mct-nightly 2.1.0.20240731.414__py3-none-any.whl → 2.1.0.20240802.429__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.1.0.20240731.414.dist-info → mct_nightly-2.1.0.20240802.429.dist-info}/METADATA +1 -1
- {mct_nightly-2.1.0.20240731.414.dist-info → mct_nightly-2.1.0.20240802.429.dist-info}/RECORD +51 -47
- model_compression_toolkit/__init__.py +1 -1
- model_compression_toolkit/constants.py +2 -1
- model_compression_toolkit/core/common/framework_implementation.py +5 -9
- model_compression_toolkit/core/common/graph/base_graph.py +1 -23
- model_compression_toolkit/core/common/graph/base_node.py +52 -33
- model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +6 -6
- model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +12 -12
- model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +2 -2
- model_compression_toolkit/core/common/quantization/node_quantization_config.py +17 -38
- model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +6 -4
- model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +19 -12
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +14 -14
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +14 -9
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +5 -27
- model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +25 -17
- model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +10 -6
- model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +1 -65
- model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +12 -5
- model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +7 -5
- model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +3 -3
- model_compression_toolkit/core/keras/keras_implementation.py +21 -17
- model_compression_toolkit/core/keras/tf_tensor_numpy.py +2 -2
- model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +3 -3
- model_compression_toolkit/core/pytorch/pytorch_implementation.py +15 -14
- model_compression_toolkit/core/pytorch/reader/node_holders.py +1 -1
- model_compression_toolkit/core/runner.py +1 -0
- model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +2 -2
- model_compression_toolkit/gptq/common/gptq_training.py +0 -35
- model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +1 -1
- model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +1 -1
- model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +32 -8
- model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +2 -2
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +5 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +2 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +2 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +2 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +2 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +2 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +2 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +2 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +16 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +235 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +132 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +112 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +2 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +2 -0
- {mct_nightly-2.1.0.20240731.414.dist-info → mct_nightly-2.1.0.20240802.429.dist-info}/LICENSE.md +0 -0
- {mct_nightly-2.1.0.20240731.414.dist-info → mct_nightly-2.1.0.20240802.429.dist-info}/WHEEL +0 -0
- {mct_nightly-2.1.0.20240731.414.dist-info → mct_nightly-2.1.0.20240802.429.dist-info}/top_level.txt +0 -0
{mct_nightly-2.1.0.20240731.414.dist-info → mct_nightly-2.1.0.20240802.429.dist-info}/RECORD
RENAMED
@@ -1,5 +1,5 @@
|
|
1
|
-
model_compression_toolkit/__init__.py,sha256=
|
2
|
-
model_compression_toolkit/constants.py,sha256=
|
1
|
+
model_compression_toolkit/__init__.py,sha256=46reZlAK4UxbAFCsFmzkmbIZgViRYLtHvNxix7BMZA4,1573
|
2
|
+
model_compression_toolkit/constants.py,sha256=dexmfFCQ6VgoWuFBeM6MZykfgiVVdVxgkiSnpfjN8Dw,4005
|
3
3
|
model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
|
4
4
|
model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
|
5
5
|
model_compression_toolkit/metadata.py,sha256=IyoON37lBv3TI0rZGCP4K5t3oYI4TOmYy-LRXOwHGpE,1136
|
@@ -7,10 +7,10 @@ model_compression_toolkit/core/__init__.py,sha256=TrRgkWpT1AN2Faw1M_1HXyJkJnbxfn
|
|
7
7
|
model_compression_toolkit/core/analyzer.py,sha256=X-2ZpkH1xdXnISnw1yJvXnvV-ssoUh-9LkLISSWNqiY,3691
|
8
8
|
model_compression_toolkit/core/graph_prep_runner.py,sha256=kM70wmNG3yMFiGQc0uO0wn9j4ZbSWxUEykpxDK55doc,10567
|
9
9
|
model_compression_toolkit/core/quantization_prep_runner.py,sha256=K9eJ7VbB_rpeyxX4yEnorOmSxFW3DkvofzxS6QI8Hp8,6454
|
10
|
-
model_compression_toolkit/core/runner.py,sha256=
|
10
|
+
model_compression_toolkit/core/runner.py,sha256=JvX0Ht164BOKIsPPxp6z-Nlk1Vlhlg7wKBl6lc2yIaQ,12675
|
11
11
|
model_compression_toolkit/core/common/__init__.py,sha256=Wh127PbXcETZX_d1PQqZ71ETK3J9XO5A-HpadGUbj6o,1447
|
12
12
|
model_compression_toolkit/core/common/base_substitutions.py,sha256=xDFSmVVs_iFSZfajytI0cuQaNRNcwHX3uqOoHgVUvxQ,1666
|
13
|
-
model_compression_toolkit/core/common/framework_implementation.py,sha256=
|
13
|
+
model_compression_toolkit/core/common/framework_implementation.py,sha256=kSg2f7wS7e2EyvX6y0eKfNTTFvVFVrB8lvldJvcPvN8,20724
|
14
14
|
model_compression_toolkit/core/common/framework_info.py,sha256=1ZMMGS9ip-kSflqkartyNRt9aQ5ub1WepuTRcTy-YSQ,6337
|
15
15
|
model_compression_toolkit/core/common/memory_computation.py,sha256=ixoSpV5ZYZGyzhre3kQcvR2sNA8KBsPZ3lgbkDnw9Cs,1205
|
16
16
|
model_compression_toolkit/core/common/model_builder_mode.py,sha256=jll9-59OPaE3ug7Y9-lLyV99_FoNHxkGZMgcm0Vkpss,1324
|
@@ -30,8 +30,8 @@ model_compression_toolkit/core/common/collectors/statistics_collector.py,sha256=
|
|
30
30
|
model_compression_toolkit/core/common/fusion/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
|
31
31
|
model_compression_toolkit/core/common/fusion/layer_fusing.py,sha256=lOubqpc18TslhXZijWUJQAa1c3jIB2S-M-5HK78wJPQ,5548
|
32
32
|
model_compression_toolkit/core/common/graph/__init__.py,sha256=Xr-Lt_qXMdrCnnOaUS_OJP_3iTTGfPCLf8_vSrQgCs0,773
