matrice-analytics 0.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of matrice-analytics might be problematic. Click here for more details.

Files changed (160) hide show
  1. matrice_analytics/__init__.py +28 -0
  2. matrice_analytics/boundary_drawing_internal/README.md +305 -0
  3. matrice_analytics/boundary_drawing_internal/__init__.py +45 -0
  4. matrice_analytics/boundary_drawing_internal/boundary_drawing_internal.py +1207 -0
  5. matrice_analytics/boundary_drawing_internal/boundary_drawing_tool.py +429 -0
  6. matrice_analytics/boundary_drawing_internal/boundary_tool_template.html +1036 -0
  7. matrice_analytics/boundary_drawing_internal/data/.gitignore +12 -0
  8. matrice_analytics/boundary_drawing_internal/example_usage.py +206 -0
  9. matrice_analytics/boundary_drawing_internal/usage/README.md +110 -0
  10. matrice_analytics/boundary_drawing_internal/usage/boundary_drawer_launcher.py +102 -0
  11. matrice_analytics/boundary_drawing_internal/usage/simple_boundary_launcher.py +107 -0
  12. matrice_analytics/post_processing/README.md +455 -0
  13. matrice_analytics/post_processing/__init__.py +732 -0
  14. matrice_analytics/post_processing/advanced_tracker/README.md +650 -0
  15. matrice_analytics/post_processing/advanced_tracker/__init__.py +17 -0
  16. matrice_analytics/post_processing/advanced_tracker/base.py +99 -0
  17. matrice_analytics/post_processing/advanced_tracker/config.py +77 -0
  18. matrice_analytics/post_processing/advanced_tracker/kalman_filter.py +370 -0
  19. matrice_analytics/post_processing/advanced_tracker/matching.py +195 -0
  20. matrice_analytics/post_processing/advanced_tracker/strack.py +230 -0
  21. matrice_analytics/post_processing/advanced_tracker/tracker.py +367 -0
  22. matrice_analytics/post_processing/config.py +142 -0
  23. matrice_analytics/post_processing/core/__init__.py +63 -0
  24. matrice_analytics/post_processing/core/base.py +704 -0
  25. matrice_analytics/post_processing/core/config.py +3188 -0
  26. matrice_analytics/post_processing/core/config_utils.py +925 -0
  27. matrice_analytics/post_processing/face_reg/__init__.py +43 -0
  28. matrice_analytics/post_processing/face_reg/compare_similarity.py +556 -0
  29. matrice_analytics/post_processing/face_reg/embedding_manager.py +681 -0
  30. matrice_analytics/post_processing/face_reg/face_recognition.py +1870 -0
  31. matrice_analytics/post_processing/face_reg/face_recognition_client.py +339 -0
  32. matrice_analytics/post_processing/face_reg/people_activity_logging.py +283 -0
  33. matrice_analytics/post_processing/ocr/__init__.py +0 -0
  34. matrice_analytics/post_processing/ocr/easyocr_extractor.py +248 -0
  35. matrice_analytics/post_processing/ocr/postprocessing.py +271 -0
  36. matrice_analytics/post_processing/ocr/preprocessing.py +52 -0
  37. matrice_analytics/post_processing/post_processor.py +1153 -0
  38. matrice_analytics/post_processing/test_cases/__init__.py +1 -0
  39. matrice_analytics/post_processing/test_cases/run_tests.py +143 -0
  40. matrice_analytics/post_processing/test_cases/test_advanced_customer_service.py +841 -0
  41. matrice_analytics/post_processing/test_cases/test_basic_counting_tracking.py +523 -0
  42. matrice_analytics/post_processing/test_cases/test_comprehensive.py +531 -0
  43. matrice_analytics/post_processing/test_cases/test_config.py +852 -0
  44. matrice_analytics/post_processing/test_cases/test_customer_service.py +585 -0
  45. matrice_analytics/post_processing/test_cases/test_data_generators.py +583 -0
  46. matrice_analytics/post_processing/test_cases/test_people_counting.py +510 -0
  47. matrice_analytics/post_processing/test_cases/test_processor.py +524 -0
  48. matrice_analytics/post_processing/test_cases/test_utilities.py +356 -0
  49. matrice_analytics/post_processing/test_cases/test_utils.py +743 -0
  50. matrice_analytics/post_processing/usecases/Histopathological_Cancer_Detection_img.py +604 -0
  51. matrice_analytics/post_processing/usecases/__init__.py +267 -0
  52. matrice_analytics/post_processing/usecases/abandoned_object_detection.py +797 -0
  53. matrice_analytics/post_processing/usecases/advanced_customer_service.py +1601 -0
  54. matrice_analytics/post_processing/usecases/age_detection.py +842 -0
  55. matrice_analytics/post_processing/usecases/age_gender_detection.py +1043 -0
  56. matrice_analytics/post_processing/usecases/anti_spoofing_detection.py +656 -0
  57. matrice_analytics/post_processing/usecases/assembly_line_detection.py +841 -0
