matrice-analytics 0.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of matrice-analytics might be problematic. Click here for more details.
- matrice_analytics/__init__.py +28 -0
- matrice_analytics/boundary_drawing_internal/README.md +305 -0
- matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
- matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
- matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
- matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
- matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
- matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
- matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
- matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
- matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
- matrice_analytics/post_processing/README.md +455 -0
- matrice_analytics/post_processing/__init__.py +732 -0
- matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
- matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
- matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
- matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
- matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
- matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
- matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
- matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
- matrice_analytics/post_processing/config.py +142 -0
- matrice_analytics/post_processing/core/__init__.py +63 -0
- matrice_analytics/post_processing/core/base.py +704 -0
- matrice_analytics/post_processing/core/config.py +3188 -0
- matrice_analytics/post_processing/core/config_utils.py +925 -0
- matrice_analytics/post_processing/face_reg/__init__.py +43 -0
- matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
- matrice_analytics/post_processing/face_reg/embedding_manager.py +681 -0
- matrice_analytics/post_processing/face_reg/face_recognition.py +1870 -0
- matrice_analytics/post_processing/face_reg/face_recognition_client.py +339 -0
- matrice_analytics/post_processing/face_reg/people_activity_logging.py +283 -0
- matrice_analytics/post_processing/ocr/__init__.py +0 -0
- matrice_analytics/post_processing/ocr/easyocr_extractor.py +248 -0
- matrice_analytics/post_processing/ocr/postprocessing.py +271 -0
- matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
- matrice_analytics/post_processing/post_processor.py +1153 -0
- matrice_analytics/post_processing/test_cases/__init__.py +1 -0
- matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
- matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
- matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
- matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
- matrice_analytics/post_processing/test_cases/test_config.py +852 -0
- matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
- matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
- matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
- matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
- matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
- matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
- matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
- matrice_analytics/post_processing/usecases/__init__.py +267 -0
- matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
- matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
- matrice_analytics/post_processing/usecases/age_detection.py +842 -0
- matrice_analytics/post_processing/usecases/age_gender_detection.py +1043 -0
- matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
- matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
- matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
- matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
- matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
- matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
- matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
- matrice_analytics/post_processing/usecases/car_service.py +1601 -0
- matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
- matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
- matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
- matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
- matrice_analytics/post_processing/usecases/color/clip.py +232 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
- matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
- matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
- matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
- matrice_analytics/post_processing/usecases/color_detection.py +1835 -0
- matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
- matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
- matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
- matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
- matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
- matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
- matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +930 -0
- matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
- matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
- matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
- matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
- matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
- matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
- matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
- matrice_analytics/post_processing/usecases/fire_detection.py +1112 -0
- matrice_analytics/post_processing/usecases/flare_analysis.py +891 -0
- matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
- matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
- matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
- matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
- matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
- matrice_analytics/post_processing/usecases/leaf.py +821 -0
- matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
- matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
- matrice_analytics/post_processing/usecases/license_plate_detection.py +914 -0
- matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1194 -0
- matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
- matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
- matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
- matrice_analytics/post_processing/usecases/parking.py +787 -0
- matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
- matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
- matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
- matrice_analytics/post_processing/usecases/people_counting.py +1728 -0
- matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
- matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
- matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
- matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
- matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
- matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
- matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
- matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
- matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
- matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
- matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
- matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
- matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
- matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
- matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
- matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
- matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
- matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
- matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
- matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
- matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
- matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
- matrice_analytics/post_processing/usecases/vehicle_monitoring.py +950 -0
- matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
- matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
- matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
- matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
- matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
- matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
- matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
- matrice_analytics/post_processing/utils/__init__.py +150 -0
- matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
- matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
- matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
- matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
- matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
- matrice_analytics/post_processing/utils/color_utils.py +592 -0
- matrice_analytics/post_processing/utils/counting_utils.py +182 -0
- matrice_analytics/post_processing/utils/filter_utils.py +261 -0
- matrice_analytics/post_processing/utils/format_utils.py +293 -0
- matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
- matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
- matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
- matrice_analytics/py.typed +0 -0
- matrice_analytics-0.1.2.dist-info/METADATA +481 -0
- matrice_analytics-0.1.2.dist-info/RECORD +160 -0
- matrice_analytics-0.1.2.dist-info/WHEEL +5 -0
- matrice_analytics-0.1.2.dist-info/licenses/LICENSE.txt +21 -0
- matrice_analytics-0.1.2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1194 @@
|
|
|
1
|
+
from typing import Any, Dict, List, Optional
|
|
2
|
+
from dataclasses import asdict, dataclass, field
|
|
3
|
+
import time
|
|
4
|
+
from datetime import datetime, timezone
|
|
5
|
+
import copy
|
|
6
|
+
import tempfile
|
|
7
|
+
import os
|
|
8
|
+
from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol
|
|
9
|
+
from ..utils import (
|
|
10
|
+
filter_by_confidence,
|
|
11
|
+
filter_by_categories,
|
|
12
|
+
apply_category_mapping,
|
|
13
|
+
count_objects_by_category,
|
|
14
|
+
count_objects_in_zones,
|
|
15
|
+
calculate_counting_summary,
|
|
16
|
+
match_results_structure,
|
|
17
|
+
bbox_smoothing,
|
|
18
|
+
BBoxSmoothingConfig,
|
|
19
|
+
BBoxSmoothingTracker
|
|
20
|
+
)
|
|
21
|
+
# External dependencies
|
|
22
|
+
import cv2
|
|
23
|
+
import numpy as np
|
|
24
|
+
#import torch
|
|
25
|
+
import re
|
|
26
|
+
from collections import Counter, defaultdict
|
|
27
|
+
#from turbojpeg import TurboJPEG, TJPF_RGB
|
|
28
|
+
os.environ["ORT_LOG_SEVERITY_LEVEL"] = "3"
|
|
29
|
+
# Fast license-plate OCR (replaces EasyOCR)
|
|
30
|
+
# Attempt to import fast_plate_ocr; fall back to a stub if unavailable
|
|
31
|
+
try:
|
|
32
|
+
from fast_plate_ocr import LicensePlateRecognizer # type: ignore
|
|
33
|
+
except: # pragma: no cover – optional dependency may be absent
|
|
34
|
+
class LicensePlateRecognizer: # type: ignore
|
|
35
|
+
"""Stub fallback when fast_plate_ocr is not installed."""
|
|
36
|
+
def __init__(self, *args, **kwargs):
|
|
37
|
+
print("fast_plate_ocr is required for LicensePlateMonitorUseCase but is not installed.")
|
|
38
|
+
|
|
39
|
+
# Internal utilities that are still required
|
|
40
|
+
from ..ocr.preprocessing import ImagePreprocessor
|
|
41
|
+
from ..core.config import BaseConfig, AlertConfig, ZoneConfig
|
|
42
|
+
|
|
43
|
+
# (Catch import errors early in the logs)
|
|
44
|
+
try:
|
|
45
|
+
_ = LicensePlateRecognizer # noqa: B018 – reference to quiet linters
|
|
46
|
+
except Exception as _e:
|
|
47
|
+
print(f"Warning: fast_plate_ocr could not be imported ⇒ {_e}")
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
@dataclass
|
|
51
|
+
class LicensePlateMonitorConfig(BaseConfig):
|
|
52
|
+
"""Configuration for License plate detection use case in License plate monitoring."""
|
|
53
|
+
enable_smoothing: bool = False
|
|
54
|
+
smoothing_algorithm: str = "observability" # "window" or "observability"
|
|
55
|
+
smoothing_window_size: int = 20
|
|
56
|
+
smoothing_cooldown_frames: int = 5
|
|
57
|
+
smoothing_confidence_range_factor: float = 0.5
|
|
58
|
+
confidence_threshold: float = 0.5
|
|
59
|
+
frame_skip: int = 1
|
|
60
|
+
fps: Optional[float] = None
|
|
61
|
+
bbox_format: str = "auto"
|
|
62
|
+
usecase_categories: List[str] = field(default_factory=lambda: ['license_plate'])
|
|
63
|
+
target_categories: List[str] = field(default_factory=lambda: ['license_plate'])
|
|
64
|
+
alert_config: Optional[AlertConfig] = None
|
|
65
|
+
index_to_category: Optional[Dict[int, str]] = field(default_factory=lambda: {0: "license_plate"})
|
|
66
|
+
language: List[str] = field(default_factory=lambda: ['en'])
|
|
67
|
+
country: str = field(default_factory=lambda: 'us')
|
|
68
|
+
ocr_mode:str = field(default_factory=lambda: "numeric") # "alphanumeric" or "numeric" or "alphabetic"
|
|
69
|
+
|
|
70
|
+
def validate(self) -> List[str]:
|
|
71
|
+
"""Validate configuration parameters."""