|
33
|
-
model_compression_toolkit/core/common/graph/base_graph.py,sha256=
|
34
|
-
model_compression_toolkit/core/common/graph/base_node.py,sha256=
|
33
|
+
model_compression_toolkit/core/common/graph/base_graph.py,sha256=lg5QaBkRbmvM3tGZ0Q34S3m0CbFql3LUv5BaXLe5TG8,37824
|
34
|
+
model_compression_toolkit/core/common/graph/base_node.py,sha256=Tv_whLIy-Da0DWZIycnvZ2cf2Qa1rCwpcH8kTkkhv2s,31415
|
35
35
|
model_compression_toolkit/core/common/graph/edge.py,sha256=buoSEUZwilWBK3WeBKpJ-GeDaUA1SDdOHxDpxU_bGpk,3784
|
36
36
|
model_compression_toolkit/core/common/graph/functional_node.py,sha256=XvzydBSRxgpYdKS-aYVaWtH3FDzJPKGad3bai9wF3BI,3956
|
37
37
|
model_compression_toolkit/core/common/graph/graph_matchers.py,sha256=CrDoHYq4iPaflgJWmoJ1K4ziLrRogJvFTVWg8P0UcDU,4744
|
@@ -64,12 +64,12 @@ model_compression_toolkit/core/common/mixed_precision/distance_weighting.py,sha2
|
|
64
64
|
model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py,sha256=rppRZJdSCQGiZsd93QxoUIhj51eETvQbuI5JiC2TUeA,4963
|
65
65
|
model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py,sha256=pk8HRoShDhiUprBC4m1AFQv1SacS4hOrj0MRdbq-5gY,7556
|
66
66
|
model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py,sha256=TTTux4YiOnQqt-2h7Y38959XaDwNZc0eufLMx_yws5U,37578
|
67
|
-
model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py,sha256=
|
67
|
+
model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py,sha256=QdxFQ0JxsrcSfk5LlUU_3oZpEK7bYwKelGzEHh0mnJY,27558
|
68
68
|
model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py,sha256=P8QtKgFXtt5b2RoubzI5OGlCfbEfZsAirjyrkFzK26A,2846
|
69
69
|
model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py,sha256=KifDMbm7qkSfvSl6pcZzQ82naIXzeKL6aT-VsvWZYyc,7901
|
70
70
|
model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
|
71
71
|
model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py,sha256=HILF7CIn-GYPvPmTFyvjWLhuLDwSGwdBcAaKFgVYrwk,4745
|
72
|
-
model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py,sha256=
|
72
|
+
model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py,sha256=az0XfBPVm1kAfxNCPb0Z-Q05-F-vqnmyRpKm6SBLa6c,13826
|
73
73
|
model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py,sha256=ttc8wPa_9LZansutQ2f1ss-RTzgTv739wy3qsdLzyyk,4217
|
74
74
|
model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py,sha256=QhuqaECEGLnYC08iD6-2XXcU7NXbPzYf1sQcjYlGak8,1682
|
75
75
|
model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py,sha256=WC1EHoNuo_lrzy4NRhGJ1cgmJ2IsFsbmP86mrVO3AVA,21506
|
@@ -97,31 +97,31 @@ model_compression_toolkit/core/common/pruning/mask/__init__.py,sha256=huHoBUcKNB
|
|
97
97
|
model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py,sha256=APY8BsM9B7ZxVCH6n1xs9fSCTB_A9ou9gHrCQl1DOdI,5131
|
98
98
|
model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py,sha256=4ohJrJHNzZk5uMnZEYkwLx2TDGzkh5kRhLGNVYNC6dc,5978
|
99
99
|
model_compression_toolkit/core/common/quantization/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
|
100
|
-
model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py,sha256=
|
100
|
+
model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py,sha256=yU-Cr6S4wOSkDk57iH2NVe-WII0whOhLryejkomCOt4,4940
|
101
101
|
model_compression_toolkit/core/common/quantization/core_config.py,sha256=KYdyfSmjSL4ye24nKlC_c4_AxYb14qoqaeMnZj4-8kE,2257
|
102
102
|
model_compression_toolkit/core/common/quantization/debug_config.py,sha256=HtkMmneN-EmAzgZK4Vp4M8Sqm5QKdrvNyyZMpaVqYzY,1482
|
103
103
|
model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py,sha256=fwF4VILaX-u3ZaFd81xjbJuhg8Ef-JX_KfMXW0TPV-I,7136
|
104
|
-
model_compression_toolkit/core/common/quantization/node_quantization_config.py,sha256=
|
104
|
+
model_compression_toolkit/core/common/quantization/node_quantization_config.py,sha256=Vk37nN4owenWJVZO-ycPQknwXUqp7v5HKKfdBhlDu1A,26393
|
105
105
|
model_compression_toolkit/core/common/quantization/quantization_config.py,sha256=du0VdsxfkOSYaP1EU9gHA5qbXpfQNZL0jXrjk1wBA0U,7106
|
106
106
|
model_compression_toolkit/core/common/quantization/quantization_fn_selection.py,sha256=eyosbVdnCwed7oMQ19tqnh0VoyGZ_UAuD_UnNoXyBpo,2210
|
107
107
|
model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py,sha256=MwIOBZ4BlZSTIOG75PDvlI3JmZ6t8YjPc1VP9Adei60,3847
|
108
108
|
model_compression_toolkit/core/common/quantization/quantize_graph_weights.py,sha256=N005MSvx8UypVpa7XrxNrB2G732n2wHj3RmLyjTgd3I,2728
|
109
109
|
model_compression_toolkit/core/common/quantization/quantize_node.py,sha256=cdzGNWfT4MRogIU8ehs0tr3lVjnzAI-jeoS9b4TwVBo,2854
|
110
|
-
model_compression_toolkit/core/common/quantization/set_node_quantization_config.py,sha256=
|
110
|
+
model_compression_toolkit/core/common/quantization/set_node_quantization_config.py,sha256=9Y4eVDWCXFvCaXy2gbb-1880sp52M8wqH0M3KgAw8rM,12834
|
111
111
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py,sha256=eCDGwsWYLU6z7qbEVb4TozMW_nd5VEP_iCJ6PcvyEPw,1486
|
112
112
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py,sha256=Fd_gxr5js-mqEwucaRR1CQAZ1W_wna19L1gAPeOzxRQ,23610
|
113
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py,sha256=
|
113
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py,sha256=RL-PklAjGyC-26anSt8fU07a6pB_LBQFQy9o4e9giN0,8739
|
114
114
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py,sha256=9gnfJV89jpGwAx8ImJ5E9NjCv3lDtbyulP4OtgWb62M,1772
|
115
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py,sha256=
|
116
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py,sha256=
|
115
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py,sha256=y-mEST-0fVbyLiprQu7elOQawSc70TkVdpPsL7o1BmM,11197
|
116
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py,sha256=I-2CT8KtQr6KSJ11D94nPma8tIedm5mP1jEqA0xjdao,4594
|
117
117
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py,sha256=oME8T6Slgl1SJNpXV4oY3UhuX0YmKYbcWDsLiCYq7oE,8651
|
118
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py,sha256=
|
119
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py,sha256=
|
120
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py,sha256=
|
121