  58. matrice_analytics/post_processing/usecases/banana_defect_detection.py +624 -0
  59. matrice_analytics/post_processing/usecases/basic_counting_tracking.py +667 -0
  60. matrice_analytics/post_processing/usecases/blood_cancer_detection_img.py +881 -0
  61. matrice_analytics/post_processing/usecases/car_damage_detection.py +834 -0
  62. matrice_analytics/post_processing/usecases/car_part_segmentation.py +946 -0
  63. matrice_analytics/post_processing/usecases/car_service.py +1601 -0
  64. matrice_analytics/post_processing/usecases/cardiomegaly_classification.py +864 -0
  65. matrice_analytics/post_processing/usecases/cell_microscopy_segmentation.py +897 -0
  66. matrice_analytics/post_processing/usecases/chicken_pose_detection.py +648 -0
  67. matrice_analytics/post_processing/usecases/child_monitoring.py +814 -0
  68. matrice_analytics/post_processing/usecases/color/clip.py +232 -0
  69. matrice_analytics/post_processing/usecases/color/clip_processor/merges.txt +48895 -0
  70. matrice_analytics/post_processing/usecases/color/clip_processor/preprocessor_config.json +28 -0
  71. matrice_analytics/post_processing/usecases/color/clip_processor/special_tokens_map.json +30 -0
  72. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer.json +245079 -0
  73. matrice_analytics/post_processing/usecases/color/clip_processor/tokenizer_config.json +32 -0
  74. matrice_analytics/post_processing/usecases/color/clip_processor/vocab.json +1 -0
  75. matrice_analytics/post_processing/usecases/color/color_map_utils.py +70 -0
  76. matrice_analytics/post_processing/usecases/color/color_mapper.py +468 -0
  77. matrice_analytics/post_processing/usecases/color_detection.py +1835 -0
  78. matrice_analytics/post_processing/usecases/color_map_utils.py +70 -0
  79. matrice_analytics/post_processing/usecases/concrete_crack_detection.py +827 -0
  80. matrice_analytics/post_processing/usecases/crop_weed_detection.py +781 -0
  81. matrice_analytics/post_processing/usecases/customer_service.py +1008 -0
  82. matrice_analytics/post_processing/usecases/defect_detection_products.py +936 -0
  83. matrice_analytics/post_processing/usecases/distracted_driver_detection.py +822 -0
  84. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +930 -0
  85. matrice_analytics/post_processing/usecases/drowsy_driver_detection.py +829 -0
  86. matrice_analytics/post_processing/usecases/dwell_detection.py +829 -0
  87. matrice_analytics/post_processing/usecases/emergency_vehicle_detection.py +827 -0
  88. matrice_analytics/post_processing/usecases/face_emotion.py +813 -0
  89. matrice_analytics/post_processing/usecases/face_recognition.py +827 -0
  90. matrice_analytics/post_processing/usecases/fashion_detection.py +835 -0
  91. matrice_analytics/post_processing/usecases/field_mapping.py +902 -0
  92. matrice_analytics/post_processing/usecases/fire_detection.py +1112 -0
  93. matrice_analytics/post_processing/usecases/flare_analysis.py +891 -0
  94. matrice_analytics/post_processing/usecases/flower_segmentation.py +1006 -0
  95. matrice_analytics/post_processing/usecases/gas_leak_detection.py +837 -0
  96. matrice_analytics/post_processing/usecases/gender_detection.py +832 -0
  97. matrice_analytics/post_processing/usecases/human_activity_recognition.py +871 -0
  98. matrice_analytics/post_processing/usecases/intrusion_detection.py +1672 -0
  99. matrice_analytics/post_processing/usecases/leaf.py +821 -0
  100. matrice_analytics/post_processing/usecases/leaf_disease.py +840 -0
  101. matrice_analytics/post_processing/usecases/leak_detection.py +837 -0
  102. matrice_analytics/post_processing/usecases/license_plate_detection.py +914 -0
  103. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +1194 -0
  104. matrice_analytics/post_processing/usecases/litter_monitoring.py +717 -0
  105. matrice_analytics/post_processing/usecases/mask_detection.py +869 -0
  106. matrice_analytics/post_processing/usecases/natural_disaster.py +907 -0
  107. matrice_analytics/post_processing/usecases/parking.py +787 -0
  108. matrice_analytics/post_processing/usecases/parking_space_detection.py +822 -0
  109. matrice_analytics/post_processing/usecases/pcb_defect_detection.py +888 -0
  110. matrice_analytics/post_processing/usecases/pedestrian_detection.py +808 -0
  111. matrice_analytics/post_processing/usecases/people_counting.py +1728 -0
  112. matrice_analytics/post_processing/usecases/people_tracking.py +1842 -0
  113. matrice_analytics/post_processing/usecases/pipeline_detection.py +605 -0