|
|
72
|
+
errors = super().validate()
|
|
73
|
+
if self.confidence_threshold < 0 or self.confidence_threshold > 1:
|
|
74
|
+
errors.append("confidence_threshold must be between 0 and 1")
|
|
75
|
+
if self.frame_skip <= 0:
|
|
76
|
+
errors.append("frame_skip must be positive")
|
|
77
|
+
if self.bbox_format not in ["auto", "xmin_ymin_xmax_ymax", "x_y_width_height"]:
|
|
78
|
+
errors.append("bbox_format must be one of: auto, xmin_ymin_xmax_ymax, x_y_width_height")
|
|
79
|
+
if self.smoothing_window_size <= 0:
|
|
80
|
+
errors.append("smoothing_window_size must be positive")
|
|
81
|
+
if self.smoothing_cooldown_frames < 0:
|
|
82
|
+
errors.append("smoothing_cooldown_frames cannot be negative")
|
|
83
|
+
if self.smoothing_confidence_range_factor <= 0:
|
|
84
|
+
errors.append("smoothing_confidence_range_factor must be positive")
|
|
85
|
+
return errors
|
|
86
|
+
|
|
87
|
+
class LicensePlateMonitorUseCase(BaseProcessor):
|
|
88
|
+
CATEGORY_DISPLAY = {"license_plate": "license_plate"}
|
|
89
|
+
|
|
90
|
+
# --------------------------------------------------------------
|
|
91
|
+
# Shared resources (initialised once per process)
|
|
92
|
+
# --------------------------------------------------------------
|
|
93
|
+
_ocr_model: Optional[LicensePlateRecognizer] = None # Fast plate OCR
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
def __init__(self):
|
|
98
|
+
super().__init__("license_plate_monitor")
|
|
99
|
+
self.category = "license_plate_monitor"
|
|
100
|
+
self.target_categories = ['license_plate']
|
|
101
|
+
self.CASE_TYPE: Optional[str] = 'license_plate_monitor'
|
|
102
|
+
self.CASE_VERSION: Optional[str] = '1.3'
|
|
103
|
+
self.smoothing_tracker = None
|
|
104
|
+
self.tracker = None
|
|
105
|
+
self._total_frame_counter = 0
|
|
106
|
+
self._global_frame_offset = 0
|
|
107
|
+
self._tracking_start_time = None
|
|
108
|
+
self._track_aliases: Dict[Any, Any] = {}
|
|
109
|
+
self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
|
|
110
|
+
self._track_merge_iou_threshold: float = 0.05
|
|
111
|
+
self._track_merge_time_window: float = 7.0
|
|
112
|
+
self._ascending_alert_list: List[int] = []
|
|
113
|
+
self.current_incident_end_timestamp: str = "N/A"
|
|
114
|
+
self._seen_plate_texts = set()
|
|
115
|
+
# CHANGE: Added _tracked_plate_texts to store the longest plate_text per track_id
|
|
116
|
+
self._tracked_plate_texts: Dict[Any, str] = {}
|
|
117
|
+
# Containers for text stability & uniqueness
|
|
118
|
+
self._unique_plate_texts: Dict[str, str] = {} # cleaned_text -> original (longest)
|
|
119
|
+
# NEW: track-wise frequency of cleaned texts to pick the dominant variant per track
|
|
120
|
+
self._track_text_counts: Dict[Any, Counter] = defaultdict(Counter) # track_id -> Counter(cleaned_text -> count)
|
|
121
|
+
# Helper dictionary to keep history of plate texts per track
|
|
122
|
+
self.helper: Dict[Any, List[str]] = {}
|
|
123
|
+
# Map of track_id -> current dominant plate text
|
|
124
|
+
self.unique_plate_track: Dict[Any, str] = {}
|
|
125
|
+
self.image_preprocessor = ImagePreprocessor()
|
|
126
|
+
# Fast OCR model (shared across instances)
|
|
127
|
+
if LicensePlateMonitorUseCase._ocr_model is None:
|
|
128
|
+
try:
|
|
129
|
+
LicensePlateMonitorUseCase._ocr_model = LicensePlateRecognizer('cct-s-v1-global-model')
|
|
130
|
+
self.logger.info("LicensePlateRecognizer loaded successfully")
|
|
131
|
+
except Exception as e:
|
|
132
|
+
self.logger.warning(f"Failed to initialise LicensePlateRecognizer: {e}")
|
|
133
|
+
self.ocr_model = LicensePlateMonitorUseCase._ocr_model
|
|
134
|
+
# OCR text history for stability checks (text → consecutive frame count)
|
|
135
|
+
self._text_history: Dict[str, int] = {}
|
|
136
|
+
|
|
137
|
+
self.start_timer = None
|
|
138
|
+
#self.reset_timer = "2025-08-19-04:22:47.187574 UTC"
|
|
139
|
+
|
|
140
|
+
# Minimum length for a valid plate (after cleaning)
|
|
141
|
+
self._min_plate_len = 5
|
|
142
|
+
# number of consecutive frames a plate must appear to be considered "stable"
|
|
143
|
+
self._stable_frames_required = 3
|
|
144
|
+
self._non_alnum_regex = re.compile(r"[^A-Za-z0-9]+")
|
|
145
|
+
self._ocr_mode = None
|
|
146
|
+
#self.jpeg = TurboJPEG()
|
|
147
|
+
|
|
148
|
+
|
|
149
|
+
def reset_tracker(self) -> None:
|
|
150
|
+
"""Reset the advanced tracker instance."""
|
|
151
|
+
if self.tracker is not None:
|
|
152
|
+
self.tracker.reset()
|
|
153
|
+
self.logger.info("AdvancedTracker reset for new tracking session")
|
|
154
|
+
|
|
155
|
+
def reset_plate_tracking(self) -> None:
|
|
156
|
+
"""Reset plate tracking state."""
|
|
157
|
+
self._seen_plate_texts = set()
|
|
158
|
+
# CHANGE: Reset _tracked_plate_texts
|
|
159
|
+
self._tracked_plate_texts = {}
|
|
160
|
+
self._total_frame_counter = 0
|
|
161
|
+
self._global_frame_offset = 0
|
|
162
|
+
self._text_history = {}
|
|
163
|
+
self._unique_plate_texts = {}
|
|
164
|
+
self.helper = {}
|
|
165
|
+
self.unique_plate_track = {}
|
|
166
|
+
self.logger.info("Plate tracking state reset")
|
|
167
|
+
|
|
168
|
+
def reset_all_tracking(self) -> None:
|
|
169
|
+
"""Reset both advanced tracker and plate tracking state."""
|
|
170
|
+
self.reset_tracker()
|
|
171
|
+
self.reset_plate_tracking()
|
|
172
|
+
self.logger.info("All plate tracking state reset")
|
|
173
|
+
|
|
174
|
+
def process(self, data: Any, config: ConfigProtocol, input_bytes: Optional[bytes] = None,
|
|
175
|
+
context: Optional[ProcessingContext] = None, stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
|
|
176
|
+
processing_start = time.time()
|
|
177
|
+
try:
|
|
178
|
+
if not isinstance(config, LicensePlateMonitorConfig):
|
|
179
|
+
return self.create_error_result("Invalid configuration type for license plate monitoring",
|
|
180
|
+
usecase=self.name, category=self.category, context=context)
|
|
181
|
+
|
|
182
|
+
if context is None:
|
|
183
|
+
context = ProcessingContext()
|
|
184
|
+
|
|
185
|
+
if not input_bytes:
|
|
186
|
+
return self.create_error_result("input_bytes (video/image) is required for license plate monitoring",
|
|
187
|
+
usecase=self.name, category=self.category, context=context)
|
|
188
|
+
|
|
189
|
+
print("--------------------------------------")
|
|
190
|
+
print("config.alert_config",config.alert_config)
|
|
191
|
+
print(config)
|
|
192
|
+
print("--------------------------------------")
|
|
193
|
+
|
|
194
|
+
# Normalize alert_config if provided as a plain dict (JS JSON)
|
|
195
|
+
if isinstance(getattr(config, 'alert_config', None), dict):
|
|
196
|
+
try:
|
|
197
|
+
config.alert_config = AlertConfig(**config.alert_config) # type: ignore[arg-type]
|
|
198
|
+
except Exception:
|
|
199
|
+
pass
|
|
200
|
+
|
|
201
|
+
# Initialize OCR extractor if not already done
|
|
202
|
+
if self.ocr_model is None:
|
|
203
|
+
self.logger.info("Lazy initialisation fallback (should rarely happen)")
|
|
204
|
+
try:
|
|
205
|
+
LicensePlateMonitorUseCase._ocr_model = LicensePlateRecognizer('cct-s-v1-global-model')
|
|
206
|
+
self.ocr_model = LicensePlateMonitorUseCase._ocr_model
|
|
207
|
+
except Exception as e:
|
|
208
|
+
return self.create_error_result(
|
|
209
|
+
f"Failed to initialise OCR model: {e}",
|
|
210
|
+
usecase=self.name,
|
|
211
|
+
category=self.category,
|
|
212
|
+
context=context,
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
input_format = match_results_structure(data)
|
|
216
|
+
context.input_format = input_format
|
|
217
|
+
context.confidence_threshold = config.confidence_threshold
|
|
218
|
+
self._ocr_mode = config.ocr_mode
|
|
219
|
+
self.logger.info(f"Processing license plate monitoring with format: {input_format.value}")
|
|
220
|
+
|
|
221
|
+
# Step 1: Apply confidence filtering 1
|
|
222
|
+
# print("---------CONFIDENCE FILTERING",config.confidence_threshold)
|
|
223
|
+
# print("---------DATA1--------------",data)
|
|
224
|
+
processed_data = filter_by_confidence(data, config.confidence_threshold)
|
|
225
|
+
#self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
|
|
226
|
+
|
|
227
|
+