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py,sha256=
|
118
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py,sha256=Nv_b3DECVjQnlrUet2kbuSvSKVnxcc-gf2zhFb2jSZk,43482
|
119
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py,sha256=UI-NW9K-yA6qxtk3Uin1wKmo59FNy0LUnySpxodgeEs,3796
|
120
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py,sha256=iPukBikpzuJhKfwnnBgyJ71HhaDIpSoTUuYsjt4rR7w,12587
|
121
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py,sha256=St2wmWOxsFMP2e8gOy6Gf-L-2x-IiskMD_lOyE4jwiI,10860
|
122
122
|
model_compression_toolkit/core/common/quantization/quantizers/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
|
123
123
|
model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py,sha256=P0x_y18LypBxP2tV9OWizheYfILqvaMC8RwHo04sUpQ,2761
|
124
|
-
model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py,sha256=
|
124
|
+
model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py,sha256=iEoWUPFQMcvZXHtLMe2_7L7IK25XcKiY6-d1_gArZs0,11880
|
125
125
|
model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py,sha256=wXExWHf5-0He7L4bpvFpKlx7FG4u3DAfNZiXPpOs_SQ,5521
|
126
126
|
model_compression_toolkit/core/common/statistics_correction/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
|
127
127
|
model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py,sha256=xSWVDOODgbN0k4mjJWWtpawilOsqdm4O7Uw2hbA75EA,4669
|
@@ -138,7 +138,7 @@ model_compression_toolkit/core/common/substitutions/linear_collapsing_substituti
|
|
138
138
|
model_compression_toolkit/core/common/substitutions/remove_identity.py,sha256=TKU1TIU52UIkVnl0EZvWnDhLV9nIVZ4hqi-w1i4NXMk,2637
|
139
139
|
model_compression_toolkit/core/common/substitutions/residual_collapsing.py,sha256=N82mso5j3EJQlKt9EMHjjEJ67FmdGQeCfN8U5grOFXo,4830
|
140
140
|
model_compression_toolkit/core/common/substitutions/scale_equalization.py,sha256=p57u25qdW2pimxzGwgMXEBV4S-LzXuTVAlIM7830WfU,10966
|
141
|
-
model_compression_toolkit/core/common/substitutions/shift_negative_activation.py,sha256=
|
141
|
+
model_compression_toolkit/core/common/substitutions/shift_negative_activation.py,sha256=AqQ0cTMz0d1qziQD5uUeYJON0wfXKvRIADuonF8Hobs,29969
|
142
142
|
model_compression_toolkit/core/common/substitutions/softmax_shift.py,sha256=R-0ZqhYAuZLEFWHvB2UTPm52L6gWHGdRdEnwGxKSeGI,2625
|
143
143
|
model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py,sha256=aXzUOJfgKPfQpEGfiIun26fgfCqazBG1mBpzoc4Ezxs,3477
|
144
144
|
model_compression_toolkit/core/common/substitutions/weights_activation_split.py,sha256=h85L2VlDOqbLd-N98wA3SdYWiblBgSsPceNuLanJd70,4737
|
@@ -150,13 +150,13 @@ model_compression_toolkit/core/keras/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7V
|
|
150
150
|
model_compression_toolkit/core/keras/constants.py,sha256=Uv3c0UdW55pIVQNW_1HQlgl-dHXREkltOLyzp8G1mTQ,3163
|
151
151
|
model_compression_toolkit/core/keras/custom_layer_validation.py,sha256=f-b14wuiIgitBe7d0MmofYhDCTO3IhwJgwrh-Hq_t_U,1192
|
152
152
|
model_compression_toolkit/core/keras/default_framework_info.py,sha256=HcHplb7IcnOTyK2p6uhp3OVG4-RV3RDo9C_4evaIzkQ,4981
|
153
|
-
model_compression_toolkit/core/keras/keras_implementation.py,sha256=
|
153
|
+
model_compression_toolkit/core/keras/keras_implementation.py,sha256=hzNC6wz1gtL2EqmRCMCQYl8AqIDJPu6rdOX6nvPgjCM,30193
|
154
154
|
model_compression_toolkit/core/keras/keras_model_validation.py,sha256=1wNV2clFdC9BzIELRLSO2uKf0xqjLqlkTJudwtCeaJk,1722
|
155
155
|
model_compression_toolkit/core/keras/keras_node_prior_info.py,sha256=HUmzEXDQ8LGX7uOYSRiLZ2TNbYxLX9J9IeAa6QYlifg,3927
|
156
156
|
model_compression_toolkit/core/keras/resource_utilization_data_facade.py,sha256=Xmk2ZL5CaYdb7iG62HdtZ1F64vap7ffnrsuR3e3G5hc,4851
|
157
|
-
model_compression_toolkit/core/keras/tf_tensor_numpy.py,sha256=
|
157
|
+
model_compression_toolkit/core/keras/tf_tensor_numpy.py,sha256=AJMPD_cAwf7nzTlLMf_Y1kofXkh_xm8Ji7J6yDpbAKc,2691
|
158
158
|
model_compression_toolkit/core/keras/back2framework/__init__.py,sha256=rhIiXg_nBgUZ-baE3M6SzCuQbcnq4iebY1jtJBvKHOM,808
|
159
|
-
model_compression_toolkit/core/keras/back2framework/factory_model_builder.py,sha256=
|
159
|
+
model_compression_toolkit/core/keras/back2framework/factory_model_builder.py,sha256=UIQgOOdexycrSKombTMJVvTthR7MlrCihoqM8Kg-rnE,2293
|
160
160
|
model_compression_toolkit/core/keras/back2framework/float_model_builder.py,sha256=9SFHhX-JnkB8PvYIIHRYlReBDI_RkZY9LditzW_ElLk,2444
|
161
161
|
model_compression_toolkit/core/keras/back2framework/instance_builder.py,sha256=fBj13c6zkVoWX4JJG18_uXPptiEJqXClE_zFbaFB6Q8,4517
|
162
162
|
model_compression_toolkit/core/keras/back2framework/keras_model_builder.py,sha256=XFSSaET4oPWB_cx-Q_c9pDJfWyQ1qXT9JXBl5FJCTa4,18137
|
@@ -213,12 +213,12 @@ model_compression_toolkit/core/pytorch/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKW
|
|
213
213
|
model_compression_toolkit/core/pytorch/constants.py,sha256=YwD_joIF0vK8UG2vW1NVvg36pCNWA0vHOXjAgy_XWn0,2794
|
214
214
|
model_compression_toolkit/core/pytorch/default_framework_info.py,sha256=r1XyzUFvrjGcJHQM5ETLsMZIG2yHCr9HMjqf0ti9inw,4175
|
215
215
|
model_compression_toolkit/core/pytorch/pytorch_device_config.py,sha256=S25cuw10AW3SEN_fRAGRcG_I3wdvvQx1ehSJzPnn-UI,4404
|
216
|
-
model_compression_toolkit/core/pytorch/pytorch_implementation.py,sha256=
|
216
|
+
model_compression_toolkit/core/pytorch/pytorch_implementation.py,sha256=xmcJyU-rkIDX1a_X9LILzf2Ko2z_4I4xnlHkezKH-2w,27669
|
217
217
|
model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py,sha256=2LDQ7qupglHQ7o1Am7LWdfYVacfQnl-aW2N6l9det1w,3264
|
218
218
|
model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py,sha256=E6ifk1HdO60k4IRH2EFBzAYWtwUlrGqJoQ66nknpHoQ,4983
|
219
219
|
model_compression_toolkit/core/pytorch/utils.py,sha256=GE7T8q93I5C4As0iOias_dk9HpOvXM1N6---dJlyD60,3863
|
220
220
|
model_compression_toolkit/core/pytorch/back2framework/__init__.py,sha256=H_WixgN0elVWf3exgGYsi58imPoYDj5eYPeh6x4yfug,813
|
221
|
-
model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py,sha256=
|
221
|
+
model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py,sha256=bwppTPRs6gL96nm7qPiKrNcBj4Krr0yEsOWjRF0aXmQ,2339