  114. matrice_analytics/post_processing/usecases/plaque_segmentation_img.py +874 -0
  115. matrice_analytics/post_processing/usecases/pothole_segmentation.py +915 -0
  116. matrice_analytics/post_processing/usecases/ppe_compliance.py +645 -0
  117. matrice_analytics/post_processing/usecases/price_tag_detection.py +822 -0
  118. matrice_analytics/post_processing/usecases/proximity_detection.py +1901 -0
  119. matrice_analytics/post_processing/usecases/road_lane_detection.py +623 -0
  120. matrice_analytics/post_processing/usecases/road_traffic_density.py +832 -0
  121. matrice_analytics/post_processing/usecases/road_view_segmentation.py +915 -0
  122. matrice_analytics/post_processing/usecases/shelf_inventory_detection.py +583 -0
  123. matrice_analytics/post_processing/usecases/shoplifting_detection.py +822 -0
  124. matrice_analytics/post_processing/usecases/shopping_cart_analysis.py +899 -0
  125. matrice_analytics/post_processing/usecases/skin_cancer_classification_img.py +864 -0
  126. matrice_analytics/post_processing/usecases/smoker_detection.py +833 -0
  127. matrice_analytics/post_processing/usecases/solar_panel.py +810 -0
  128. matrice_analytics/post_processing/usecases/suspicious_activity_detection.py +1030 -0
  129. matrice_analytics/post_processing/usecases/template_usecase.py +380 -0
  130. matrice_analytics/post_processing/usecases/theft_detection.py +648 -0
  131. matrice_analytics/post_processing/usecases/traffic_sign_monitoring.py +724 -0
  132. matrice_analytics/post_processing/usecases/underground_pipeline_defect_detection.py +775 -0
  133. matrice_analytics/post_processing/usecases/underwater_pollution_detection.py +842 -0
  134. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +950 -0
  135. matrice_analytics/post_processing/usecases/warehouse_object_segmentation.py +899 -0
  136. matrice_analytics/post_processing/usecases/waterbody_segmentation.py +923 -0
  137. matrice_analytics/post_processing/usecases/weapon_detection.py +771 -0
  138. matrice_analytics/post_processing/usecases/weld_defect_detection.py +615 -0
  139. matrice_analytics/post_processing/usecases/wildlife_monitoring.py +898 -0
  140. matrice_analytics/post_processing/usecases/windmill_maintenance.py +834 -0
  141. matrice_analytics/post_processing/usecases/wound_segmentation.py +856 -0
  142. matrice_analytics/post_processing/utils/__init__.py +150 -0
  143. matrice_analytics/post_processing/utils/advanced_counting_utils.py +400 -0
  144. matrice_analytics/post_processing/utils/advanced_helper_utils.py +317 -0
  145. matrice_analytics/post_processing/utils/advanced_tracking_utils.py +461 -0
  146. matrice_analytics/post_processing/utils/alerting_utils.py +213 -0
  147. matrice_analytics/post_processing/utils/category_mapping_utils.py +94 -0
  148. matrice_analytics/post_processing/utils/color_utils.py +592 -0
  149. matrice_analytics/post_processing/utils/counting_utils.py +182 -0
  150. matrice_analytics/post_processing/utils/filter_utils.py +261 -0
  151. matrice_analytics/post_processing/utils/format_utils.py +293 -0
  152. matrice_analytics/post_processing/utils/geometry_utils.py +300 -0
  153. matrice_analytics/post_processing/utils/smoothing_utils.py +358 -0
  154. matrice_analytics/post_processing/utils/tracking_utils.py +234 -0
  155. matrice_analytics/py.typed +0 -0
  156. matrice_analytics-0.1.2.dist-info/METADATA +481 -0
  157. matrice_analytics-0.1.2.dist-info/RECORD +160 -0
  158. matrice_analytics-0.1.2.dist-info/WHEEL +5 -0
  159. matrice_analytics-0.1.2.dist-info/licenses/LICENSE.txt +21 -0
  160. matrice_analytics-0.1.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,842 @@
1
+ from typing import Any, Dict, List, Optional
2
+ from dataclasses import asdict
3
+ import time
4
+ from datetime import datetime, timezone
5
+
6
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
7
+ from ..utils import (
8
+ filter_by_confidence,
9
+ filter_by_categories,
10
+ apply_category_mapping,
11
+ count_objects_by_category,
12
+ count_objects_in_zones,
13
+ calculate_counting_summary,
14
+ match_results_structure,
15
+ bbox_smoothing,
16
+ BBoxSmoothingConfig,
17
+ BBoxSmoothingTracker
18
+ )
19
+ from dataclasses import dataclass, field
20
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
21
+
22
+
23
+ @dataclass
24
+ class UnderwaterPlasticConfig(BaseConfig):
25
+ """Configuration for underwater pollution detection use case in underwater pollution monitoring."""
