy mapping (which returns a
|
77
|
-
tuple of Nones) if use_use_dummy is True.
|
78
|
-
|
79
|
-
Args:
|
80
|
-
fw_info: Framework info which contains a kernel channels mapping.
|
81
|
-
use_dummy: Whether to use a dummy mapping or not.
|
82
|
-
|
83
|
-
Returns:
|
84
|
-
Kernel channels mapping.
|
85
|
-
"""
|
86
|
-
|
87
|
-
# Set a kernel channels mapping
|
88
|
-
if use_dummy: # If kernel mapping is missing, we use a dummy channels mapping
|
89
|
-
kernel_channels_mapping = dummy_channel_mapping
|
90
|
-
else:
|
91
|
-
kernel_channels_mapping = fw_info.kernel_channels_mapping
|
92
|
-
return kernel_channels_mapping
|
@@ -16,7 +16,7 @@ import numpy as np
|
|
16
16
|
from typing import Union, Tuple, Dict
|
17
17
|
|
18
18
|
import model_compression_toolkit.core.common.quantization.quantization_config as qc
|
19
|
-
from model_compression_toolkit.constants import MIN_THRESHOLD, THRESHOLD, NUM_QPARAM_HESSIAN_SAMPLES
|
19
|
+
from model_compression_toolkit.constants import MIN_THRESHOLD, THRESHOLD, NUM_QPARAM_HESSIAN_SAMPLES, SIGNED
|
20
20
|
from model_compression_toolkit.core.common.hessian import HessianInfoService
|
21
21
|
from model_compression_toolkit.core.common.quantization.quantization_params_generation.error_functions import \
|
22
22
|
get_threshold_selection_tensor_error_function, get_threshold_selection_histogram_error_function, _kl_error_histogram
|
@@ -106,7 +106,8 @@ def symmetric_selection_histogram(bins: np.ndarray,
|
|
106
106
|
constrained: bool = True,
|
107
107
|
n_iter: int = 20,
|
108
108
|
min_threshold: float = MIN_THRESHOLD,
|
109
|
-
quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE
|
109
|
+
quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE,
|
110
|
+
is_signed: bool = None) -> Dict:
|
110
111
|
"""
|
111
112
|
Compute the optimal threshold based on the provided QuantizationErrorMethod to quantize a histogram.
|
112
113
|
Different search is applied, depends on the value of the selected QuantizationErrorMethod.
|
@@ -122,6 +123,7 @@ def symmetric_selection_histogram(bins: np.ndarray,
|
|
122
123
|
n_iter: Number of iteration ot search for the threshold (not used for this method).
|
123
124
|
min_threshold: Minimal threshold to use if threshold is too small (used only for kl threshold selection).
|
124
125
|
quant_error_method: an error function to optimize the parameters' selection accordingly.
|
126
|
+
is_signed: Whether the quantization is signed or not. If None then compute SIGNED value.
|
125
127
|
|
126
128
|
Returns:
|
127
129
|
Optimal threshold to quantize the histogram a symmetric manner.
|
@@ -129,23 +131,27 @@ def symmetric_selection_histogram(bins: np.ndarray,
|
|
129
131
|
tensor_max = np.max(np.abs(bins)[1:][counts > 0])
|
130
132
|
if quant_error_method == qc.QuantizationErrorMethod.NOCLIPPING:
|
131
133
|
threshold = get_init_threshold(min_threshold, tensor_max)
|
134
|
+
# Resolve is_signed in case it is None.
|
135
|
+
signed = (bins<0).any() if is_signed is None else is_signed
|
132
136
|
elif quant_error_method == qc.QuantizationErrorMethod.KL:
|
133
137
|
# search for KL error is separated because the error method signature is different from the other error methods.
|
134
|
-
threshold = kl_qparams_symmetric_selection_histogram_search(_kl_error_histogram,
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
138
|
+
threshold, signed = kl_qparams_symmetric_selection_histogram_search(_kl_error_histogram,
|
139
|
+
tensor_max,
|
140
|
+
bins,
|
141
|
+
counts,
|
142
|
+
n_bits,
|
143
|
+
min_threshold=min_threshold,
|
144
|
+
is_signed=is_signed)
|
140
145
|
else:
|
141
146
|
error_function = get_threshold_selection_histogram_error_function(QuantizationMethod.SYMMETRIC, quant_error_method, p)
|
142
|
-
threshold = qparams_symmetric_selection_histogram_search(error_function,
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
147
|
+
threshold, signed = qparams_symmetric_selection_histogram_search(error_function,
|
148
|
+
tensor_max,
|
149
|
+
bins,
|
150
|
+
counts,
|
151
|
+
n_bits,
|
152
|
+
min_threshold=min_threshold,
|
153
|
+
is_signed=is_signed)
|
154
|
+
return {THRESHOLD: threshold, SIGNED: signed}
|
149
155
|
|
150
156
|
|
151
157
|
def symmetric_no_clipping_selection_min_max(bins: np.ndarray,
|
@@ -158,7 +164,8 @@ def symmetric_no_clipping_selection_min_max(bins: np.ndarray,
|
|
158
164
|
n_iter: int = 20,
|
159
165
|
min_threshold: float = MIN_THRESHOLD,
|
160
166
|
quant_error_method: qc.QuantizationErrorMethod =
|
161
|
-
qc.QuantizationErrorMethod.NOCLIPPING
|
167
|
+
qc.QuantizationErrorMethod.NOCLIPPING,
|
168
|
+
is_signed: bool = None) -> Dict:
|
162
169
|
"""
|
163
170
|
Gets a threshold between min and max numbers.