|
222
222
|
model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py,sha256=tLrlUyYhxVKVjkad1ZAtbRra0HedB3iVfIkZ_dYnQ-4,3419
|
223
223
|
model_compression_toolkit/core/pytorch/back2framework/instance_builder.py,sha256=BBHBfTqeWm7L3iDyPBpk0jxvj-rBg1QWI23imkjfIl0,1467
|
224
224
|
model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py,sha256=D7lU1r9Uq_7fdNuKk2BMF8ho5GrsY-8gyGN6yYoHaVg,15060
|
@@ -262,7 +262,7 @@ model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py,sha256=D8
|
|
262
262
|
model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py,sha256=uyeBtNokyDUikk-YkDP_mN_2DX0J5oPm3kSfdSUT2Ck,4420
|
263
263
|
model_compression_toolkit/core/pytorch/reader/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
|
264
264
|
model_compression_toolkit/core/pytorch/reader/graph_builders.py,sha256=ESL8k7RLZogTyG_oTTFDmm4RauZvx2gU-UvnOnEsH6Q,15948
|
265
|
-
model_compression_toolkit/core/pytorch/reader/node_holders.py,sha256=
|
265
|
+
model_compression_toolkit/core/pytorch/reader/node_holders.py,sha256=7XNc7-l1MZPJGcOESvtAwfIMxrU6kvt3YjF5B7qOqK4,1048
|
266
266
|
model_compression_toolkit/core/pytorch/reader/reader.py,sha256=GEJE0QX8XJFWbYCkbRBtzttZtmmuoACLx8gw9KyAQCE,6015
|
267
267
|
model_compression_toolkit/core/pytorch/statistics_correction/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
|
268
268
|
model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py,sha256=VgU24J3jf7QComHH7jonOXSkg6mO4TOch3uFkOthZvM,3261
|
@@ -326,7 +326,7 @@ model_compression_toolkit/exporter/model_wrapper/__init__.py,sha256=7CF2zvpTrIEm
|
|
326
326
|
model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py,sha256=pKAdbTCFM_2BrZXUtTIw0ouKotrWwUDF_hP3rPwCM2k,696
|
327
327
|
model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py,sha256=Bd3QhAR__YC9Xmobd5qHv9ofh_rPn_eTFV0sXizcBnY,2297
|
328
328
|
model_compression_toolkit/exporter/model_wrapper/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
329
|
-
model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py,sha256=
|
329
|
+
model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py,sha256=llQJ8yY4buSMNue_UnEhGhT5lHpXU7iMqWwCrUt6L08,3816
|
330
330
|
model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
331
331
|
model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py,sha256=T2wgd7b86cpA5Ffq5eVCb8YlmnJ7vDxtmFeRkZtpLZc,5422
|
332
332
|
model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py,sha256=uL6tJWC4s2IWUy8GJVwtMWpwZZioRRztfKyPJHo14xI,9442
|
@@ -342,7 +342,7 @@ model_compression_toolkit/gptq/common/gptq_config.py,sha256=U-NiVEedkOsVaFq-iXU2
|
|
342
342
|
model_compression_toolkit/gptq/common/gptq_constants.py,sha256=QSm6laLkIV0LYmU0BLtmKp3Fi3SqDfbncFQWOGA1cGU,611
|
343
343
|
model_compression_toolkit/gptq/common/gptq_framework_implementation.py,sha256=n3mSf4J92kFjekzyGyrJULylI-8Jf5OVWJ5AFoVnEx0,1266
|
344
344
|
model_compression_toolkit/gptq/common/gptq_graph.py,sha256=-bL5HhPcKqV8nj4dZPXc5QmQJbFBel6etrioikP0tEo,3039
|
345
|
-
model_compression_toolkit/gptq/common/gptq_training.py,sha256=
|
345
|
+
model_compression_toolkit/gptq/common/gptq_training.py,sha256=CtSpjG27BQ3rLPGWeBnZYYiGnMREpdBd6dx7SQf_wDk,14965
|
346
346
|
model_compression_toolkit/gptq/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
347
347
|
model_compression_toolkit/gptq/keras/gptq_keras_implementation.py,sha256=axBwnCSjq5xk-xGymOwSOqjp39It-CVtGcCTRTf0E_4,1248
|
348
348
|
model_compression_toolkit/gptq/keras/gptq_loss.py,sha256=rbRkF15MYd6nq4G49kcjb_dPTa-XNq9cTkrb93mXawo,6241
|
@@ -394,7 +394,7 @@ model_compression_toolkit/qat/common/qat_config.py,sha256=zoq0Vb74vCY7WlWD8JH_KP
|
|
394
394
|
model_compression_toolkit/qat/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
395
395
|
model_compression_toolkit/qat/keras/quantization_facade.py,sha256=AXwY6p1XFjPUzal_r_c1_su5Ji3ARtVTZYYWpDPZ09k,17026
|
396
396
|
model_compression_toolkit/qat/keras/quantizer/__init__.py,sha256=zmYyCa25_KLCSUCGUDRslh3RCIjcRMxc_oXa54Aui-4,996
|
397
|
-
model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py,sha256=
|
397
|
+
model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py,sha256=0CB5M68zjPXv4yJZ-DzaYP9yYYWX_8J2gJLunxupOAM,2085
|
398
398
|
model_compression_toolkit/qat/keras/quantizer/quant_utils.py,sha256=cBULOgWUodcBO1lHevZggdTevuDYI6tQceV86U2x6DA,2543
|
399
399
|
model_compression_toolkit/qat/keras/quantizer/quantization_builder.py,sha256=HD0JIOiqnrpqj5qk6RyzuCsSGZsDUVohdCYSePmJBNQ,5872
|
400
400
|
model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py,sha256=lNJ29DYxaLUPDstRDA1PGI5r9Fulq_hvrZMlhst1Z5g,697
|
@@ -406,7 +406,7 @@ model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py,sha256
|
|
406
406
|
model_compression_toolkit/qat/pytorch/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
407
407
|
model_compression_toolkit/qat/pytorch/quantization_facade.py,sha256=pRy2B5OsaLi33p4hozjr0rzAooT8Gic3_qxTl66J900,13375
|
408
408
|
model_compression_toolkit/qat/pytorch/quantizer/__init__.py,sha256=xYa4C8pr9cG1f3mQQcBXO_u3IdJN-zl7leZxuXDs86w,1003
|
409
|
-
model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py,sha256=
|
409
|
+
model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py,sha256=2I_WcINn63lpT3mN_skXNL4Rfbm955_wzhYHaiwH2q4,2207
|
410
410
|
model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py,sha256=sFWGu76PZ9dSRf3L0uZI6YwLIs0biBND1tl76I1piBQ,5721
|
411
411
|
model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py,sha256=nO7IrDRo5b9Asf21WJacE4vf5voD3UzF_oGjBoGusD4,5335
|
412
412
|
model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
|
@@ -421,9 +421,9 @@ model_compression_toolkit/target_platform_capabilities/immutable.py,sha256=YhROB
|
|
421
421
|
model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py,sha256=bD2xE101rRw7pGarGiBzYraeFF7FUnzyWtAVzwu5JT4,1724
|
422
422
|
model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py,sha256=1Glr4qKDJfdk5TwM5fzZ12XzgbpQFioDOxb475905gk,2013
|
423
423
|
model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py,sha256=f3xBAI6ivPvEj4lw8cAvTKdIbs7CRdLAa_0LvhGw3Dg,3924
|
424
|
-