# Step 2: Apply category mapping if provided
|
|
228
|
+
if config.index_to_category:
|
|
229
|
+
processed_data = apply_category_mapping(processed_data, config.index_to_category)
|
|
230
|
+
#self.logger.debug("Applied category mapping")
|
|
231
|
+
#print("---------DATA2--------------",processed_data)
|
|
232
|
+
# Step 3: Filter to target categories (handle dict or list)
|
|
233
|
+
if isinstance(processed_data, dict):
|
|
234
|
+
processed_data = processed_data.get("detections", [])
|
|
235
|
+
# Accept case-insensitive category values and allow overriding via config
|
|
236
|
+
effective_targets = getattr(config, 'target_categories', self.target_categories) or self.target_categories
|
|
237
|
+
targets_lower = {str(cat).lower() for cat in effective_targets}
|
|
238
|
+
processed_data = [d for d in processed_data if str(d.get('category', '')).lower() in targets_lower]
|
|
239
|
+
#self.logger.debug("Applied category filtering")
|
|
240
|
+
|
|
241
|
+
raw_processed_data = [copy.deepcopy(det) for det in processed_data]
|
|
242
|
+
#print("---------DATA2--------------",processed_data)
|
|
243
|
+
# Step 4: Apply bounding box smoothing if enabled
|
|
244
|
+
if config.enable_smoothing:
|
|
245
|
+
if self.smoothing_tracker is None:
|
|
246
|
+
smoothing_config = BBoxSmoothingConfig(
|
|
247
|
+
smoothing_algorithm=config.smoothing_algorithm,
|
|
248
|
+
window_size=config.smoothing_window_size,
|
|
249
|
+
cooldown_frames=config.smoothing_cooldown_frames,
|
|
250
|
+
confidence_threshold=config.confidence_threshold,
|
|
251
|
+
confidence_range_factor=config.smoothing_confidence_range_factor,
|
|
252
|
+
enable_smoothing=True
|
|
253
|
+
)
|
|
254
|
+
self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
|
|
255
|
+
processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
|
|
256
|
+
|
|
257
|
+
# Step 5: Apply advanced tracking
|
|
258
|
+
try:
|
|
259
|
+
from ..advanced_tracker import AdvancedTracker
|
|
260
|
+
from ..advanced_tracker.config import TrackerConfig
|
|
261
|
+
if self.tracker is None:
|
|
262
|
+
tracker_config = TrackerConfig(
|
|
263
|
+
track_high_thresh=float(config.confidence_threshold),
|
|
264
|
+
track_low_thresh=max(0.05, float(config.confidence_threshold) / 2),
|
|
265
|
+
new_track_thresh=float(config.confidence_threshold)
|
|
266
|
+
)
|
|
267
|
+
self.tracker = AdvancedTracker(tracker_config)
|
|
268
|
+
self.logger.info(f"Initialized AdvancedTracker with thresholds: high={tracker_config.track_high_thresh}, "
|
|
269
|
+
f"low={tracker_config.track_low_thresh}, new={tracker_config.new_track_thresh}")
|
|
270
|
+
processed_data = self.tracker.update(processed_data)
|
|
271
|
+
except Exception as e:
|
|
272
|
+
self.logger.warning(f"AdvancedTracker failed: {e}")
|
|
273
|
+
#print("---------DATA3--------------",processed_data)
|
|
274
|
+
# Step 6: Update tracking state
|
|
275
|
+
self._update_tracking_state(processed_data)
|
|
276
|
+
#print("---------DATA4--------------",processed_data)
|
|
277
|
+
# Step 7: Attach masks to detections
|
|
278
|
+
processed_data = self._attach_masks_to_detections(processed_data, raw_processed_data)
|
|
279
|
+
#print("---------DATA5--------------",processed_data)
|
|
280
|
+
# Step 8: Perform OCR on media
|
|
281
|
+
ocr_analysis = self._analyze_ocr_in_media(processed_data, input_bytes, config)
|
|
282
|
+
|
|
283
|
+
#print("ocr_analysis", ocr_analysis)
|
|
284
|
+
|
|
285
|
+
# Step 9: Update plate texts
|
|
286
|
+
#print("---------DATA6--------------",processed_data)
|
|
287
|
+
processed_data = self._update_detections_with_ocr(processed_data, ocr_analysis)
|
|
288
|
+
self._update_plate_texts(processed_data)
|
|
289
|
+
|
|
290
|
+
# Step 10: Update frame counter
|
|
291
|
+
self._total_frame_counter += 1
|
|
292
|
+
|
|
293
|
+
# Step 11: Extract frame information
|
|
294
|
+
frame_number = None
|
|
295
|
+
if stream_info:
|
|
296
|
+
input_settings = stream_info.get("input_settings", {})
|
|
297
|
+
start_frame = input_settings.get("start_frame")
|
|
298
|
+
end_frame = input_settings.get("end_frame")
|
|
299
|
+
if start_frame is not None and end_frame is not None and start_frame == end_frame:
|
|
300
|
+
frame_number = start_frame
|
|
301
|
+
|
|
302
|
+
# Step 12: Calculate summaries
|
|
303
|
+
counting_summary = self._count_categories(processed_data, config)
|
|
304
|
+
counting_summary['total_counts'] = self.get_total_counts()
|
|
305
|
+
|
|
306
|
+
# Step 13: Generate alerts and summaries
|
|
307
|
+
alerts = self._check_alerts(counting_summary, frame_number, config)
|
|
308
|
+
incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
|
|
309
|
+
tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number, stream_info)
|
|
310
|
+
business_analytics_list = []
|
|
311
|
+
summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
|
|
312
|
+
|
|
313
|
+
# Step 14: Build result
|
|
314
|
+
incidents = incidents_list[0] if incidents_list else {}
|
|
315
|
+
tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
|
|
316
|
+
business_analytics = business_analytics_list[0] if business_analytics_list else {}
|
|
317
|
+
summary = summary_list[0] if summary_list else {}
|
|
318
|
+
# Build LPR_dict (per-track history) and counter (dominant in last 50%)
|
|
319
|
+
LPR_dict = {}
|
|
320
|
+
counter = {}
|
|
321
|
+
for tid, history in self.helper.items():
|
|
322
|
+
if not history:
|
|
323
|
+
continue
|
|
324
|
+
LPR_dict[str(tid)] = list(history)
|
|
325
|
+
# dominant from last 50%
|
|
326
|
+
half = max(1, len(history) // 2)
|
|
327
|
+
window = history[-half:]
|
|
328
|
+
from collections import Counter as _Ctr
|
|
329
|
+
dom, cnt = _Ctr(window).most_common(1)[0]
|
|
330
|
+
counter[str(tid)] = {"plate": dom, "count": cnt}
|
|
331
|
+
|
|
332
|
+
agg_summary = {str(frame_number): {
|
|
333
|
+
"incidents": incidents,
|
|
334
|
+
"tracking_stats": tracking_stats,
|
|
335
|
+
"business_analytics": business_analytics,
|
|
336
|
+
"alerts": alerts,
|
|
337
|
+
"human_text": summary
|
|
338
|
+
}}
|
|
339
|
+
|
|
340
|
+
context.mark_completed()
|
|
341
|
+
result = self.create_result(
|
|
342
|
+
data={"agg_summary": agg_summary},
|
|
343
|
+
usecase=self.name,
|
|
344
|
+
category=self.category,
|
|
345
|
+
context=context
|
|
346
|
+
)
|
|
347
|
+
proc_time = time.time() - processing_start
|
|
348
|
+
processing_latency_ms = proc_time * 1000.0
|
|
349
|
+
processing_fps = (1.0 / proc_time) if proc_time > 0 else None
|
|
350
|
+
# Log the performance metrics using the module-level logger
|
|
351
|
+
print("latency in ms:",processing_latency_ms,"| Throughput fps:",processing_fps,"| Frame_Number:",self._total_frame_counter)
|
|
352
|
+
|
|
353
|
+
return result
|
|
354
|
+
|
|
355
|
+
except Exception as e:
|
|
356
|
+
self.logger.error(f"License plate monitoring failed: {str(e)}", exc_info=True)
|
|
357
|
+
if context:
|
|
358
|
+
context.mark_completed()
|
|
359
|
+
return self.create_error_result(str(e), type(e).__name__, usecase=self.name, category=self.category, context=context)
|
|
360
|
+
|
|
361
|
+
def _is_video_bytes(self, media_bytes: bytes) -> bool:
|
|
362
|
+
"""Determine if bytes represent a video file."""
|
|
363
|
+
video_signatures = [
|
|
364
|
+
b'\x00\x00\x00\x20ftypmp4', # MP4
|
|
365
|
+
b'\x00\x00\x00\x18ftypmp4', # MP4 variant
|
|
366
|
+
b'RIFF', # AVI
|
|
367
|
+
b'\x1aE\xdf\xa3', # MKV/WebM
|
|
368
|
+
b'ftyp', # General MP4 family
|
|
369
|
+
]
|
|
370
|
+
for signature in video_signatures:
|
|
371
|
+
if media_bytes.startswith(signature) or signature in media_bytes[:50]:
|
|
372
|
+
return True
|
|
373
|
+
return False
|
|
374
|
+
|
|
375
|
+
def _analyze_ocr_in_media(self, data: Any, media_bytes: bytes, config: LicensePlateMonitorConfig) -> List[Dict[str, Any]]:
|
|
376
|
+
"""Analyze OCR of license plates in video frames or images."""
|
|
377
|
+
return self._analyze_ocr_in_image(data, media_bytes, config)
|
|
378
|
+
|
|
379
|
+
|
|
380
|
+
def _analyze_ocr_in_image(self, data: Any, image_bytes: bytes, config: LicensePlateMonitorConfig) -> List[Dict[str, Any]]:
|
|
381
|
+
"""Analyze OCR in a single image."""