|
164
171
|
If computed threshold is less than min_threshold, min_threshold is returned.
|
@@ -175,7 +182,8 @@ def symmetric_no_clipping_selection_min_max(bins: np.ndarray,
|
|
175
182
|
constrained,
|
176
183
|
n_iter,
|
177
184
|
min_threshold=min_threshold,
|
178
|
-
quant_error_method=qc.QuantizationErrorMethod.NOCLIPPING
|
185
|
+
quant_error_method=qc.QuantizationErrorMethod.NOCLIPPING,
|
186
|
+
is_signed=is_signed)
|
179
187
|
|
180
188
|
|
181
189
|
def get_init_threshold(min_threshold: float, tensor_max: np.ndarray, per_channel: bool = False) -> np.ndarray:
|
@@ -16,7 +16,7 @@ import numpy as np
|
|
16
16
|
from typing import Union, Tuple, Dict
|
17
17
|
|
18
18
|
import model_compression_toolkit.core.common.quantization.quantization_config as qc
|
19
|
-
from model_compression_toolkit.constants import MIN_THRESHOLD, RANGE_MIN, RANGE_MAX, NUM_QPARAM_HESSIAN_SAMPLES
|
19
|
+
from model_compression_toolkit.constants import MIN_THRESHOLD, RANGE_MIN, RANGE_MAX, NUM_QPARAM_HESSIAN_SAMPLES, SIGNED
|
20
20
|
from model_compression_toolkit.core.common.hessian import HessianInfoService
|
21
21
|
from model_compression_toolkit.core.common.quantization.quantization_params_generation.qparams_search import \
|
22
22
|
qparams_uniform_selection_tensor_search, qparams_uniform_selection_histogram_search
|
@@ -114,7 +114,8 @@ def uniform_selection_histogram(bins: np.ndarray,
|
|
114
114
|
constrained: bool = True,
|
115
115
|
n_iter: int = 20,
|
116
116
|
min_threshold: float = MIN_THRESHOLD,
|
117
|
-
quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE
|
117
|
+
quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE,
|
118
|
+
is_signed: bool = None) -> Dict:
|
118
119
|
"""
|
119
120
|
Compute the optimal quantization range based on the provided QuantizationErrorMethod
|
120
121
|
to uniformly quantize the histogram.
|
@@ -131,6 +132,7 @@ def uniform_selection_histogram(bins: np.ndarray,
|
|
131
132
|
n_iter: Number of iteration ot search for the threshold (not used for this method).
|
132
133
|
min_threshold: Minimal threshold to use if threshold is too small (not used for this method).
|
133
134
|
quant_error_method: an error function to optimize the range parameters selection accordingly.
|
135
|
+
is_signed: Whether the quantization is signed or not. If None then compute SIGNED value.
|
134
136
|
|
135
137
|
Returns:
|
136
138
|
Optimal quantization range to quantize the histogram uniformly.
|
@@ -139,6 +141,7 @@ def uniform_selection_histogram(bins: np.ndarray,
|
|
139
141
|
tensor_max = np.max(bins[1:][counts > 0])
|
140
142
|
tensor_min_max = np.array([tensor_min, tensor_max])
|
141
143
|
|
144
|
+
signed = tensor_min < 0 if is_signed is None else is_signed
|
142
145
|
if quant_error_method == qc.QuantizationErrorMethod.NOCLIPPING:
|
143
146
|
mm = tensor_min_max
|
144
147
|
else:
|
@@ -150,7 +153,7 @@ def uniform_selection_histogram(bins: np.ndarray,
|
|
150
153
|
n_bits)
|
151
154
|
|
152
155
|
return {RANGE_MIN: mm[0],
|
153
|
-
RANGE_MAX: mm[1]}
|
156
|
+
RANGE_MAX: mm[1], SIGNED: signed}
|
154
157
|
|
155
158
|
|
156
159
|
def uniform_no_clipping_selection_min_max(bins: np.ndarray,
|
@@ -163,7 +166,8 @@ def uniform_no_clipping_selection_min_max(bins: np.ndarray,
|
|
163
166
|
n_iter: int = 20,
|
164
167
|
min_threshold: float = MIN_THRESHOLD,
|
165
168
|
quant_error_method: qc.QuantizationErrorMethod =
|
166
|
-
qc.QuantizationErrorMethod.NOCLIPPING
|
169
|
+
qc.QuantizationErrorMethod.NOCLIPPING,
|
170
|
+
is_signed: bool = None) -> Dict:
|
167
171
|
"""
|
168
172
|
Gets a quantization rage between min and max numbers.
|
169
173
|
|
@@ -179,5 +183,5 @@ def uniform_no_clipping_selection_min_max(bins: np.ndarray,
|
|
179
183
|
constrained,
|
180
184
|
n_iter,
|
181
185
|
min_threshold=min_threshold,
|
182
|
-
quant_error_method=qc.QuantizationErrorMethod.NOCLIPPING
|
183
|
-
|
186
|
+
quant_error_method=qc.QuantizationErrorMethod.NOCLIPPING,
|
187
|
+
is_signed=is_signed)
|