model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py,sha256=
|
424
|
+
model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py,sha256=w7VBBgvhiOcHjn_OcrWnER8LPa1uhIIYaMEROLFF1xA,16441
|
425
425
|
model_compression_toolkit/target_platform_capabilities/target_platform/operators.py,sha256=rRmrmPBY4rxCWVpEc6FxeOPUFh8MkfwgQsqD82U9a7w,3108
|
426
|
-
model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py,sha256=
|
426
|
+
model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py,sha256=mU4djXodftvTqJnFH6-9ISuY1uECjj1xi6SijJWpiRg,9477
|
427
427
|
model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py,sha256=TDbNQwmF7Id-FoIQZlR7ZOcz_nRb4XKBmDihAgKT0u8,1392
|
428
428
|
model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py,sha256=WCP1wfFZgM4eFm-pPeUinr5R_aSx5qwfSQqLZCXUNBA,1513
|
429
429
|
model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py,sha256=jfhszvuD2Fyy6W2KjlLzXBQKFzTqGAaDZeFVr4-ONQw,8776
|
@@ -435,48 +435,52 @@ model_compression_toolkit/target_platform_capabilities/target_platform/targetpla
|
|
435
435
|
model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
436
436
|
model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py,sha256=-jCL-meZWFBF-Dp9wBYTX_14SKmyyUJE-BZ2IQDJIAk,3336
|
437
437
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py,sha256=lNJ29DYxaLUPDstRDA1PGI5r9Fulq_hvrZMlhst1Z5g,697
|
438
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py,sha256=
|
438
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py,sha256=KOSrFJAheWk360kU4UKQRVOaM0xIUaVdEdnU6b3t7Ww,5046
|
439
439
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py,sha256=F5RG4MnuAwKcNXbfVbPFLQu30-lNax-7knqu20B6udQ,1522
|
440
440
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py,sha256=1mMOREEMoNHu_KTMGDp4crN61opKWX6aFn1DrDLvqcc,717
|
441
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=
|
441
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=XF5djXt1kOz6pAKStNlcRfSESLZZAjKikF0Pdoq3MUY,10973
|
442
442
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py,sha256=bPBWxopMUHFgiaJjaAfoompwShvfH2wHAouN56PQn0A,6484
|
443
443
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py,sha256=iCBfBmIRozoeGVPC3MjZpVyp-Nx4fC94_PKILC82K-Y,5731
|
444
444
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py,sha256=vFDyiMymNZSRCdTgAyWn4A-tZD3vzze_PTLBSF2OYe8,721
|
445
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py,sha256=
|
445
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py,sha256=ptqH5KGE5XJ35rYXb7zWyfP9Zbfq-Qa35IKyq0E1hrw,10709
|
446
446
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py,sha256=bU74t-ZIkIptXuNaPI_YIC5w9TX6nDgJUpJwxHAPOSI,6493
|
447
447
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py,sha256=09fbd5vEnSQDWfCkMRtYZYy7kIYiWkXDcH_dT1cAmoY,5739
|
448
448
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py,sha256=NUuczImqUxzdfflqSdqkeAN8aCU6Tuiu6U0Fnj9Tzmw,721
|
449
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py,sha256=
|
449
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py,sha256=zx39TEVxMwBYWa7CaUVi3kPxIIC_ID8pnamibkCQer4,10459
|
450
450
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py,sha256=NkAGCZbSgXYeRAiJRzt19h2cxkrVQJaHu8-2jHZLOYg,6505
|
451
451
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py,sha256=X853xDEF-3rcPoqxbrlYN28vvW3buSdM36c_eN_LKx8,5758
|
452
452
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py,sha256=vKWAoQ2KkhuptS5HZB50zHG6KY8wHpHTxPugw_nGCRo,717
|
453
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py,sha256=
|
453
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py,sha256=0-_lLUqQAvl19ySSeDp40hLmD7GYuQmmnAHHoE_e1Us,11048
|
454
454
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py,sha256=U5lYwk6vJkRt5fo5v_1_h5POTwf9zfia1XQ_cDoOZAI,6587
|
455
455
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py,sha256=jAyTXhcChO124odtWC3bYKRH4ZyqLPkKQluJFOoyPIM,5726
|
456
456
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py,sha256=wUk4Xsg7jpxOWYjq2K3WUwLcI185p_sVPK-ttG0ydhA,721
|
457
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py,sha256=
|
457
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py,sha256=VTK3dC5-_Ps2AsoQwfAg9ATVTlz6yUvrXYX02jc7X0U,10781
|
458
458
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py,sha256=6PVKQKGpJpM2B1qvmf6fID_-MACaSQZkaL_9J_fj2SQ,6595
|
459
459
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py,sha256=dFQjzFlLDwoUqKNP1at1fS1N1WJadSSasRyzHl6vaB8,5733
|
460
460
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py,sha256=gAeebYCKyIXH9-Qwze7FwvTihudzAHk_Qsg94fQbkjQ,717
|
461
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py,sha256=
|
461
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py,sha256=ku_hfhd_VaqyC3yjQEiG6dJN-V6ADSBGF-YBpB5I54w,11934
|
462
462
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py,sha256=T5YMv-RzgYlzBaagnMO7WnKgbZ7PrOvm29Nn4vUhCHI,6587
|
463
463
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py,sha256=HRo0W5l4IJesr_np4ZhXoMk_xfdiV53LgamquQIryJA,5800
|
464
464
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py,sha256=C2kwyDE1-rtukkbNSoKRv9q8Nt2GOCaBbl0BdOr3goA,721
|
465
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py,sha256=
|
465
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py,sha256=8SHk1Ws9nLU9mDq6YV4pxDgeIH3n6NfKrRZk_Zv-JIk,11667
|
466
466
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py,sha256=LvqUkvpJKXBb9QETcHsmp9OGDwl9KWr457deag8GVuM,6595
|
467
467
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py,sha256=nP05jqvh6uaj30a3W7zEkJfKtqfP0Nz5bobwRqbYrdM,5807
|
468
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py,sha256=tHTUvsaerSfbe22pU0kIDauPpFD7Pq5EmZytVIDkHz4,717
|
469
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=Wi_pLHFcY3p_HlooT7e0uLE1wUpp4LsbfI2DN445tu8,12731
|
470
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py,sha256=VSPTv6pt6OX8Zpjdit5GK9WattHpKAi4sVByBzTwsgw,6626
|
471
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py,sha256=HRU8CRkmzfsvzw9AwhiB33HyRnR5oXxw__hD2OqfmN8,5800
|
468
472
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
469
473