26
+ # Smoothing configuration
27
+ enable_smoothing: bool = True
28
+ smoothing_algorithm: str = "observability" # "window" or "observability"
29
+ smoothing_window_size: int = 20
30
+ smoothing_cooldown_frames: int = 5
31
+ smoothing_confidence_range_factor: float = 0.5
32
+
33
+ #confidence thresholds
34
+ confidence_threshold: float = 0.3
35
+
36
+ usecase_categories: List[str] = field(
37
+ default_factory=lambda: ['can', 'cellphone', 'electronics', 'gbottle',
38
+ 'glove', 'Mask', 'metal', 'misc', 'net', 'pbag',
39
+ 'pbottle', 'plastic', 'rod', 'sunglasses', 'tire']
40
+ )
41
+
42
+ target_categories: List[str] = field(
43
+ default_factory=lambda: ['can', 'cellphone', 'electronics', 'gbottle',
44
+ 'glove', 'Mask', 'metal', 'misc', 'net', 'pbag',
45
+ 'pbottle', 'plastic', 'rod', 'sunglasses', 'tire']
46
+ )
47
+
48
+ alert_config: Optional[AlertConfig] = None
49
+
50
+ index_to_category: Optional[Dict[int, str]] = field(
51
+ default_factory=lambda: {
52
+ 0: "pbag",
53
+ 1: "pbottle",
54
+ 2: "net",
55
+ 3: "plastic",
56
+ 4: "Mask",
57
+ 5: "misc",
58
+ 6: "tire",
59
+ 7: "cellphone",
60
+ 8: "gbottle",
61
+ 9: "glove",
62
+ 10: "metal",
63
+ 11: "electronics",
64
+ 12: "can",
65
+ 13: "rod",
66
+ 14: "sunglasses",
67
+ }
68
+ )
69
+
70
+
71
+ class UnderwaterPlasticUseCase(BaseProcessor):
72
+ # Human-friendly display names for categories
73
+ CATEGORY_DISPLAY = {
74
+ "Can": "can",
75
+ "CellPhone": "cellphone",
76
+ "Electronics": "electronics",
77
+ "G-Bottle": "gbottle",
78
+ "Glove": "glove",
79
+ "Mask": "Mask",
80
+ "Metal": "metal",
81
+ "Misc": "misc",
82
+ "Net": "net",
83
+ "P-Bag": "pbag",
84
+ "P-Bottle": "pbottle",
85
+ "Plastic": "plastic",
86
+ "Rod": "rod",
87
+ "Sunglasses": "sunglasses",
88
+ "Tire": "tire",
89
+ }
90
+
91
+ def __init__(self):
92
+ super().__init__("underwater_pollution_detection")
93
+ self.category = "environmental"
94
+
95
+ self.CASE_TYPE: Optional[str] = 'underwater_pollution_detection'
96
+ self.CASE_VERSION: Optional[str] = '1.3'
97
+
98
+ # List of categories to track
99
+ self.target_categories = ['can', 'cellphone', 'electronics', 'gbottle',
100
+ 'glove', 'Mask', 'metal', 'misc', 'net', 'pbag',
101
+ 'pbottle', 'plastic', 'rod', 'sunglasses', 'tire']
102
+
103
+ # Initialize smoothing tracker
104
+ self.smoothing_tracker = None
105
+
106
+ # Initialize advanced tracker (will be created on first use)
107
+ self.tracker = None
108
+
109
+ # Initialize tracking state variables
110
+ self._total_frame_counter = 0
111
+ self._global_frame_offset = 0
112
+
113
+ # Track start time for "TOTAL SINCE" calculation
114
+ self._tracking_start_time = None
115
+
116
+ self._track_aliases: Dict[Any, Any] = {}
117
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
118
+ # Tunable parameters – adjust if necessary for specific scenarios
119
+ self._track_merge_iou_threshold: float = 0.05 # IoU ≥ 0.05 →
120
+ self._track_merge_time_window: float = 7.0 # seconds within which to merge
121
+
122
+ self._ascending_alert_list: List[int] = []
123
+ self.current_incident_end_timestamp: str = "N/A"
124
+
125
+ def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
126
+ stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
127
+ """
128
+ Main entry point for post-processing.
129
+ Applies category mapping, smoothing, counting, alerting, and summary generation.
130
+ Returns a ProcessingResult with all relevant outputs.
131
+ """
132
+ start_time = time.time()
133
+ # Ensure config is correct type
134
+ if not isinstance(config, UnderwaterPlasticConfig):
135
+ return self.create_error_result("Invalid config type", usecase=self.name, category=self.category,
136
+ context=context)
137
+ if context is None:
138
+ context = ProcessingContext()
139
+
140
+ # Detect input format and store in context
141
+ input_format = match_results_structure(data)
142
+ context.input_format = input_format
143
+ context.confidence_threshold = config.confidence_threshold
144
+
145
+ if config.confidence_threshold is not None:
146
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
147
+ self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
148
+ else:
149
+ processed_data = data
150
+
151
+ self.logger.debug(f"Did not apply confidence filtering with threshold since nothing was provided")
152
+
153
+ # Step 2: Apply category mapping if provided
154
+ if config.index_to_category:
155
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
156
+ self.logger.debug("Applied category mapping")
157
+
158
+ if config.target_categories:
159
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
160
+ self.logger.debug(f"Applied category filtering")
161
+
162
+ # Apply bbox smoothing if enabled
163
+ if config.enable_smoothing:
164
+ if self.smoothing_tracker is None:
165
+ smoothing_config = BBoxSmoothingConfig(
166
+ smoothing_algorithm=config.smoothing_algorithm,
167
+ window_size=config.smoothing_window_size,
168
+ cooldown_frames=config.smoothing_cooldown_frames,
169
+ confidence_threshold=config.confidence_threshold, # Use mask threshold as default
170
+ confidence_range_factor=config.smoothing_confidence_range_factor,
171
+ enable_smoothing=True
172
+ )
173
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
174
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
175
+
176
+ # Advanced tracking (BYTETracker-like)
177
+ try:
178
+ from ..advanced_tracker import AdvancedTracker
179
+ from ..advanced_tracker.config import TrackerConfig
180
+
181
+ # Create tracker instance if it doesn't exist (preserves state across frames)
182
+ if self.tracker is None:
183
+ tracker_config = TrackerConfig()
184
+ self.tracker = AdvancedTracker(tracker_config)
185
+ self.logger.info("Initialized AdvancedTracker for Monitoring and tracking")
