mcp-server-mas-sequential-thinking 0.2.1__py3-none-any.whl → 0.2.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- main.py +1 -1
- {mcp_server_mas_sequential_thinking-0.2.1.dist-info → mcp_server_mas_sequential_thinking-0.2.2.dist-info}/METADATA +7 -7
- mcp_server_mas_sequential_thinking-0.2.2.dist-info/RECORD +5 -0
- mcp_server_mas_sequential_thinking-0.2.1.dist-info/RECORD +0 -5
- {mcp_server_mas_sequential_thinking-0.2.1.dist-info → mcp_server_mas_sequential_thinking-0.2.2.dist-info}/WHEEL +0 -0
- {mcp_server_mas_sequential_thinking-0.2.1.dist-info → mcp_server_mas_sequential_thinking-0.2.2.dist-info}/entry_points.txt +0 -0
main.py
CHANGED
@@ -308,7 +308,7 @@ def get_model_config() -> tuple[Type[Model], str, str]:
|
|
308
308
|
ModelClass = DeepSeek
|
309
309
|
# Use environment variables for DeepSeek model IDs if set, otherwise use defaults
|
310
310
|
team_model_id = os.environ.get("DEEPSEEK_TEAM_MODEL_ID", "deepseek-chat")
|
311
|
-
agent_model_id = os.environ.get("DEEPSEEK_AGENT_MODEL_ID", "deepseek-
|
311
|
+
agent_model_id = os.environ.get("DEEPSEEK_AGENT_MODEL_ID", "deepseek-chat")
|
312
312
|
logger.info(f"Using DeepSeek: Team Model='{team_model_id}', Agent Model='{agent_model_id}'")
|
313
313
|
elif provider == "groq":
|
314
314
|
ModelClass = Groq
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: mcp-server-mas-sequential-thinking
|
3
|
-
Version: 0.2.
|
3
|
+
Version: 0.2.2
|
4
4
|
Summary: MCP Agent Implementation for Sequential Thinking
|
5
5
|
Author-email: Frad LEE <fradser@gmail.com>
|
6
6
|
Requires-Python: >=3.10
|
@@ -146,11 +146,11 @@ The `env` section should include the API key for your chosen `LLM_PROVIDER`.
|
|
146
146
|
# GROQ_TEAM_MODEL_ID="llama3-70b-8192"
|
147
147
|
# GROQ_AGENT_MODEL_ID="llama3-8b-8192"
|
148
148
|
# Example for DeepSeek:
|
149
|
-
# DEEPSEEK_TEAM_MODEL_ID="deepseek-
|
150
|
-
# DEEPSEEK_AGENT_MODEL_ID="deepseek-chat"
|
149
|
+
# DEEPSEEK_TEAM_MODEL_ID="deepseek-chat" # Note: `deepseek-reasoner` is not recommended as it doesn't support function calling
|
150
|
+
# DEEPSEEK_AGENT_MODEL_ID="deepseek-chat" # Recommended for specialists
|
151
151
|
# Example for OpenRouter:
|
152
|
-
# OPENROUTER_TEAM_MODEL_ID="
|
153
|
-
# OPENROUTER_AGENT_MODEL_ID="
|
152
|
+
# OPENROUTER_TEAM_MODEL_ID="deepseek/deepseek-r1"
|
153
|
+
# OPENROUTER_AGENT_MODEL_ID="deepseek/deepseek-chat-v3-0324"
|
154
154
|
|
155
155
|
# --- External Tools ---
|
156
156
|
# Required ONLY if the Researcher agent is used and needs Exa
|
@@ -159,8 +159,8 @@ The `env` section should include the API key for your chosen `LLM_PROVIDER`.
|
|
159
159
|
|
160
160
|
**Note on Model Selection:**
|
161
161
|
|
162
|
-
* The `TEAM_MODEL_ID` is used by the Coordinator (the `Team` object itself). This role requires strong reasoning, synthesis, and delegation capabilities. Using a more powerful model (like `deepseek-
|
163
|
-
* The `AGENT_MODEL_ID` is used by the specialist agents (Planner, Researcher, etc.). These agents handle more focused sub-tasks. You might choose a faster or more cost-effective model (like `deepseek-
|
162
|
+
* The `TEAM_MODEL_ID` is used by the Coordinator (the `Team` object itself). This role requires strong reasoning, synthesis, and delegation capabilities. Using a more powerful model (like `deepseek-r1`, `claude-3-opus`, or `gpt-4-turbo`) is often beneficial here, even if it's slower or more expensive.
|
163
|
+
* The `AGENT_MODEL_ID` is used by the specialist agents (Planner, Researcher, etc.). These agents handle more focused sub-tasks. You might choose a faster or more cost-effective model (like `deepseek-v3`, `claude-3-sonnet`, `llama3-70b`) for specialists, depending on the complexity of the tasks they typically handle and your budget/performance requirements.
|
164
164
|
* The defaults provided in `main.py` (e.g., `deepseek-reasoner` for agents when using DeepSeek) are starting points. Experimentation is encouraged to find the optimal balance for your specific use case.
|
165
165
|
|
166
166
|
3. **Install Dependencies:**
|
@@ -0,0 +1,5 @@
|
|
1
|
+
main.py,sha256=VoFzDPitJlVwru3AfC3KH563h7TtUxcrM0OnvCUVQv8,44067
|
2
|
+
mcp_server_mas_sequential_thinking-0.2.2.dist-info/METADATA,sha256=ZGYMdfaWS7-9VJXEbXaDAFKQc-iZwhi0rmu5LZ1YwfQ,15842
|
3
|
+
mcp_server_mas_sequential_thinking-0.2.2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
4
|
+
mcp_server_mas_sequential_thinking-0.2.2.dist-info/entry_points.txt,sha256=wY2jq_6PmuqyKQzNnL6famc7DXnQiEhVnq3umzNVNiE,64
|
5
|
+
mcp_server_mas_sequential_thinking-0.2.2.dist-info/RECORD,,
|
@@ -1,5 +0,0 @@
|
|
1
|
-
main.py,sha256=Vm6SBMDmvFy9CwEmqI-ZqZ0YDLUgPA_E689La_Qc4Yo,44071
|
2
|
-
mcp_server_mas_sequential_thinking-0.2.1.dist-info/METADATA,sha256=bIJGHFTRT2hldImbnA0xKyp4i8BRcc78WihpJAcMf5A,15807
|
3
|
-
mcp_server_mas_sequential_thinking-0.2.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
4
|
-
mcp_server_mas_sequential_thinking-0.2.1.dist-info/entry_points.txt,sha256=wY2jq_6PmuqyKQzNnL6famc7DXnQiEhVnq3umzNVNiE,64
|
5
|
-
mcp_server_mas_sequential_thinking-0.2.1.dist-info/RECORD,,
|
File without changes
|