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py,sha256=7KVcuz0LfngRKOsfcvBysxGVb9fqgoAO6MVTl1CmB5c,2082
|
470
474
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py,sha256=UUvUCcTots_sehdRnDfgkaE8WPQ7dPbeuhDF4Qy2nzw,1510
|
471
475
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
|
472
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py,sha256=
|
476
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py,sha256=czKvlJaa1tRllQSlzFBeyJF4u3ktwJG3LT0NUDK9yVg,8196
|
473
477
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py,sha256=h_hePXCggG2qktLuoNAOE1XNtc0qEwMyky7om1c8eC8,4483
|
474
478
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py,sha256=65WJPRCjliXEUL4AjZRxcyVS3y7KHTMDdkqy6D95kRw,3814
|
475
479
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
476
480
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py,sha256=Go0RJ1KcKoynCUSwGhxA1nsYsMmZEFSrxiL59iyE6LA,2077
|
477
481
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py,sha256=sK9PnyB2R9g0rqHr_9vyUFX7wSyrZe7x9yqYUlbaiqo,1505
|
478
482
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
|
479
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py,sha256=
|
483
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py,sha256=7Qn5PPAMm9-NNQq2SDJqXABW0dqOzjyGYB1LZFf4l3k,9954
|
480
484
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py,sha256=-4vNf2Q6c_rgaac19AFO8hG4ANaPfgNPf0kN44mL6TQ,6830
|
481
485
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py,sha256=YVJJvqGPBdkKnug99p9bjqtbfecDXZKIB2iWVCe7RUY,5960
|
482
486
|
model_compression_toolkit/trainable_infrastructure/__init__.py,sha256=DwWh0lXiLNNzqHHNEy-Py6_5OtseNGJDGNV3SYm8rYQ,1224
|
@@ -521,8 +525,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
|
|
521
525
|
model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=yrZNVRm2IRU7r7R-hjS2lOQ6wvEEvbeunvf2jKoWjXk,3277
|
522
526
|
model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
|
523
527
|
model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=eyMoXt5o5EnMr6d-rpCwQdX5mAiYiymvbgKv4tf7-a0,4576
|
524
|
-
mct_nightly-2.1.0.
|
525
|
-
mct_nightly-2.1.0.
|
526
|
-
mct_nightly-2.1.0.
|
527
|
-
mct_nightly-2.1.0.
|
528
|
-
mct_nightly-2.1.0.
|
528
|
+
mct_nightly-2.1.0.20240802.429.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
529
|
+
mct_nightly-2.1.0.20240802.429.dist-info/METADATA,sha256=dD5-lDxpR3yswbdzzD-j_t_ak-HyK3-m2RgSaZnyAec,19719
|
530
|
+
mct_nightly-2.1.0.20240802.429.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
531
|
+
mct_nightly-2.1.0.20240802.429.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
532
|
+
mct_nightly-2.1.0.20240802.429.dist-info/RECORD,,
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.1.0.
|
30
|
+
__version__ = "2.1.0.20240802.000429"
|
@@ -69,7 +69,8 @@ FLOAT_BITWIDTH = 32
|
|
69
69
|
# that are shared among different candidates:
|
70
70
|
WEIGHTS_NBITS_ATTRIBUTE = 'weights_n_bits'
|
71
71
|
CORRECTED_BIAS_ATTRIBUTE = 'corrected_bias'
|
72
|
-
|
72
|
+
ACTIVATION_N_BITS_ATTRIBUTE = 'activation_n_bits'
|
73
|
+
SUPPORTED_INPUT_ACTIVATION_NBITS_ATTRIBUTE = 'supported_input_activation_n_bits'
|
73
74
|
|
74
75
|
# Quantization Parameters Iterative Search Defaults:
|
75
76
|
SYMMETRIC_TENSOR_N_ITER = 40
|
@@ -348,24 +348,20 @@ class FrameworkImplementation(ABC):
|
|
348
348
|
raise NotImplemented(f'{self.__class__.__name__} have to implement the '
|
349
349
|
f'framework\'s count_node_for_mixed_precision_interest_points method.') # pragma: no cover
|
350
350
|
|
351
|
-
def get_mp_node_distance_fn(self,
|
352
|
-
|
353
|
-
|
354
|
-
axis: int = None,
|
355
|
-
norm_mse: bool = False) -> Callable:
|
351
|
+
def get_mp_node_distance_fn(self, n: BaseNode,
|
352
|
+
compute_distance_fn: Callable = None,
|
353
|
+
norm_mse: bool = False) -> Tuple[Callable, int]:
|
356
354
|
"""
|
357
355
|
A mapping between layers' types and a distance function for computing the distance between
|
358
356
|
two tensors in mixed precision (for loss computation purposes). Returns a specific function if node of specific types is
|
359
357
|
given, or a default (normalized MSE) function otherwise.
|
360
358
|
|
361
359
|
Args:
|
362
|
-
|
363
|
-
framework_attrs: Framework attributes the layer had which the graph node holds.
|
360
|
+
n: Node to choose distance function for.
|
364
361
|
compute_distance_fn: An optional distance function to use globally for all nodes.
|
365
|
-
axis: The axis on which the operation is preformed (if specified).
|
366
362
|
norm_mse: whether to normalize mse distance function.
|
367
363
|
|
368
|
-
Returns: A distance function between two tensors.
|
364
|
+
Returns: A distance function between two tensors and a axis on which the distance is computed (if exists).
|
369
365
|
"""
|
370
366
|
|
371
367
|
raise NotImplemented(f'{self.__class__.__name__} have to implement the '
|
@@ -440,7 +440,7 @@ class Graph(nx.MultiDiGraph, GraphSearches):
|
|
440
440
|
|
441
441
|
output_nodes = [ot.node for ot in self.get_outputs()] # get output nodes from namedtuples
|
442
442
|
if node_to_remove in output_nodes: # If node is in the graph's outputs, the outputs should be updated
|
443
|
-
if new_graph_outputs is None:
|
443
|
+
if new_graph_outputs is None: # pragma: no cover
|
444
444
|
Logger.critical(
|
445
445
|
f"{node_to_remove.name} is among the graph outputs; however, it cannot be removed without providing a new output.") # pragma: no cover
|
446
446
|
self.set_outputs(new_graph_outputs)
|
@@ -506,28 +506,6 @@ class Graph(nx.MultiDiGraph, GraphSearches):
|
|
506
506
|
output_edges.sort(key=lambda e: getattr(e, sort_by_attr))
|
507
507
|
return output_edges
|
508
508
|
|
509
|
-
def get_memory(self) -> float:
|
510
|
-
"""
|
511
|
-
|
512
|
-
Returns: Total memory consumption of the graph in bytes.
|
513
|
-
|
514
|
-
"""
|
515
|
-
memory = 0
|
516
|
-
for n in self.nodes:
|
517
|
-
memory += n.get_memory_bytes(self.fw_info)
|
518
|
-
return memory
|
519
|
-
|
520
|
-
def get_float_memory(self) -> float:
|
521
|
-
"""
|
522
|
-
|
523
|
-
Returns: Total memory consumption of the float graph in bytes.