186
+
187
+ # The tracker expects the data in the same format as input
188
+ # It will add track_id and frame_id to each detection
189
+ processed_data = self.tracker.update(processed_data)
190
+
191
+ except Exception as e:
192
+ # If advanced tracker fails, fallback to unsmoothed detections
193
+ self.logger.warning(f"AdvancedTracker failed: {e}")
194
+
195
+ # Update tracking state for total count per label
196
+ self._update_tracking_state(processed_data)
197
+
198
+ # Update frame counter
199
+ self._total_frame_counter += 1
200
+
201
+ # Extract frame information from stream_info
202
+ frame_number = None
203
+ if stream_info:
204
+ input_settings = stream_info.get("input_settings", {})
205
+ start_frame = input_settings.get("start_frame")
206
+ end_frame = input_settings.get("end_frame")
207
+ # If start and end frame are the same, it's a single frame
208
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
209
+ frame_number = start_frame
210
+
211
+ # Compute summaries and alerts
212
+ general_counting_summary = calculate_counting_summary(data)
213
+ counting_summary = self._count_categories(processed_data, config)
214
+ # Add total unique counts after tracking using only local state
215
+ total_counts = self.get_total_counts()
216
+ counting_summary['total_counts'] = total_counts
217
+
218
+ alerts = self._check_alerts(counting_summary, frame_number, config)
219
+ predictions = self._extract_predictions(processed_data)
220
+
221
+ # Step: Generate structured incidents, tracking stats and business analytics with frame-based keys
222
+ incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
223
+ tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number, stream_info)
224
+ # business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, frame_number, stream_info)
225
+ business_analytics_list = []
226
+ summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
227
+
228
+ # Extract frame-based dictionaries from the lists
229
+ incidents = incidents_list[0] if incidents_list else {}
230
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
231
+ business_analytics = business_analytics_list[0] if business_analytics_list else {}
232
+ summary = summary_list[0] if summary_list else {}
233
+ agg_summary = {str(frame_number): {
234
+ "incidents": incidents,
235
+ "tracking_stats": tracking_stats,
236
+ "business_analytics": business_analytics,
237
+ "alerts": alerts,
238
+ "human_text": summary}
239
+ }
240
+
241
+
242
+ context.mark_completed()
243
+
244
+ # Build result object following the new pattern
245
+
246
+ result = self.create_result(
247
+ data={"agg_summary": agg_summary},
248
+ usecase=self.name,
249
+ category=self.category,
250
+ context=context
251
+ )
252
+
253
+ return result
254
+
255
+ def _check_alerts(self, summary: dict, frame_number:Any, config: UnderwaterPlasticConfig) -> List[Dict]:
256
+ """
257
+ Check if any alert thresholds are exceeded and return alert dicts.
258
+ """
259
+ def get_trend(data, lookback=900, threshold=0.6):
260
+ '''
261
+ Determine if the trend is ascending or descending based on actual value progression.
262
+ Now works with values 0,1,2,3 (not just binary).
263
+ '''
264
+ window = data[-lookback:] if len(data) >= lookback else data
265
+ if len(window) < 2:
266
+ return True # not enough data to determine trend
267
+ increasing = 0
268
+ total = 0
269
+ for i in range(1, len(window)):
270
+ if window[i] >= window[i - 1]:
271
+ increasing += 1
272
+ total += 1
273
+ ratio = increasing / total
274
+ if ratio >= threshold:
275
+ return True
276
+ elif ratio <= (1 - threshold):
277
+ return False
278
+
279
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
280
+ alerts = []
281
+ total_detections = summary.get("total_count", 0) #CURRENT combined total count of all classes
282
+ total_counts_dict = summary.get("total_counts", {}) #TOTAL cumulative counts per class
283
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
284
+ per_category_count = summary.get("per_category_count", {}) #CURRENT count per class
285
+
286
+ if not config.alert_config:
287
+ return alerts
288
+
289
+ total = summary.get("total_count", 0)
290
+ #self._ascending_alert_list
291
+ if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
292
+
293
+ for category, threshold in config.alert_config.count_thresholds.items():
294
+ if category == "all" and total > threshold:
295
+
296
+ alerts.append({
297
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
298
+ "alert_id": "alert_"+category+'_'+frame_key,
299
+ "incident_category": self.CASE_TYPE,
300
+ "threshold_level": threshold,
301
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
302
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
303
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
304
+ }
305
+ })
306
+ elif category in summary.get("per_category_count", {}):
307
+ count = summary.get("per_category_count", {})[category]
308
+ if count > threshold: # Fixed logic: alert when EXCEEDING threshold
309
+ alerts.append({
310
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
311
+ "alert_id": "alert_"+category+'_'+frame_key,
312
+ "incident_category": self.CASE_TYPE,
313
+ "threshold_level": threshold,
314
+ "ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
315
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
316
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
317
+ }
318
+ })
319
+ else:
320
+ pass
321
+ return alerts
322
+
323
+ def _generate_incidents(self, counting_summary: Dict, alerts: List, config: UnderwaterPlasticConfig,
324
+ frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[
325
+ Dict]:
326
+ """Generate structured incidents for the output format with frame-based keys."""