|
|
382
|
+
image_array = np.frombuffer(image_bytes, np.uint8)
|
|
383
|
+
image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
|
|
384
|
+
#image = self.jpeg.decode(image_bytes, pixel_format=TJPF_RGB) #cv2.imdecode(image_array, cv2.IMREAD_UNCHANGED)
|
|
385
|
+
|
|
386
|
+
if image is None:
|
|
387
|
+
raise RuntimeError("Failed to decode image from bytes")
|
|
388
|
+
|
|
389
|
+
rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
390
|
+
ocr_analysis = []
|
|
391
|
+
detections = self._get_frame_detections(data, "0")
|
|
392
|
+
|
|
393
|
+
#print("OCR-detections", detections)
|
|
394
|
+
|
|
395
|
+
for detection in detections:
|
|
396
|
+
#print("---------OCR DETECTION",detection)
|
|
397
|
+
if detection.get("confidence", 1.0) < config.confidence_threshold:
|
|
398
|
+
continue
|
|
399
|
+
|
|
400
|
+
bbox = detection.get("bounding_box", detection.get("bbox"))
|
|
401
|
+
#print("---------OCR BBOX",bbox)
|
|
402
|
+
if not bbox:
|
|
403
|
+
continue
|
|
404
|
+
|
|
405
|
+
crop = self._crop_bbox(rgb_image, bbox, config.bbox_format)
|
|
406
|
+
#print("---------OCR CROP SIZEE",crop.size)
|
|
407
|
+
if crop.size == 0:
|
|
408
|
+
continue
|
|
409
|
+
|
|
410
|
+
plate_text_raw = self._run_ocr(crop)
|
|
411
|
+
#print("---------OCR PLATE TEXT",plate_text_raw)
|
|
412
|
+
plate_text = plate_text_raw if plate_text_raw else None
|
|
413
|
+
|
|
414
|
+
ocr_record = {
|
|
415
|
+
"frame_id": "0",
|
|
416
|
+
"timestamp": 0.0,
|
|
417
|
+
"category": detection.get("category", ""),
|
|
418
|
+
"confidence": round(detection.get("confidence", 0.0), 3),
|
|
419
|
+
"plate_text": plate_text,
|
|
420
|
+
"bbox": bbox,
|
|
421
|
+
"detection_id": detection.get("id", f"det_{len(ocr_analysis)}"),
|
|
422
|
+
"track_id": detection.get("track_id")
|
|
423
|
+
}
|
|
424
|
+
ocr_analysis.append(ocr_record)
|
|
425
|
+
|
|
426
|
+
return ocr_analysis
|
|
427
|
+
|
|
428
|
+
def _crop_bbox(self, image: np.ndarray, bbox: Dict[str, Any], bbox_format: str) -> np.ndarray:
|
|
429
|
+
"""Crop bounding box region from image."""
|
|
430
|
+
h, w = image.shape[:2]
|
|
431
|
+
|
|
432
|
+
if bbox_format == "auto":
|
|
433
|
+
if "xmin" in bbox:
|
|
434
|
+
bbox_format = "xmin_ymin_xmax_ymax"
|
|
435
|
+
elif "x" in bbox:
|
|
436
|
+
bbox_format = "x_y_width_height"
|
|
437
|
+
else:
|
|
438
|
+
return np.zeros((0, 0, 3), dtype=np.uint8)
|
|
439
|
+
|
|
440
|
+
if bbox_format == "xmin_ymin_xmax_ymax":
|
|
441
|
+
xmin = max(0, int(bbox["xmin"]))
|
|
442
|
+
ymin = max(0, int(bbox["ymin"]))
|
|
443
|
+
xmax = min(w, int(bbox["xmax"]))
|
|
444
|
+
ymax = min(h, int(bbox["ymax"]))
|
|
445
|
+
elif bbox_format == "x_y_width_height":
|
|
446
|
+
xmin = max(0, int(bbox["x"]))
|
|
447
|
+
ymin = max(0, int(bbox["y"]))
|
|
448
|
+
xmax = min(w, int(bbox["x"] + bbox["width"]))
|
|
449
|
+
ymax = min(h, int(bbox["y"] + bbox["height"]))
|
|
450
|
+
else:
|
|
451
|
+
return np.zeros((0, 0, 3), dtype=np.uint8)
|
|
452
|
+
|
|
453
|
+
return image[ymin:ymax, xmin:xmax]
|
|
454
|
+
|
|
455
|
+
# ------------------------------------------------------------------
|
|
456
|
+
# Fast OCR helpers
|
|
457
|
+
# ------------------------------------------------------------------
|
|
458
|
+
def _clean_text(self, text: str) -> str:
|
|
459
|
+
"""Sanitise OCR output to keep only alphanumerics and uppercase."""
|
|
460
|
+
if not text:
|
|
461
|
+
return ""
|
|
462
|
+
return self._non_alnum_regex.sub('', text).upper()
|
|
463
|
+
|
|
464
|
+
def _run_ocr(self, crop: np.ndarray) -> str:
|
|
465
|
+
"""Run OCR on a cropped plate image and return cleaned text or empty string."""
|
|
466
|
+
# print("---------OCR CROP22",crop)
|
|
467
|
+
# print("---------OCR CROP SIZE22",crop.size)
|
|
468
|
+
|
|
469
|
+
if crop is None or crop.size == 0 or self.ocr_model is None:
|
|
470
|
+
return ""
|
|
471
|
+
try:
|
|
472
|
+
# fast_plate_ocr expects RGB
|
|
473
|
+
#rgb_crop = cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)
|
|
474
|
+
res = self.ocr_model.run(crop)
|
|
475
|
+
if isinstance(res, list):
|
|
476
|
+
res = res[0] if res else ""
|
|
477
|
+
cleaned_text = self._clean_text(str(res))
|
|
478
|
+
if cleaned_text and len(cleaned_text) >= self._min_plate_len:
|
|
479
|
+
if self._ocr_mode == "numeric":
|
|
480
|
+
response = all(ch.isdigit() for ch in cleaned_text)
|
|
481
|
+
elif self._ocr_mode == "alphabetic":
|
|
482
|
+
response = all(ch.isalpha() for ch in cleaned_text)
|
|
483
|
+
elif self._ocr_mode == "alphanumeric":
|
|
484
|
+
response = True
|
|
485
|
+
|
|
486
|
+
if response:
|
|
487
|
+
return cleaned_text
|
|
488
|
+
else:
|
|
489
|
+
return ""
|
|
490
|
+
except Exception as exc:
|
|
491
|
+
self.logger.warning(f"OCR failed: {exc}")
|
|
492
|
+
return ""
|
|
493
|
+
|
|
494
|
+
def _get_frame_detections(self, data: Any, frame_key: str) -> List[Dict[str, Any]]:
|
|
495
|
+
"""Extract detections for a specific frame from data."""
|
|
496
|
+
if isinstance(data, dict):
|
|
497
|
+
return data.get(frame_key, [])
|
|
498
|
+
elif isinstance(data, list):
|
|
499
|
+
return data
|
|
500
|
+
else:
|
|
501
|
+
return []
|
|
502
|
+
|
|
503
|
+
def _update_detections_with_ocr(self, detections: List[Dict[str, Any]], ocr_analysis: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
|
504
|
+
"""Update detections with OCR results using track_id or bounding box for matching."""
|
|
505
|
+
#print("---------UPDATE DETECTIONS WITH OCR",ocr_analysis)
|
|
506
|
+
ocr_dict = {}
|
|
507
|
+
for rec in ocr_analysis:
|
|
508
|
+
if rec.get("plate_text"):
|
|
509
|
+
# Primary key: track_id
|
|
510
|
+
track_id = rec.get("track_id")
|
|
511
|
+
if track_id is not None:
|
|
512
|
+
ocr_dict[track_id] = rec["plate_text"]
|
|
513
|
+
# Fallback key: bounding box as tuple
|
|
514
|
+
else:
|
|
515
|
+
bbox_key = tuple(sorted(rec["bbox"].items())) if rec.get("bbox") else None
|
|
516
|
+
if bbox_key:
|
|
517
|
+
ocr_dict[bbox_key] = rec["plate_text"]
|
|
518
|
+
#self.logger.info(f"OCR record: track_id={track_id}, plate_text={rec.get('plate_text')}, bbox={rec.get('bbox')}")
|
|
519
|
+
|
|
520
|
+
#print("---------UPDATE DETECTIONS WITH OCR -II",ocr_dict)
|
|
521
|
+
for det in detections:
|
|
522
|
+
track_id = det.get("track_id")
|
|
523
|
+
bbox_key = tuple(sorted(det.get("bounding_box", det.get("bbox", {})).items())) if det.get("bounding_box") or det.get("bbox") else None
|
|
524
|
+
plate_text = None
|
|
525
|
+
if track_id is not None and track_id in ocr_dict:
|
|
526
|
+
plate_text = ocr_dict[track_id]
|
|
527
|
+
elif bbox_key and bbox_key in ocr_dict:
|
|
528
|
+
plate_text = ocr_dict[bbox_key]
|
|
529
|
+
det["plate_text"] = plate_text
|
|
530
|
+
#self.logger.info(f"Detection track_id={track_id}, bbox={det.get('bounding_box')}: Assigned plate_text={plate_text}")
|
|
531
|
+
return detections
|
|
532
|
+
|
|
533
|
+
def _count_categories(self, detections: List[Dict], config: LicensePlateMonitorConfig) -> Dict[str, Any]:
|
|
534
|
+
"""Count unique licence-plate texts per frame and attach detections."""