|
524
|
-
|
525
|
-
"""
|
526
|
-
memory = 0
|
527
|
-
for n in self.nodes:
|
528
|
-
memory += n.get_float_memory_bytes(self.fw_info)
|
529
|
-
return memory
|
530
|
-
|
531
509
|
def get_configurable_sorted_nodes_names(self,
|
532
510
|
fw_info: FrameworkInfo,
|
533
511
|
include_reused_nodes: bool = False) -> List[str]:
|
@@ -19,11 +19,11 @@ from typing import Dict, Any, Tuple, List, Type, Union
|
|
19
19
|
import numpy as np
|
20
20
|
|
21
21
|
from model_compression_toolkit.constants import WEIGHTS_NBITS_ATTRIBUTE, CORRECTED_BIAS_ATTRIBUTE, \
|
22
|
-
|
22
|
+
ACTIVATION_N_BITS_ATTRIBUTE, FP32_BYTES_PER_PARAMETER
|
23
23
|
from model_compression_toolkit.core.common.quantization.node_quantization_config import WeightsAttrQuantizationConfig
|
24
24
|
from model_compression_toolkit.logger import Logger
|
25
25
|
from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationConfigOptions, \
|
26
|
-
TargetPlatformCapabilities, LayerFilterParams
|
26
|
+
TargetPlatformCapabilities, LayerFilterParams, OpQuantizationConfig
|
27
27
|
|
28
28
|
|
29
29
|
class BaseNode:
|
@@ -297,19 +297,6 @@ class BaseNode:
|
|
297
297
|
|
298
298
|
return memory
|
299
299
|
|
300
|
-
def get_float_memory_bytes(self, fw_info) -> float:
|
301
|
-
"""
|
302
|
-
Compute the number of bytes the node's memory requires.
|
303
|
-
|
304
|
-
Args:
|
305
|
-
fw_info: Framework info to decide which attributes should be quantized.
|
306
|
-
|
307
|
-
Returns: Number of bytes the node's memory requires when in floating point (32 bit).
|
308
|
-
|
309
|
-
"""
|
310
|
-
q_params, f_params = self.get_num_parameters(fw_info)
|
311
|
-
return (f_params + q_params) * FP32_BYTES_PER_PARAMETER
|
312
|
-
|
313
300
|
def get_unified_weights_candidates_dict(self, fw_info) -> Dict[str, Any]:
|
314
301
|
"""
|
315
302
|
In Mixed-Precision, a node's kernel can have multiple candidates for weights quantization configuration.
|
@@ -355,7 +342,7 @@ class BaseNode:
|
|
355
342
|
Returns: A dictionary containing information from node's activation quantization configuration candidates.
|
356
343
|
|
357
344
|
"""
|
358
|
-
shared_attributes = [
|
345
|
+
shared_attributes = [ACTIVATION_N_BITS_ATTRIBUTE]
|
359
346
|
attr = dict()
|
360
347
|
if self.is_activation_quantization_enabled():
|
361
348
|
attr = copy.deepcopy(self.candidates_quantization_cfg[0].activation_quantization_cfg.__dict__)
|
@@ -436,20 +423,6 @@ class BaseNode:
|
|
436
423
|
|
437
424
|
return sum([np.prod([x for x in output_shape if x is not None]) for output_shape in output_shapes])
|
438
425
|
|
439
|
-
def get_total_input_params(self) -> float:
|
440
|
-
"""
|
441
|
-
Calculates the total parameters in the node's input tensors.
|
442
|
-
|
443
|
-
Returns: Input size (i.e., total number of parameters).
|
444
|
-
"""
|
445
|
-
|
446
|
-
input_shapes = self.input_shape if isinstance(self.input_shape, List) else [self.input_shape]
|
447
|
-
|
448
|
-
# remove batch size (first element) from input shape
|
449
|
-
input_shapes = [s[1:] for s in input_shapes]
|
450
|
-
|
451
|
-
return sum([np.prod([x for x in input_shape if x is not None]) for input_shape in input_shapes])
|
452
|
-
|
453
426
|
def find_min_candidates_indices(self) -> List[int]:
|
454
427
|
"""
|
455
428
|
Returns a list with potential minimal candidates.
|
@@ -565,7 +538,7 @@ class BaseNode:
|
|
565
538
|
to the mappings from layers/LayerFilterParams to the OperatorsSet in the TargetPlatformModel.
|
566
539
|
|
567
540
|
Args:
|
568
|
-
tpc: TPC to extract the QuantizationConfigOptions for the node
|
541
|
+
tpc: TPC to extract the QuantizationConfigOptions for the node.
|
569
542
|
|
570
543
|
Returns:
|
571
544
|
QuantizationConfigOptions of the node.
|
@@ -585,6 +558,52 @@ class BaseNode:
|
|
585
558
|
return matching_qcos[0]
|
586
559
|
return tpc.tp_model.default_qco
|
587
560
|
|
561
|
+
def filter_node_qco_by_graph(self, tpc: TargetPlatformCapabilities,
|
562
|
+
next_nodes: List, node_qc_options: QuantizationConfigOptions
|
563
|
+
) -> Tuple[OpQuantizationConfig, List[OpQuantizationConfig]]:
|
564
|
+
"""
|
565
|
+
Filter quantization config options that don't match the graph.
|
566
|
+
A node may have several quantization config options with 'activation_n_bits' values, and
|
567
|
+
the next nodes in the graph may support different bit-width as input activation. This function
|
568
|
+
filters out quantization config that don't comply to these attributes.
|
569
|
+
|
570
|
+
Args:
|
571
|
+
tpc: TPC to extract the QuantizationConfigOptions for the next nodes.
|
572
|
+
next_nodes: Output nodes of current node.
|
573
|
+
node_qc_options: Node's QuantizationConfigOptions.
|
574
|
+
|
575
|
+
Returns:
|
576
|
+
|
577
|
+
"""
|
578
|
+
# Filter quantization config options that don't match the graph.
|
579
|
+
_base_config = node_qc_options.base_config
|
580
|
+
_node_qc_options = node_qc_options.quantization_config_list
|
581
|
+
if len(next_nodes):
|
582
|
+
next_nodes_qc_options = [_node.get_qco(tpc) for _node in next_nodes]
|
583
|
+
next_nodes_supported_input_bitwidth = min([op_cfg.max_input_activation_n_bits
|
584
|
+
for qc_opts in next_nodes_qc_options
|
585
|
+
for op_cfg in qc_opts.quantization_config_list])
|
586
|
+
|
587
|
+
# Filter node's QC options that match next nodes input bit-width.
|
588
|
+
_node_qc_options = [_option for _option in _node_qc_options
|
589
|
+
if _option.activation_n_bits <= next_nodes_supported_input_bitwidth]
|
590
|
+
if len(_node_qc_options) == 0:
|
591
|
+
Logger.critical(f"Graph doesn't match TPC bit configurations: {self} -> {next_nodes}.") # pragma: no cover
|
592
|
+
|
593
|
+
# Verify base config match
|
594
|
+
if any([node_qc_options.base_config.activation_n_bits > qc_opt.base_config.max_input_activation_n_bits
|
595
|
+
for qc_opt in next_nodes_qc_options]):
|
596
|
+
# base_config activation bits doesn't match next node supported input bit-width -> replace with
|
597
|
+
# a qco from quantization_config_list with maximum activation bit-width.
|
598
|
+
if len(_node_qc_options) > 0:
|
599
|
+
output_act_bitwidth = {qco.activation_n_bits: i for i, qco in enumerate(_node_qc_options)}
|
600
|
+
_base_config = _node_qc_options[output_act_bitwidth[max(output_act_bitwidth)]]
|
601
|
+
Logger.warning(f"Node {self} base quantization config changed to match Graph and TPC configuration.\nCause: {self} -> {next_nodes}.")