327
+
328
+ incidents = []
329
+ total_detections = counting_summary.get("total_count", 0)
330
+ current_timestamp = self._get_current_timestamp_str(stream_info)
331
+ camera_info = self.get_camera_info_from_stream(stream_info)
332
+
333
+ self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
334
+
335
+ if total_detections > 0:
336
+ # Determine event level based on thresholds
337
+ level = "low"
338
+ intensity = 5.0
339
+ start_timestamp = self._get_start_timestamp_str(stream_info)
340
+ if start_timestamp and self.current_incident_end_timestamp=='N/A':
341
+ self.current_incident_end_timestamp = 'Incident still active'
342
+ elif start_timestamp and self.current_incident_end_timestamp=='Incident still active':
343
+ if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
344
+ self.current_incident_end_timestamp = current_timestamp
345
+ elif self.current_incident_end_timestamp!='Incident still active' and self.current_incident_end_timestamp!='N/A':
346
+ self.current_incident_end_timestamp = 'N/A'
347
+
348
+ if config.alert_config and config.alert_config.count_thresholds:
349
+ threshold = config.alert_config.count_thresholds.get("all", 15)
350
+ intensity = min(10.0, (total_detections / threshold) * 10)
351
+
352
+ if intensity >= 9:
353
+ level = "critical"
354
+ self._ascending_alert_list.append(3)
355
+ elif intensity >= 7:
356
+ level = "significant"
357
+ self._ascending_alert_list.append(2)
358
+ elif intensity >= 5:
359
+ level = "medium"
360
+ self._ascending_alert_list.append(1)
361
+ else:
362
+ level = "low"
363
+ self._ascending_alert_list.append(0)
364
+ else:
365
+ if total_detections > 30:
366
+ level = "critical"
367
+ intensity = 10.0
368
+ self._ascending_alert_list.append(3)
369
+ elif total_detections > 25:
370
+ level = "significant"
371
+ intensity = 9.0
372
+ self._ascending_alert_list.append(2)
373
+ elif total_detections > 15:
374
+ level = "medium"
375
+ intensity = 7.0
376
+ self._ascending_alert_list.append(1)
377
+ else:
378
+ level = "low"
379
+ intensity = min(10.0, total_detections / 3.0)
380
+ self._ascending_alert_list.append(0)
381
+
382
+ # Generate human text in new format
383
+ human_text_lines = [f"INCIDENTS DETECTED @ {current_timestamp}:"]
384
+ human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE,level)}")
385
+ human_text = "\n".join(human_text_lines)
386
+
387
+ alert_settings=[]
388
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
389
+ alert_settings.append({
390
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
391
+ "incident_category": self.CASE_TYPE,
392
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
393
+ "ascending": True,
394
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
395
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
396
+ }
397
+ })
398
+
399
+ event= self.create_incident(incident_id=self.CASE_TYPE+'_'+str(frame_number), incident_type=self.CASE_TYPE,
400
+ severity_level=level, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
401
+ start_time=start_timestamp, end_time=self.current_incident_end_timestamp,
402
+ level_settings= {"low": 1, "medium": 3, "significant":4, "critical": 7})
403
+ incidents.append(event)
404
+
405
+ else:
406
+ self._ascending_alert_list.append(0)
407
+ incidents.append({})
408
+
409
+ return incidents
410
+
411
+ def _generate_tracking_stats(
412
+ self,
413
+ counting_summary: Dict,
414
+ alerts: List,
415
+ config: UnderwaterPlasticConfig,
416
+ frame_number: Optional[int] = None,
417
+ stream_info: Optional[Dict[str, Any]] = None
418
+ ) -> List[Dict]:
419
+ """Generate structured tracking stats matching eg.json format."""
420
+ camera_info = self.get_camera_info_from_stream(stream_info)
421
+
422
+ # frame_key = str(frame_number) if frame_number is not None else "current_frame"
423
+ # tracking_stats = [{frame_key: []}]
424
+ # frame_tracking_stats = tracking_stats[0][frame_key]
425
+ tracking_stats = []
426
+
427
+ total_detections = counting_summary.get("total_count", 0) #CURRENT total count of all classes
428
+ total_counts_dict = counting_summary.get("total_counts", {}) #TOTAL cumulative counts per class
429
+ cumulative_total = sum(total_counts_dict.values()) if total_counts_dict else 0 #TOTAL combined cumulative count
430
+ per_category_count = counting_summary.get("per_category_count", {}) #CURRENT count per class
431
+
432
+ current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
433
+ start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
434
+
435
+ # Create high precision timestamps for input_timestamp and reset_timestamp
436
+ high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
437
+ high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
438
+
439
+
440
+ # Build total_counts array in expected format
441
+ total_counts = []
442
+ for cat, count in total_counts_dict.items():
443
+ if count > 0:
444
+ total_counts.append({
445
+ "category": cat,
446
+ "count": count
447
+ })
448
+
449
+ # Build current_counts array in expected format
450
+ current_counts = []
451
+ for cat, count in per_category_count.items():
452
+ if count > 0 or total_detections > 0: # Include even if 0 when there are detections
453
+ current_counts.append({
454
+ "category": cat,
455
+ "count": count
456
+ })
457
+
458
+ # Prepare detections without confidence scores (as per eg.json)
459
+ detections = []
460
+
461
+ for detection in counting_summary.get("detections", []):
462
+ detection_data = {
463
+ "category": detection.get("category"),
464
+ "bounding_box": detection.get("bounding_box", {})
465
+ }
466
+ # Include segmentation if available (like in eg.json)
467
+ if detection.get("masks"):
468
+ detection_data["masks"] = detection.get("masks", [])
469