|
|
535
|
+
unique_texts: set = set()
|
|
536
|
+
valid_detections: List[Dict[str, Any]] = []
|
|
537
|
+
|
|
538
|
+
# Group detections by track_id for per-track dominance
|
|
539
|
+
tracks: Dict[Any, List[Dict[str, Any]]] = {}
|
|
540
|
+
for det in detections:
|
|
541
|
+
if not all(k in det for k in ['category', 'confidence', 'bounding_box']):
|
|
542
|
+
continue
|
|
543
|
+
tid = det.get('track_id')
|
|
544
|
+
if tid is None:
|
|
545
|
+
# If no track id, treat as its own pseudo-track keyed by bbox
|
|
546
|
+
tid = (det.get("bounding_box") or det.get("bbox"))
|
|
547
|
+
tracks.setdefault(tid, []).append(det)
|
|
548
|
+
|
|
549
|
+
for tid, dets in tracks.items():
|
|
550
|
+
# Pick a representative bbox (first occurrence)
|
|
551
|
+
rep = dets[0]
|
|
552
|
+
cat = rep.get('category', '')
|
|
553
|
+
bbox = rep.get('bounding_box')
|
|
554
|
+
conf = rep.get('confidence')
|
|
555
|
+
frame_id = rep.get('frame_id')
|
|
556
|
+
|
|
557
|
+
# Compute dominant text for this track from last 50% of history
|
|
558
|
+
dominant_text = None
|
|
559
|
+
history = self.helper.get(tid, [])
|
|
560
|
+
if history:
|
|
561
|
+
half = max(1, len(history) // 2)
|
|
562
|
+
window = history[-half:]
|
|
563
|
+
from collections import Counter as _Ctr
|
|
564
|
+
dominant_text, _ = _Ctr(window).most_common(1)[0]
|
|
565
|
+
elif rep.get('plate_text'):
|
|
566
|
+
candidate = self._clean_text(rep.get('plate_text', ''))
|
|
567
|
+
if self._min_plate_len <= len(candidate) <= 6:
|
|
568
|
+
dominant_text = candidate
|
|
569
|
+
|
|
570
|
+
# Fallback to already computed per-track mapping
|
|
571
|
+
if not dominant_text:
|
|
572
|
+
dominant_text = self.unique_plate_track.get(tid)
|
|
573
|
+
|
|
574
|
+
# Enforce length 5–6 and uniqueness per frame
|
|
575
|
+
if dominant_text and self._min_plate_len <= len(dominant_text) <= 6:
|
|
576
|
+
unique_texts.add(dominant_text)
|
|
577
|
+
valid_detections.append({
|
|
578
|
+
"bounding_box": bbox,
|
|
579
|
+
"category": cat,
|
|
580
|
+
"confidence": conf,
|
|
581
|
+
"track_id": rep.get('track_id'),
|
|
582
|
+
"frame_id": frame_id,
|
|
583
|
+
"masks": rep.get("masks", []),
|
|
584
|
+
"plate_text": dominant_text
|
|
585
|
+
})
|
|
586
|
+
|
|
587
|
+
counts = {"License_Plate": len(unique_texts)} if unique_texts else {}
|
|
588
|
+
|
|
589
|
+
return {
|
|
590
|
+
"total_count": len(unique_texts),
|
|
591
|
+
"per_category_count": counts,
|
|
592
|
+
"detections": valid_detections
|
|
593
|
+
}
|
|
594
|
+
|
|
595
|
+
def _generate_tracking_stats(self, counting_summary: Dict, alerts: Any, config: LicensePlateMonitorConfig,
|
|
596
|
+
frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[Dict]:
|
|
597
|
+
"""Generate structured tracking stats with frame-based keys."""
|
|
598
|
+
tracking_stats = []
|
|
599
|
+
total_detections = counting_summary.get("total_count", 0)
|
|
600
|
+
total_counts = counting_summary.get("total_counts", {})
|
|
601
|
+
cumulative_total = sum(set(total_counts.values())) if total_counts else 0
|
|
602
|
+
per_category_count = counting_summary.get("per_category_count", {})
|
|
603
|
+
track_ids_info = self._get_track_ids_info(counting_summary.get("detections", []))
|
|
604
|
+
current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
|
|
605
|
+
start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
|
|
606
|
+
high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
|
|
607
|
+
high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
|
|
608
|
+
camera_info = self.get_camera_info_from_stream(stream_info)
|
|
609
|
+
|
|
610
|
+
human_text_lines = []
|
|
611
|
+
#print("counting_summary", counting_summary)
|
|
612
|
+
human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}:")
|
|
613
|
+
if total_detections > 0:
|
|
614
|
+
category_counts = [f"{count} {cat}" for cat, count in per_category_count.items()]
|
|
615
|
+
detection_text = category_counts[0] + " detected" if len(category_counts) == 1 else f"{', '.join(category_counts[:-1])}, and {category_counts[-1]} detected"
|
|
616
|
+
human_text_lines.append(f"\t- {detection_text}")
|
|
617
|
+
# Show dominant per-track license plates for current frame
|
|
618
|
+
seen = set()
|
|
619
|
+
display_texts = []
|
|
620
|
+
for det in counting_summary.get("detections", []):
|
|
621
|
+
t = det.get("track_id")
|
|
622
|
+
dom = det.get("plate_text")
|
|
623
|
+
if not dom or not (self._min_plate_len <= len(dom) <= 6):
|
|
624
|
+
continue
|
|
625
|
+
if t in seen:
|
|
626
|
+
continue
|
|
627
|
+
seen.add(t)
|
|
628
|
+
display_texts.append(dom)
|
|
629
|
+
if display_texts:
|
|
630
|
+
human_text_lines.append(f"\t- License Plates: {', '.join(display_texts)}")
|
|
631
|
+
else:
|
|
632
|
+
human_text_lines.append(f"\t- No detections")
|
|
633
|
+
|
|
634
|
+
human_text_lines.append("")
|
|
635
|
+
human_text_lines.append(f"TOTAL SINCE {start_timestamp}:")
|
|
636
|
+
human_text_lines.append(f"\t- Total Detected: {cumulative_total}")
|
|
637
|
+
|
|
638
|
+
if self._unique_plate_texts:
|
|
639
|
+
human_text_lines.append("\t- Unique License Plates:")
|
|
640
|
+
for text in sorted(self._unique_plate_texts.values()):
|
|
641
|
+
human_text_lines.append(f"\t\t- {text}")
|
|
642
|
+
|
|
643
|
+
current_counts = [{"category": cat, "count": count} for cat, count in per_category_count.items() if count > 0 or total_detections > 0]
|
|
644
|
+
total_counts_list = [{"category": cat, "count": count} for cat, count in total_counts.items() if count > 0 or cumulative_total > 0]
|
|
645
|
+
|
|
646
|
+
human_text = "\n".join(human_text_lines)
|
|
647
|
+
detections = []
|
|
648
|
+
for detection in counting_summary.get("detections", []):
|
|
649
|
+
dom = detection.get("plate_text", "")
|
|
650
|
+
if not dom:
|
|
651
|
+
dom = "license_plate"
|
|
652
|
+
bbox = detection.get("bounding_box", {})
|
|
653
|
+
category = detection.get("category", "license_plate")
|
|
654
|
+
segmentation = detection.get("masks", detection.get("segmentation", detection.get("mask", [])))
|
|
655
|
+
detection_obj = self.create_detection_object(category, bbox, segmentation=None, plate_text=dom)
|
|
656
|
+
detections.append(detection_obj)
|
|
657
|
+
|
|
658
|
+
alert_settings = []
|
|
659
|
+
# Build alert settings tolerating dict or dataclass for alert_config
|
|
660
|
+
if config.alert_config:
|
|
661
|
+
alert_cfg = config.alert_config
|
|
662
|
+
alert_type = getattr(alert_cfg, 'alert_type', None) if not isinstance(alert_cfg, dict) else alert_cfg.get('alert_type')
|
|
663
|
+
alert_value = getattr(alert_cfg, 'alert_value', None) if not isinstance(alert_cfg, dict) else alert_cfg.get('alert_value')
|
|
664
|
+
count_thresholds = getattr(alert_cfg, 'count_thresholds', None) if not isinstance(alert_cfg, dict) else alert_cfg.get('count_thresholds')
|
|
665
|
+
alert_type = alert_type if isinstance(alert_type, list) else (list(alert_type) if alert_type is not None else ['Default'])
|
|
666
|
+
alert_value = alert_value if isinstance(alert_value, list) else (list(alert_value) if alert_value is not None else ['JSON'])
|
|
667
|
+
alert_settings.append({
|
|
668
|
+
"alert_type": alert_type,
|
|
669
|
+
"incident_category": self.CASE_TYPE,
|
|
670
|
+
"threshold_level": count_thresholds or {},
|
|
671
|
+
"ascending": True,
|
|
672
|
+
"settings": {t: v for t, v in zip(alert_type, alert_value)}
|
|
673
|
+
})
|
|
674
|
+
|
|
675
|
+
if alerts:
|
|
676
|
+
human_text_lines.append(f"Alerts: {alerts[0].get('settings', {})}")
|
|
677
|
+
else:
|
|
678
|
+
human_text_lines.append("Alerts: None")
|
|
679
|
+
|
|
680
|
+
human_text = "\n".join(human_text_lines)
|
|
681
|
+
reset_settings = [{"interval_type": "daily", "reset_time": {"value": 9, "time_unit": "hour"}}]
|
|
682
|
+
|
|
683
|
+
tracking_stat = self.create_tracking_stats(
|
|
684
|
+
total_counts=total_counts_list,
|
|
685
|
+
current_counts=current_counts,
|
|
686
|
+
detections=detections,
|
|
687
|
+
human_text=human_text,
|
|
688
|
+
camera_info=camera_info,
|
|
689
|
+
alerts=alerts,
|
|
690
|
+
alert_settings=alert_settings,
|
|
691
|
+
reset_settings=reset_settings,
|
|
692
|
+
start_time=high_precision_start_timestamp,
|
|
693
|
+
reset_time=high_precision_reset_timestamp
|
|
694
|
+
)
|
|
695
|
+
tracking_stats.append(tracking_stat)
|
|
696
|
+
return tracking_stats
|
|
697
|
+
|
|
698
|
+
def _check_alerts(self, summary: Dict, frame_number: Any, config: LicensePlateMonitorConfig) -> List[Dict]:
|
|
699
|
+
"""Check if any alert thresholds are exceeded."""