|
602
|
+
else:
|
603
|
+
Logger.critical(f"Graph doesn't match TPC bit configurations: {self} -> {next_nodes}.") # pragma: no cover
|
604
|
+
|
605
|
+
return _base_config, _node_qc_options
|
606
|
+
|
588
607
|
def is_match_type(self, _type: Type) -> bool:
|
589
608
|
"""
|
590
609
|
Check if input type matches the node type, either in instance type or in type name.
|
@@ -644,10 +663,10 @@ class BaseNode:
|
|
644
663
|
if len(simd_list) > 1:
|
645
664
|
Logger.warning(f"More than one pruning SIMD option is available."
|
646
665
|
f" Min SIMD is used: {min(simd_list)}")
|
647
|
-
if len(simd_list) == 0:
|
666
|
+
if len(simd_list) == 0: # pragma: no cover
|
648
667
|
Logger.critical(f"No SIMD option is available for {self}")
|
649
668
|
_simd = min(simd_list)
|
650
|
-
if _simd <= 0 or int(_simd) != _simd:
|
669
|
+
if _simd <= 0 or int(_simd) != _simd: # pragma: no cover
|
651
670
|
Logger.critical(f"SIMD is expected to be a non-positive integer but found: {_simd}")
|
652
671
|
return _simd
|
653
672
|
|
@@ -195,12 +195,12 @@ def compute_total_bops(graph: Graph, fw_info: FrameworkInfo, fw_impl: FrameworkI
|
|
195
195
|
|
196
196
|
|
197
197
|
def requires_mixed_precision(in_model: Any,
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
198
|
+
target_resource_utilization: ResourceUtilization,
|
199
|
+
representative_data_gen: Callable,
|
200
|
+
core_config: CoreConfig,
|
201
|
+
tpc: TargetPlatformCapabilities,
|
202
|
+
fw_info: FrameworkInfo,
|
203
|
+
fw_impl: FrameworkImplementation) -> bool:
|
204
204
|
"""
|
205
205
|
The function checks whether the model requires mixed precision to meet the requested target resource utilization.
|
206
206
|
This is determined by whether the target memory usage of the weights is less than the available memory,
|
@@ -77,7 +77,8 @@ class SensitivityEvaluation:
|
|
77
77
|
self.disable_activation_for_metric = disable_activation_for_metric
|
78
78
|
if self.quant_config.use_hessian_based_scores:
|
79
79
|
if not isinstance(hessian_info_service, HessianInfoService):
|
80
|
-
Logger.critical(
|
80
|
+
Logger.critical(
|
81
|
+
f"When using Hessian-based approximations for sensitivity evaluation, a valid HessianInfoService object is required; found {type(hessian_info_service)}.")
|
81
82
|
self.hessian_info_service = hessian_info_service
|
82
83
|
|
83
84
|
self.sorted_configurable_nodes_names = graph.get_configurable_sorted_nodes_names(self.fw_info)
|
@@ -94,7 +95,8 @@ class SensitivityEvaluation:
|
|
94
95
|
self.ips_distance_fns, self.ips_axis = self._init_metric_points_lists(self.interest_points, use_normalized_mse)
|
95
96
|
|
96
97
|
self.output_points = get_output_nodes_for_metric(graph)
|
97
|
-
self.out_ps_distance_fns, self.out_ps_axis = self._init_metric_points_lists(self.output_points,
|
98
|
+
self.out_ps_distance_fns, self.out_ps_axis = self._init_metric_points_lists(self.output_points,
|
99
|
+
use_normalized_mse)
|
98
100
|
|
99
101
|
# Setting lists with relative position of the interest points
|
100
102
|
# and output points in the list of all mp model activation tensors
|
@@ -130,7 +132,8 @@ class SensitivityEvaluation:
|
|
130
132
|
self.interest_points_hessians = self._compute_hessian_based_scores()
|
131
133
|
self.quant_config.distance_weighting_method = lambda d: self.interest_points_hessians
|
132
134
|
|
133
|
-
def _init_metric_points_lists(self, points: List[BaseNode], norm_mse: bool = False) -> Tuple[
|
135
|
+
def _init_metric_points_lists(self, points: List[BaseNode], norm_mse: bool = False) -> Tuple[
|
136
|
+
List[Callable], List[int]]:
|
134
137
|
"""
|
135
138
|
Initiates required lists for future use when computing the sensitivity metric.
|
136
139
|
Each point on which the metric is computed uses a dedicated distance function based on its type.
|
@@ -146,16 +149,12 @@ class SensitivityEvaluation:
|
|
146
149
|
distance_fns_list = []
|
147
150
|
axis_list = []
|
148
151
|
for n in points:
|
149
|
-
axis =
|
150
|
-
|
151
|
-
|
152
|
-
framework_attrs=n.framework_attr,
|
153
|
-
compute_distance_fn=self.quant_config.compute_distance_fn,
|
154
|
-
axis=axis,
|
155
|
-
norm_mse=norm_mse)
|
152
|
+
distance_fn, axis = self.fw_impl.get_mp_node_distance_fn(n,
|
153
|
+
compute_distance_fn=self.quant_config.compute_distance_fn,
|
154
|
+
norm_mse=norm_mse)
|
156
155
|
distance_fns_list.append(distance_fn)
|
157
156
|
# Axis is needed only for KL Divergence calculation, otherwise we use per-tensor computation
|
158
|
-
axis_list.append(axis if distance_fn==compute_kl_divergence else None)
|
157
|
+
axis_list.append(axis if distance_fn == compute_kl_divergence else None)
|
159
158
|
return distance_fns_list, axis_list
|
160
159
|
|
161
160
|
def compute_metric(self,
|
@@ -300,7 +299,8 @@ class SensitivityEvaluation:
|
|
300
299
|
node_name = sorted_configurable_nodes_names[node_idx_to_configure]
|
301
300
|
layers_to_config = self.conf_node2layers.get(node_name, None)
|
302
301
|
if layers_to_config is None:
|
303
|
-
Logger.critical(
|
302
|
+
Logger.critical(
|
303
|
+
f"Matching layers for node {node_name} not found in the mixed precision model configuration.") # pragma: no cover
|
304
304
|
|
305
305
|
for current_layer in layers_to_config:
|
306
306
|
self.set_layer_to_bitwidth(current_layer, mp_model_configuration[node_idx_to_configure])
|