+ if detection.get("segmentation"):
470
+ detection_data["segmentation"] = detection.get("segmentation")
471
+ if detection.get("mask"):
472
+ detection_data["mask"] = detection.get("mask")
473
+ detections.append(detection_data)
474
+
475
+ # Build alert_settings array in expected format
476
+ alert_settings = []
477
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
478
+ alert_settings.append({
479
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
480
+ "incident_category": self.CASE_TYPE,
481
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
482
+ "ascending": True,
483
+ "settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']) if hasattr(config.alert_config, 'alert_type') else ['Default'],
484
+ getattr(config.alert_config, 'alert_value', ['JSON']) if hasattr(config.alert_config, 'alert_value') else ['JSON'])
485
+ }
486
+ })
487
+
488
+ # Generate human_text in expected format
489
+ human_text_lines = [f"Tracking Statistics:"]
490
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}")
491
+
492
+ for cat, count in per_category_count.items():
493
+ human_text_lines.append(f"\t{cat}: {count}")
494
+
495
+ human_text_lines.append(f"TOTAL SINCE {start_timestamp}")
496
+ for cat, count in total_counts_dict.items():
497
+ if count > 0:
498
+ human_text_lines.append(f"\t{cat}: {count}")
499
+
500
+ if alerts:
501
+ for alert in alerts:
502
+ human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
503
+ else:
504
+ human_text_lines.append("Alerts: None")
505
+
506
+ human_text = "\n".join(human_text_lines)
507
+ reset_settings = [
508
+ {
509
+ "interval_type": "daily",
510
+ "reset_time": {
511
+ "value": 9,
512
+ "time_unit": "hour"
513
+ }
514
+ }
515
+ ]
516
+
517
+ tracking_stat = self.create_tracking_stats(total_counts=total_counts, current_counts=current_counts,
518
+ detections=detections, human_text=human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
519
+ reset_settings=reset_settings, start_time=high_precision_start_timestamp ,
520
+ reset_time=high_precision_reset_timestamp)
521
+
522
+ tracking_stats.append(tracking_stat)
523
+ return tracking_stats
524
+
525
+ def _generate_business_analytics(self, counting_summary: Dict, zone_analysis: Dict, config: UnderwaterPlasticConfig, stream_info: Optional[Dict[str, Any]] = None, is_empty=True) -> List[Dict]:
526
+ """Generate standardized business analytics for the agg_summary structure."""
527
+ if is_empty:
528
+ return []
529
+
530
+ #-----IF YOUR USECASE NEEDS BUSINESS ANALYTICS, YOU CAN USE THIS FUNCTION------#
531
+ #camera_info = self.get_camera_info_from_stream(stream_info)
532
+ # business_analytics = self.create_business_analytics(nalysis_name, statistics,
533
+ # human_text, camera_info=camera_info, alerts=alerts, alert_settings=alert_settings,
534
+ # reset_settings)
535
+ # return business_analytics
536
+
537
+ def _generate_summary(self, summary: dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
538
+ """
539
+ Generate a human_text string for the tracking_stat, incident, business analytics and alerts.
540
+ """
541
+ lines = {}
542
+ lines["Application Name"] = self.CASE_TYPE
543
+ lines["Application Version"] = self.CASE_VERSION
544
+ if len(incidents) > 0:
545
+ lines["Incidents:"]=f"\n\t{incidents[0].get('human_text', 'No incidents detected')}\n"
546
+ if len(tracking_stats) > 0:
547
+ lines["Tracking Statistics:"]=f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}\n"
548
+ if len(business_analytics) > 0:
549
+ lines["Business Analytics:"]=f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}\n"
550
+
551
+ if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
552
+ lines["Summary"] = "No Summary Data"
553
+
554
+ return [lines]
555
+
556
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
557
+ """
558
+ Get detailed information about track IDs (per frame).
559
+ """
560
+ # Collect all track_ids in this frame
561
+ frame_track_ids = set()
562
+ for det in detections:
563
+ tid = det.get('track_id')
564
+ if tid is not None:
565
+ frame_track_ids.add(tid)
566
+ # Use persistent total set for unique counting
567
+ total_track_ids = set()
568
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
569
+ total_track_ids.update(s)
570
+ return {
571
+ "total_count": len(total_track_ids),
572
+ "current_frame_count": len(frame_track_ids),
573
+ "total_unique_track_ids": len(total_track_ids),
574
+ "current_frame_track_ids": list(frame_track_ids),
575
+ "last_update_time": time.time(),
576
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
577
+ }
578
+
579
+ def _update_tracking_state(self, detections: list):
580
+ """
581
+ Track unique categories track_ids per category for total count after tracking.
582
+ Applies canonical ID merging to avoid duplicate counting when the underlying
583
+ tracker loses an object temporarily and assigns a new ID.
584
+ """
585
+ # Lazily initialise storage dicts
586
+ if not hasattr(self, "_per_category_total_track_ids"):
587
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
588
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
589
+
590
+ for det in detections:
591
+ cat = det.get("category")
592
+ raw_track_id = det.get("track_id")
593
+ if cat not in self.target_categories or raw_track_id is None:
594
+ continue
595
+ bbox = det.get("bounding_box", det.get("bbox"))
596
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
597
+ # Propagate canonical ID back to detection so downstream logic uses it
598
+ det["track_id"] = canonical_id
599
+
600
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
601
+ self._current_frame_track_ids[cat].add(canonical_id)
602
+
603
+ def get_total_counts(self):
604
+ """
605
+ Return total unique track_id count for each category.
