mcp-server-mas-sequential-thinking 0.2.1__py3-none-any.whl → 0.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
main.py CHANGED
@@ -308,7 +308,7 @@ def get_model_config() -> tuple[Type[Model], str, str]:
308
308
  ModelClass = DeepSeek
309
309
  # Use environment variables for DeepSeek model IDs if set, otherwise use defaults
310
310
  team_model_id = os.environ.get("DEEPSEEK_TEAM_MODEL_ID", "deepseek-chat")
311
- agent_model_id = os.environ.get("DEEPSEEK_AGENT_MODEL_ID", "deepseek-reasoner")
311
+ agent_model_id = os.environ.get("DEEPSEEK_AGENT_MODEL_ID", "deepseek-chat")
312
312
  logger.info(f"Using DeepSeek: Team Model='{team_model_id}', Agent Model='{agent_model_id}'")
313
313
  elif provider == "groq":
314
314
  ModelClass = Groq
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mcp-server-mas-sequential-thinking
3
- Version: 0.2.1
3
+ Version: 0.2.2
4
4
  Summary: MCP Agent Implementation for Sequential Thinking
5
5
  Author-email: Frad LEE <fradser@gmail.com>
6
6
  Requires-Python: >=3.10
@@ -146,11 +146,11 @@ The `env` section should include the API key for your chosen `LLM_PROVIDER`.
146
146
  # GROQ_TEAM_MODEL_ID="llama3-70b-8192"
147
147
  # GROQ_AGENT_MODEL_ID="llama3-8b-8192"
148
148
  # Example for DeepSeek:
149
- # DEEPSEEK_TEAM_MODEL_ID="deepseek-reasoner" # Recommended for coordination
150
- # DEEPSEEK_AGENT_MODEL_ID="deepseek-chat" # Recommended for specialists
149
+ # DEEPSEEK_TEAM_MODEL_ID="deepseek-chat" # Note: `deepseek-reasoner` is not recommended as it doesn't support function calling
150
+ # DEEPSEEK_AGENT_MODEL_ID="deepseek-chat" # Recommended for specialists
151
151
  # Example for OpenRouter:
152
- # OPENROUTER_TEAM_MODEL_ID="anthropic/claude-3-haiku-20240307"
153
- # OPENROUTER_AGENT_MODEL_ID="google/gemini-flash-1.5"
152
+ # OPENROUTER_TEAM_MODEL_ID="deepseek/deepseek-r1"
153
+ # OPENROUTER_AGENT_MODEL_ID="deepseek/deepseek-chat-v3-0324"
154
154
 
155
155
  # --- External Tools ---
156
156
  # Required ONLY if the Researcher agent is used and needs Exa
@@ -159,8 +159,8 @@ The `env` section should include the API key for your chosen `LLM_PROVIDER`.
159
159
 
160
160
  **Note on Model Selection:**
161
161
 
162
- * The `TEAM_MODEL_ID` is used by the Coordinator (the `Team` object itself). This role requires strong reasoning, synthesis, and delegation capabilities. Using a more powerful model (like `deepseek-reasoner`, `claude-3-opus`, or `gpt-4-turbo`) is often beneficial here, even if it's slower or more expensive.
163
- * The `AGENT_MODEL_ID` is used by the specialist agents (Planner, Researcher, etc.). These agents handle more focused sub-tasks. You might choose a faster or more cost-effective model (like `deepseek-chat`, `claude-3-sonnet`, `llama3-70b`) for specialists, depending on the complexity of the tasks they typically handle and your budget/performance requirements.
162
+ * The `TEAM_MODEL_ID` is used by the Coordinator (the `Team` object itself). This role requires strong reasoning, synthesis, and delegation capabilities. Using a more powerful model (like `deepseek-r1`, `claude-3-opus`, or `gpt-4-turbo`) is often beneficial here, even if it's slower or more expensive.
163
+ * The `AGENT_MODEL_ID` is used by the specialist agents (Planner, Researcher, etc.). These agents handle more focused sub-tasks. You might choose a faster or more cost-effective model (like `deepseek-v3`, `claude-3-sonnet`, `llama3-70b`) for specialists, depending on the complexity of the tasks they typically handle and your budget/performance requirements.
164
164
  * The defaults provided in `main.py` (e.g., `deepseek-reasoner` for agents when using DeepSeek) are starting points. Experimentation is encouraged to find the optimal balance for your specific use case.
165
165
 
166
166
  3. **Install Dependencies:**
@@ -0,0 +1,5 @@
1
+ main.py,sha256=VoFzDPitJlVwru3AfC3KH563h7TtUxcrM0OnvCUVQv8,44067
2
+ mcp_server_mas_sequential_thinking-0.2.2.dist-info/METADATA,sha256=ZGYMdfaWS7-9VJXEbXaDAFKQc-iZwhi0rmu5LZ1YwfQ,15842
3
+ mcp_server_mas_sequential_thinking-0.2.2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
4
+ mcp_server_mas_sequential_thinking-0.2.2.dist-info/entry_points.txt,sha256=wY2jq_6PmuqyKQzNnL6famc7DXnQiEhVnq3umzNVNiE,64
5
+ mcp_server_mas_sequential_thinking-0.2.2.dist-info/RECORD,,
@@ -1,5 +0,0 @@
1
- main.py,sha256=Vm6SBMDmvFy9CwEmqI-ZqZ0YDLUgPA_E689La_Qc4Yo,44071
2
- mcp_server_mas_sequential_thinking-0.2.1.dist-info/METADATA,sha256=bIJGHFTRT2hldImbnA0xKyp4i8BRcc78WihpJAcMf5A,15807
3
- mcp_server_mas_sequential_thinking-0.2.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
4
- mcp_server_mas_sequential_thinking-0.2.1.dist-info/entry_points.txt,sha256=wY2jq_6PmuqyKQzNnL6famc7DXnQiEhVnq3umzNVNiE,64
5
- mcp_server_mas_sequential_thinking-0.2.1.dist-info/RECORD,,