|
|
700
|
+
def get_trend(data, lookback=900, threshold=0.6):
|
|
701
|
+
window = data[-lookback:] if len(data) >= lookback else data
|
|
702
|
+
if len(window) < 2:
|
|
703
|
+
return True
|
|
704
|
+
increasing = sum(1 for i in range(1, len(window)) if window[i] >= window[i - 1])
|
|
705
|
+
return increasing / (len(window) - 1) >= threshold
|
|
706
|
+
|
|
707
|
+
frame_key = str(frame_number) if frame_number is not None else "current_frame"
|
|
708
|
+
alerts = []
|
|
709
|
+
total_detections = summary.get("total_count", 0)
|
|
710
|
+
total_counts_dict = summary.get("total_counts", {})
|
|
711
|
+
cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0
|
|
712
|
+
per_category_count = summary.get("per_category_count", {})
|
|
713
|
+
|
|
714
|
+
if not config.alert_config:
|
|
715
|
+
return alerts
|
|
716
|
+
|
|
717
|
+
# Extract thresholds regardless of dict/dataclass
|
|
718
|
+
_alert_cfg = config.alert_config
|
|
719
|
+
_thresholds = getattr(_alert_cfg, 'count_thresholds', None) if not isinstance(_alert_cfg, dict) else _alert_cfg.get('count_thresholds')
|
|
720
|
+
_types = getattr(_alert_cfg, 'alert_type', None) if not isinstance(_alert_cfg, dict) else _alert_cfg.get('alert_type')
|
|
721
|
+
_values = getattr(_alert_cfg, 'alert_value', None) if not isinstance(_alert_cfg, dict) else _alert_cfg.get('alert_value')
|
|
722
|
+
_types = _types if isinstance(_types, list) else (list(_types) if _types is not None else ['Default'])
|
|
723
|
+
_values = _values if isinstance(_values, list) else (list(_values) if _values is not None else ['JSON'])
|
|
724
|
+
if _thresholds:
|
|
725
|
+
for category, threshold in _thresholds.items():
|
|
726
|
+
if category == "all" and total_detections > threshold:
|
|
727
|
+
alerts.append({
|
|
728
|
+
"alert_type": _types,
|
|
729
|
+
"alert_id": f"alert_{category}_{frame_key}",
|
|
730
|
+
"incident_category": self.CASE_TYPE,
|
|
731
|
+
"threshold_level": threshold,
|
|
732
|
+
"ascending": get_trend(self._ascending_alert_list),
|
|
733
|
+
"settings": {t: v for t, v in zip(_types, _values)}
|
|
734
|
+
})
|
|
735
|
+
elif category in per_category_count and per_category_count[category] > threshold:
|
|
736
|
+
alerts.append({
|
|
737
|
+
"alert_type": _types,
|
|
738
|
+
"alert_id": f"alert_{category}_{frame_key}",
|
|
739
|
+
"incident_category": self.CASE_TYPE,
|
|
740
|
+
"threshold_level": threshold,
|
|
741
|
+
"ascending": get_trend(self._ascending_alert_list),
|
|
742
|
+
"settings": {t: v for t, v in zip(_types, _values)}
|
|
743
|
+
})
|
|
744
|
+
return alerts
|
|
745
|
+
|
|
746
|
+
def _generate_incidents(self, counting_summary: Dict, alerts: List, config: LicensePlateMonitorConfig,
|
|
747
|
+
frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[Dict]:
|
|
748
|
+
"""Generate structured incidents."""
|
|
749
|
+
frame_key = str(frame_number) if frame_number is not None else "current_frame"
|
|
750
|
+
incidents = []
|
|
751
|
+
total_detections = counting_summary.get("total_count", 0)
|
|
752
|
+
current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
|
|
753
|
+
camera_info = self.get_camera_info_from_stream(stream_info)
|
|
754
|
+
|
|
755
|
+
self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
|
|
756
|
+
|
|
757
|
+
if total_detections > 0:
|
|
758
|
+
level = "low"
|
|
759
|
+
intensity = 5.0
|
|
760
|
+
start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
|
|
761
|
+
if start_timestamp and self.current_incident_end_timestamp == 'N/A':
|
|
762
|
+
self.current_incident_end_timestamp = 'Incident still active'
|
|
763
|
+
elif start_timestamp and self.current_incident_end_timestamp == 'Incident still active':
|
|
764
|
+
if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
|
|
765
|
+
self.current_incident_end_timestamp = current_timestamp
|
|
766
|
+
elif self.current_incident_end_timestamp != 'Incident still active' and self.current_incident_end_timestamp != 'N/A':
|
|
767
|
+
self.current_incident_end_timestamp = 'N/A'
|
|
768
|
+
|
|
769
|
+
if config.alert_config and config.alert_config.count_thresholds:
|
|
770
|
+
threshold = config.alert_config.count_thresholds.get("all", 15)
|
|
771
|
+
intensity = min(10.0, (total_detections / threshold) * 10)
|
|
772
|
+
if intensity >= 9:
|
|
773
|
+
level = "critical"
|
|
774
|
+
self._ascending_alert_list.append(3)
|
|
775
|
+
elif intensity >= 7:
|
|
776
|
+
level = "significant"
|
|
777
|
+
self._ascending_alert_list.append(2)
|
|
778
|
+
elif intensity >= 5:
|
|
779
|
+
level = "medium"
|
|
780
|
+
self._ascending_alert_list.append(1)
|
|
781
|
+
else:
|
|
782
|
+
level = "low"
|
|
783
|
+
self._ascending_alert_list.append(0)
|
|
784
|
+
else:
|
|
785
|
+
if total_detections > 30:
|
|
786
|
+
level = "critical"
|
|
787
|
+
intensity = 10.0
|
|
788
|
+
self._ascending_alert_list.append(3)
|
|
789
|
+
elif total_detections > 25:
|
|
790
|
+
level = "significant"
|
|
791
|
+
intensity = 9.0
|
|
792
|
+
self._ascending_alert_list.append(2)
|
|
793
|
+
elif total_detections > 15:
|
|
794
|
+
level = "medium"
|
|
795
|
+
intensity = 7.0
|
|
796
|
+
self._ascending_alert_list.append(1)
|
|
797
|
+
else:
|
|
798
|
+
level = "low"
|
|
799
|
+
intensity = min(10.0, total_detections / 3.0)
|
|
800
|
+
self._ascending_alert_list.append(0)
|
|
801
|
+
|
|
802
|
+
human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
|
|
803
|
+
human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE, level)}")
|
|
804
|
+
human_text = "\n".join(human_text_lines)
|
|
805
|
+
|
|
806
|
+
alert_settings = []
|
|
807
|
+
if config.alert_config:
|
|
808
|
+
_alert_cfg = config.alert_config
|
|
809
|
+
_types = getattr(_alert_cfg, 'alert_type', None) if not isinstance(_alert_cfg, dict) else _alert_cfg.get('alert_type')
|
|
810
|
+
_values = getattr(_alert_cfg, 'alert_value', None) if not isinstance(_alert_cfg, dict) else _alert_cfg.get('alert_value')
|
|
811
|
+
_thresholds = getattr(_alert_cfg, 'count_thresholds', None) if not isinstance(_alert_cfg, dict) else _alert_cfg.get('count_thresholds')
|
|
812
|
+
_types = _types if isinstance(_types, list) else (list(_types) if _types is not None else ['Default'])
|
|
813
|
+
_values = _values if isinstance(_values, list) else (list(_values) if _values is not None else ['JSON'])
|
|
814
|
+
alert_settings.append({
|
|
815
|
+
"alert_type": _types,
|
|
816
|
+
"incident_category": self.CASE_TYPE,
|
|
817
|
+
"threshold_level": _thresholds or {},
|
|
818
|
+
"ascending": True,
|
|
819
|
+
"settings": {t: v for t, v in zip(_types, _values)}
|
|
820
|
+
})
|
|
821
|
+
|
|
822
|
+
event = self.create_incident(
|
|
823
|
+
incident_id=f"{self.CASE_TYPE}_{frame_key}",
|
|
824
|
+
incident_type=self.CASE_TYPE,
|
|
825
|
+
severity_level=level,
|
|
826
|
+
human_text=human_text,
|
|
827
|
+
camera_info=camera_info,
|
|
828
|
+
alerts=alerts,
|
|
829
|
+
alert_settings=alert_settings,
|
|
830
|
+
start_time=start_timestamp,
|
|
831
|
+
end_time=self.current_incident_end_timestamp,
|
|
832
|
+
level_settings={"low": 1, "medium": 3, "significant": 4, "critical": 7}
|
|
833
|
+
)
|
|
834
|
+
incidents.append(event)
|
|
835
|
+
else:
|
|
836
|
+
self._ascending_alert_list.append(0)
|
|
837
|
+
incidents.append({})
|
|
838
|
+
|
|
839
|
+
return incidents
|
|
840
|
+
|
|
841
|
+
def _generate_summary(self, summary: Dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
|
|
842
|
+
"""Generate a human-readable summary."""
|
|
843
|
+
"""
|
|
844
|
+
Generate a human_text string for the tracking_stat, incident, business analytics and alerts.
|
|
845
|
+
"""
|
|
846
|
+
lines = []
|
|
847
|
+
lines.append("Application Name: "+self.CASE_TYPE)
|
|
848
|
+
lines.append("Application Version: "+self.CASE_VERSION)
|
|
849
|
+
if len(incidents) > 0:
|
|
850
|
+
lines.append("Incidents: "+f"\n\t{incidents[0].get('human_text', 'No incidents detected')}")
|
|
851
|
+
if len(tracking_stats) > 0:
|
|
852
|
+
lines.append("Tracking Statistics: "+f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}")
|
|
853
|
+
if len(business_analytics) > 0:
|
|
854
|
+
lines.append("Business Analytics: "+f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}")
|
|
855
|
+
|
|
856
|
+
if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
|
|
857
|
+
lines.append("Summary: "+"No Summary Data")
|
|
858
|
+
|
|
859
|
+
return ["\n".join(lines)]
|
|
860
|
+
|
|
861
|
+
def _update_tracking_state(self, detections: List[Dict]):
|
|
862
|
+
"""Track unique track_ids per category."""
|
|
863
|
+
if not hasattr(self, "_per_category_total_track_ids"):
|
|
864
|
+
self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
|
|
865
|
+
self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
|
|
866
|
+
|
|
867
|
+
for det in detections:
|
|
868
|
+
cat = det.get("category")
|
|
869
|
+
raw_track_id = det.get("track_id")
|
|
870
|
+
if cat not in self.target_categories or raw_track_id is None:
|
|
871
|
+
continue
|
|
872
|
+
bbox = det.get("bounding_box", det.get("bbox"))
|
|
873
|
+
canonical_id = self._merge_or_register_track(raw_track_id, bbox)
|
|
874
|
+
det["track_id"] = canonical_id
|
|
875
|
+
self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
|
|
876
|
+
self._current_frame_track_ids[cat].add(canonical_id)
|
|
877
|
+
|
|
878
|
+
def _update_plate_texts(self, detections: List[Dict]):
|
|
879
|
+
"""Update set of seen plate texts and track the longest plate_text per track_id."""
|
|
880
|
+
for det in detections:
|
|
881
|
+
raw_text = det.get('plate_text')
|
|
882
|
+
track_id = det.get('track_id')
|
|
883
|
+
if not raw_text or track_id is None:
|
|
884
|
+
continue
|
|
885
|
+
|
|
886
|
+
cleaned = self._clean_text(raw_text)
|
|
887
|
+
|
|
888
|
+
# Enforce plate length 5 or 6 characters ("greater than 4 and less than 7")
|
|
889
|
+
if not (self._min_plate_len <= len(cleaned) <= 6):
|
|
890
|
+
continue
|
|
891
|
+
|
|
892
|
+
# Append to per-track rolling history (keep reasonable size)
|
|
893
|
+
history = self.helper.get(track_id)
|
|
894
|
+
if history is None:
|
|
895
|
+
history = []
|
|
896
|
+
self.helper[track_id] = history
|
|
897
|
+
history.append(cleaned)
|
|
898
|
+
if len(history) > 200:
|
|
899
|
+
del history[: len(history) - 200]
|
|
900
|
+
|
|
901
|
+
# Update per-track frequency counter (all-time)
|
|
902
|
+
self._track_text_counts[track_id][cleaned] += 1
|
|
903
|
+
|
|
904
|
+
# Update consecutive frame counter for stability across whole video
|
|
905
|
+
self._text_history[cleaned] = self._text_history.get(cleaned, 0) + 1
|
|
906
|
+
|
|
907
|
+
# Once stable, decide dominant text from LAST 50% of history
|
|
908
|
+
if self._text_history[cleaned] >= self._stable_frames_required:
|
|
909
|
+
half = max(1, len(history) // 2)
|
|
910
|
+
window = history[-half:]
|
|
911
|
+
from collections import Counter as _Ctr
|
|
912
|
+
dominant, _ = _Ctr(window).most_common(1)[0]
|
|
913
|
+
|
|
914
|
+
# Update per-track mapping to dominant
|
|
915
|
+
self._tracked_plate_texts[track_id] = dominant
|
|
916
|
+
self.unique_plate_track[track_id] = dominant
|
|
917
|
+
|
|
918
|
+
# Maintain global unique mapping with dominant only
|
|
919
|
+
if dominant not in self._unique_plate_texts:
|
|
920
|
+
self._unique_plate_texts[dominant] = dominant
|
|
921
|
+
|
|
922
|
+
# Reset counters for texts NOT seen in this frame (to preserve stability requirement)
|
|
923
|
+
current_frame_texts = {self._clean_text(det.get('plate_text', '')) for det in detections if det.get('plate_text')}
|
|
924
|
+
for t in list(self._text_history.keys()):
|
|
925
|
+
if t not in current_frame_texts:
|
|
926
|
+
self._text_history[t] = 0
|
|
927
|
+
|
|
928
|
+
def get_total_counts(self):
|
|
929
|
+
"""Return total unique license plate texts encountered so far."""
|
|
930
|
+
return {'License_Plate': len(self._unique_plate_texts)}
|
|
931
|
+
|
|
932
|
+
def _get_track_ids_info(self, detections: List[Dict]) -> Dict[str, Any]:
|
|
933
|
+
"""Get detailed information about track IDs."""
|
|
934
|
+
frame_track_ids = {det.get('track_id') for det in detections if det.get('track_id') is not None}
|
|
935
|
+
total_track_ids = set()
|
|
936
|
+
for s in getattr(self, '_per_category_total_track_ids', {}).values():
|
|
937
|
+
total_track_ids.update(s)
|
|
938
|
+
return {
|
|
939
|
+
"total_count": len(total_track_ids),
|
|
940
|
+
"current_frame_count": len(frame_track_ids),
|
|
941
|
+
"total_unique_track_ids": len(total_track_ids),
|
|
942
|
+
"current_frame_track_ids": list(frame_track_ids),
|
|
943
|
+
"last_update_time": time.time(),
|
|
944
|
+
"total_frames_processed": getattr(self, '_total_frame_counter', 0)
|
|
945
|
+
}
|
|
946
|
+
|
|
947
|
+
def _compute_iou(self, box1: Any, box2: Any) -> float:
|
|
948
|
+
"""Compute IoU between two bounding boxes."""
|
|
949
|
+
def _bbox_to_list(bbox):
|
|
950
|
+
if bbox is None:
|
|
951
|
+
return []
|
|
952
|
+
if isinstance(bbox, list):
|
|
953
|
+
return bbox[:4] if len(bbox) >= 4 else []
|
|
954
|
+
if isinstance(bbox, dict):
|
|
955
|
+
if "xmin" in bbox:
|
|
956
|
+
return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
|
|
957
|
+
if "x1" in bbox:
|
|
958
|
+
return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
|
|
959
|
+
values = [v for v in bbox.values() if isinstance(v, (int, float))]
|
|
960
|
+
return values[:4] if len(values) >= 4 else []
|
|
961
|
+
return []
|
|
962
|
+
|
|
963
|
+
l1 = _bbox_to_list(box1)
|
|
964
|
+
l2 = _bbox_to_list(box2)
|
|
965
|
+
if len(l1) < 4 or len(l2) < 4:
|
|
966
|
+
return 0.0
|
|
967
|
+
x1_min, y1_min, x1_max, y1_max = l1
|
|
968
|
+
x2_min, y2_min, x2_max, y2_max = l2
|
|
969
|
+
x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
|
|
970
|
+
y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
|
|
971
|
+
x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
|
|
972
|
+
y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
|
|
973
|
+
inter_x_min = max(x1_min, x2_min)
|
|
974
|
+
inter_y_min = max(y1_min, y2_min)
|
|
975
|
+
inter_x_max = min(x1_max, x2_max)
|
|
976
|
+
inter_y_max = min(y1_max, y2_max)
|
|
977
|
+
inter_w = max(0.0, inter_x_max - inter_x_min)
|
|
978
|
+
inter_h = max(0.0, inter_y_max - inter_y_min)
|
|
979
|
+
inter_area = inter_w * inter_h
|
|
980
|
+
area1 = (x1_max - x1_min) * (y1_max - y1_min)
|
|
981
|
+
area2 = (x2_max - x2_min) * (y2_max - y2_min)
|
|
982
|
+
union_area = area1 + area2 - inter_area
|
|
983
|
+
return (inter_area / union_area) if union_area > 0 else 0.0
|
|
984
|
+
|
|
985
|
+
def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
|
|
986
|
+
"""Return a stable canonical ID for a raw tracker ID."""
|
|
987
|
+
if raw_id is None or bbox is None:
|
|
988
|
+
return raw_id
|
|
989
|
+
now = time.time()
|
|
990
|
+
if raw_id in self._track_aliases:
|
|
991
|
+
canonical_id = self._track_aliases[raw_id]
|
|
992
|
+
track_info = self._canonical_tracks.get(canonical_id)
|
|
993
|
+
if track_info is not None:
|
|
994
|
+
track_info["last_bbox"] = bbox
|
|
995
|
+
track_info["last_update"] = now
|
|
996
|
+
track_info["raw_ids"].add(raw_id)
|
|
997
|
+
return canonical_id
|
|
998
|
+
for canonical_id, info in self._canonical_tracks.items():
|
|
999
|
+
if now - info["last_update"] > self._track_merge_time_window:
|
|
1000
|
+
continue
|
|
1001
|
+
iou = self._compute_iou(bbox, info["last_bbox"])
|
|
1002
|
+
if iou >= self._track_merge_iou_threshold:
|
|
1003
|
+
self._track_aliases[raw_id] = canonical_id
|
|
1004
|
+
info["last_bbox"] = bbox
|
|
1005
|
+
info["last_update"] = now
|
|
1006
|
+
info["raw_ids"].add(raw_id)
|
|
1007
|
+
return canonical_id
|
|
1008
|
+
canonical_id = raw_id
|
|
1009
|
+
self._track_aliases[raw_id] = canonical_id
|
|
1010
|
+
self._canonical_tracks[canonical_id] = {
|
|
1011
|
+
"last_bbox": bbox,
|
|
1012
|
+
"last_update": now,
|
|
1013
|
+
"raw_ids": {raw_id},
|
|
1014
|
+
}
|
|
1015
|
+
return canonical_id
|
|
1016
|
+
|
|
1017
|
+
def _format_timestamp(self, timestamp: Any) -> str:
|
|
1018
|
+
"""Format a timestamp so that exactly two digits follow the decimal point (milliseconds).
|
|
1019
|
+
|
|
1020
|
+
The input can be either:
|
|
1021
|
+
1. A numeric Unix timestamp (``float`` / ``int``) – it will first be converted to a
|
|
1022
|
+
string in the format ``YYYY-MM-DD-HH:MM:SS.ffffff UTC``.
|
|
1023
|
+
2. A string already following the same layout.
|
|
1024
|
+
|
|
1025
|
+
The returned value preserves the overall format of the input but truncates or pads
|
|
1026
|
+
the fractional seconds portion to **exactly two digits**.
|
|
1027
|
+
|
|
1028
|
+
Example
|
|
1029
|
+
-------
|
|
1030
|
+
>>> self._format_timestamp("2025-08-19-04:22:47.187574 UTC")
|
|
1031
|
+
'2025-08-19-04:22:47.18 UTC'
|
|
1032
|
+
"""
|
|
1033
|
+
|
|
1034
|
+
# Convert numeric timestamps to the expected string representation first
|
|
1035
|
+
if isinstance(timestamp, (int, float)):
|
|
1036
|
+
timestamp = datetime.fromtimestamp(timestamp, timezone.utc).strftime(
|
|
1037
|
+
'%Y-%m-%d-%H:%M:%S.%f UTC'
|
|
1038
|
+
)
|
|
1039
|
+
|
|
1040
|
+
# Ensure we are working with a string from here on
|
|
1041
|
+
if not isinstance(timestamp, str):
|
|
1042
|
+
return str(timestamp)
|
|
1043
|
+
|
|
1044
|
+
# If there is no fractional component, simply return the original string
|
|
1045
|
+
if '.' not in timestamp:
|
|
1046
|
+
return timestamp
|
|
1047
|
+
|
|
1048
|
+
# Split out the main portion (up to the decimal point)
|
|
1049
|
+
main_part, fractional_and_suffix = timestamp.split('.', 1)
|
|
1050
|
+
|
|
1051
|
+
# Separate fractional digits from the suffix (typically ' UTC')
|
|
1052
|
+
if ' ' in fractional_and_suffix:
|
|
1053
|
+
fractional_part, suffix = fractional_and_suffix.split(' ', 1)
|
|
1054
|
+
suffix = ' ' + suffix # Re-attach the space removed by split
|
|
1055
|
+
else:
|
|
1056
|
+
fractional_part, suffix = fractional_and_suffix, ''
|
|
1057
|
+
|
|
1058
|
+
# Guarantee exactly two digits for the fractional part
|
|
1059
|
+
fractional_part = (fractional_part + '00')[:2]
|
|
1060
|
+
|
|
1061
|
+
return f"{main_part}.{fractional_part}{suffix}"
|
|
1062
|
+
|
|
1063
|
+
def _format_timestamp_for_stream(self, timestamp: float) -> str:
|
|
1064
|
+
"""Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
|
|
1065
|
+
dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
|
|
1066
|
+
return dt.strftime('%Y:%m:%d %H:%M:%S')
|
|
1067
|
+
|
|
1068
|
+
def _format_timestamp_for_video(self, timestamp: float) -> str:
|
|
1069
|
+
"""Format timestamp for video chunks (HH:MM:SS.ms format)."""
|
|
1070
|
+
hours = int(timestamp // 3600)
|
|
1071
|
+
minutes = int((timestamp % 3600) // 60)
|
|
1072
|
+
seconds = round(float(timestamp % 60), 2)
|
|
1073
|
+
return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
|
|
1074
|
+
|
|
1075
|
+
def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
|
|
1076
|
+
"""Get formatted current timestamp based on stream type."""
|
|
1077
|
+
|
|
1078
|
+
if not stream_info:
|
|
1079
|
+
return "00:00:00.00"
|
|
1080
|
+
if precision:
|
|
1081
|
+
if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
|
|
1082
|
+
if frame_id:
|
|
1083
|
+
start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
|
|
1084
|
+
else:
|
|
1085
|
+
start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
|
|
1086
|
+
stream_time_str = self._format_timestamp_for_video(start_time)
|
|
1087
|
+
|
|
1088
|
+
return self._format_timestamp(stream_info.get("input_settings", {}).get("stream_time", "NA"))
|
|
1089
|
+
else:
|
|
1090
|
+
return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
|
|
1091
|
+
|
|
1092
|
+
if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
|
|
1093
|
+
if frame_id:
|
|
1094
|
+
start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
|
|
1095
|
+
else:
|
|
1096
|
+
start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
|
|
1097
|
+
|
|
1098
|
+
stream_time_str = self._format_timestamp_for_video(start_time)
|
|
1099
|
+
|
|
1100
|
+
|
|
1101
|
+
return self._format_timestamp(stream_info.get("input_settings", {}).get("stream_time", "NA"))
|
|
1102
|
+
else:
|
|
1103
|
+
stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
|
|
1104
|
+
if stream_time_str:
|
|
1105
|
+
try:
|
|
1106
|
+
timestamp_str = stream_time_str.replace(" UTC", "")
|
|
1107
|
+
dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
|
|
1108
|
+
timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
|
|
1109
|
+
return self._format_timestamp_for_stream(timestamp)
|
|
1110
|
+
except:
|
|
1111
|
+
return self._format_timestamp_for_stream(time.time())
|
|
1112
|
+
else:
|
|
1113
|
+
return self._format_timestamp_for_stream(time.time())
|
|
1114
|
+
|
|
1115
|
+
def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
|
|
1116
|
+
"""Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
|
|
1117
|
+
if not stream_info:
|
|
1118
|
+
return "00:00:00"
|
|
1119
|
+
|
|
1120
|
+
if precision:
|
|
1121
|
+
if self.start_timer is None:
|
|
1122
|
+
self.start_timer = stream_info.get("input_settings", {}).get("stream_time", "NA")
|
|
1123
|
+
return self._format_timestamp(self.start_timer)
|
|
1124
|
+
elif stream_info.get("input_settings", {}).get("start_frame", "na") == 1:
|
|
1125
|
+
self.start_timer = stream_info.get("input_settings", {}).get("stream_time", "NA")
|
|
1126
|
+
return self._format_timestamp(self.start_timer)
|
|
1127
|
+
else:
|
|
1128
|
+
return self._format_timestamp(self.start_timer)
|
|
1129
|
+
|
|
1130
|
+
if self.start_timer is None:
|
|
1131
|
+
self.start_timer = stream_info.get("input_settings", {}).get("stream_time", "NA")
|
|
1132
|
+
return self._format_timestamp(self.start_timer)
|
|
1133
|
+
elif stream_info.get("input_settings", {}).get("start_frame", "na") == 1:
|
|
1134
|
+
self.start_timer = stream_info.get("input_settings", {}).get("stream_time", "NA")
|
|
1135
|
+
return self._format_timestamp(self.start_timer)
|
|
1136
|
+
|
|
1137
|
+
else:
|
|
1138
|
+
if self.start_timer is not None:
|
|
1139
|
+
return self._format_timestamp(self.start_timer)
|
|
1140
|
+
|
|
1141
|
+
if self._tracking_start_time is None:
|
|
1142
|
+
stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
|
|
1143
|
+
if stream_time_str:
|
|
1144
|
+
try:
|
|
1145
|
+
timestamp_str = stream_time_str.replace(" UTC", "")
|
|
1146
|
+
dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
|
|
1147
|
+
self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
|
|
1148
|
+
except:
|
|
1149
|
+
self._tracking_start_time = time.time()
|
|
1150
|
+
else:
|
|
1151
|
+
self._tracking_start_time = time.time()
|
|
1152
|
+
|
|
1153
|
+
dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
|
|
1154
|
+
dt = dt.replace(minute=0, second=0, microsecond=0)
|
|
1155
|
+
return dt.strftime('%Y:%m:%d %H:%M:%S')
|
|
1156
|
+
|
|
1157
|
+
def _get_tracking_start_time(self) -> str:
|
|
1158
|
+
"""Get the tracking start time, formatted as a string."""
|
|
1159
|
+
if self._tracking_start_time is None:
|
|
1160
|
+
return "N/A"
|
|
1161
|
+
return self._format_timestamp(self._tracking_start_time)
|
|
1162
|
+
|
|
1163
|
+
def _set_tracking_start_time(self) -> None:
|
|
1164
|
+
"""Set the tracking start time to the current time."""
|
|
1165
|
+
self._tracking_start_time = time.time()
|
|
1166
|
+
|
|
1167
|
+
def _attach_masks_to_detections(self, processed_detections: List[Dict[str, Any]], raw_detections: List[Dict[str, Any]],
|
|
1168
|
+
iou_threshold: float = 0.5) -> List[Dict[str, Any]]:
|
|
1169
|
+
"""Attach segmentation masks from raw detections to processed detections."""
|
|
1170
|
+
if not processed_detections or not raw_detections:
|
|
1171
|
+
for det in processed_detections:
|
|
1172
|
+
det.setdefault("masks", [])
|
|
1173
|
+
return processed_detections
|
|
1174
|
+
|
|
1175
|
+
used_raw_indices = set()
|
|
1176
|
+
for det in processed_detections:
|
|
1177
|
+
best_iou = 0.0
|
|
1178
|
+
best_idx = None
|
|
1179
|
+
for idx, raw_det in enumerate(raw_detections):
|
|
1180
|
+
if idx in used_raw_indices:
|
|
1181
|
+
continue
|
|
1182
|
+
iou = self._compute_iou(det.get("bounding_box"), raw_det.get("bounding_box"))
|
|
1183
|
+
if iou > best_iou:
|
|
1184
|
+
best_iou = iou
|
|
1185
|
+
best_idx = idx
|
|
1186
|
+
if best_idx is not None and best_iou >= iou_threshold:
|
|
1187
|
+
raw_det = raw_detections[best_idx]
|
|
1188
|
+
masks = raw_det.get("masks", raw_det.get("mask"))
|
|
1189
|
+
if masks is not None:
|
|
1190
|
+
det["masks"] = masks
|
|
1191
|
+
used_raw_indices.add(best_idx)
|
|
1192
|
+
else:
|
|
1193
|
+
det.setdefault("masks", ["EMPTY"])
|
|
1194
|
+
return processed_detections
|