606
+ """
607
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
608
+
609
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
610
+ """Format timestamp for video chunks (HH:MM:SS.ms format)."""
611
+ hours = int(timestamp // 3600)
612
+ minutes = int((timestamp % 3600) // 60)
613
+ seconds = round(float(timestamp % 60),2)
614
+ return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
615
+
616
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
617
+ """Format timestamp for streams (YYYY:MM:DD HH:MM:SS format)."""
618
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
619
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
620
+
621
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
622
+ """Get formatted current timestamp based on stream type."""
623
+ if not stream_info:
624
+ return "00:00:00.00"
625
+ # is_video_chunk = stream_info.get("input_settings", {}).get("is_video_chunk", False)
626
+ if precision:
627
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
628
+ if frame_id:
629
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
630
+ else:
631
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
632
+ stream_time_str = self._format_timestamp_for_video(start_time)
633
+ return stream_time_str
634
+ else:
635
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
636
+
637
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
638
+ if frame_id:
639
+ start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
640
+ else:
641
+ start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
642
+ stream_time_str = self._format_timestamp_for_video(start_time)
643
+ return stream_time_str
644
+ else:
645
+ # For streams, use stream_time from stream_info
646
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
647
+ if stream_time_str:
648
+ # Parse the high precision timestamp string to get timestamp
649
+ try:
650
+ # Remove " UTC" suffix and parse
651
+ timestamp_str = stream_time_str.replace(" UTC", "")
652
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
653
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
654
+ return self._format_timestamp_for_stream(timestamp)
655
+ except:
656
+ # Fallback to current time if parsing fails
657
+ return self._format_timestamp_for_stream(time.time())
658
+ else:
659
+ return self._format_timestamp_for_stream(time.time())
660
+
661
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
662
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
663
+ if not stream_info:
664
+ return "00:00:00"
665
+ if precision:
666
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
667
+ return "00:00:00"
668
+ else:
669
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
670
+
671
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
672
+ # If video format, start from 00:00:00
673
+ return "00:00:00"
674
+ else:
675
+ # For streams, use tracking start time or current time with minutes/seconds reset
676
+ if self._tracking_start_time is None:
677
+ # Try to extract timestamp from stream_time string
678
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
679
+ if stream_time_str:
680
+ try:
681
+ # Remove " UTC" suffix and parse
682
+ timestamp_str = stream_time_str.replace(" UTC", "")
683
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
684
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
685
+ except:
686
+ # Fallback to current time if parsing fails
687
+ self._tracking_start_time = time.time()
688
+ else:
689
+ self._tracking_start_time = time.time()
690
+
691
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
692
+ # Reset minutes and seconds to 00:00 for "TOTAL SINCE" format
693
+ dt = dt.replace(minute=0, second=0, microsecond=0)
694
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
695
+
696
+ def _count_categories(self, detections: list, config: UnderwaterPlasticConfig) -> dict:
697
+ """
698
+ Count the number of detections per category and return a summary dict.
699
+ The detections list is expected to have 'track_id' (from tracker), 'category', 'bounding_box', etc.
700
+ Output structure will include 'track_id' for each detection as per AdvancedTracker output.
701
+ """
702
+ counts = {}
703
+ for det in detections:
704
+ cat = det.get('category', 'unknown')
705
+ counts[cat] = counts.get(cat, 0) + 1
706
+ # Each detection dict will now include 'track_id' (and possibly 'frame_id')
707
+ return {
708
+ "total_count": sum(counts.values()),
709
+ "per_category_count": counts,
710
+ "detections": [
711
+ {
712
+ "bounding_box": det.get("bounding_box"),
713
+ "category": det.get("category"),
714
+ "confidence": det.get("confidence"),
715
+ "track_id": det.get("track_id"),
716
+ "frame_id": det.get("frame_id")
717
+ }
718
+ for det in detections
719
+ ]
720
+ }
721
+
722
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
723
+ """
724
+ Extract prediction details for output (category, confidence, bounding box).
725
+ """
726
+ return [
727
+ {
728
+ "category": det.get("category", "unknown"),
729
+ "confidence": det.get("confidence", 0.0),
730
+ "bounding_box": det.get("bounding_box", {})
731
+ }
732
+ for det in detections
733
+ ]
734
+
735
+ # ------------------------------------------------------------------ #
736
+ # Canonical ID helpers #
737
+ # ------------------------------------------------------------------ #
738
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
739
+ """Compute IoU between two bounding boxes which may be dicts or lists.
740
+ Falls back to 0 when insufficient data is available."""
741
+
742
+ # Helper to convert bbox (dict or list) to [x1, y1, x2, y2]
743
+ def _bbox_to_list(bbox):
744
+ if bbox is None:
745
+ return []
746
+ if isinstance(bbox, list):
747
+ return bbox[:4] if len(bbox) >= 4 else []
748
+ if isinstance(bbox, dict):
749
+ if "xmin" in bbox:
750
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
751
+ if "x1" in bbox:
752
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
753
+ # Fallback: first four numeric values
754
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
755
+ return values[:4] if len(values) >= 4 else []
756
+ return []
757
+
758
+ l1 = _bbox_to_list(box1)
759
+ l2 = _bbox_to_list(box2)
760
+ if len(l1) < 4 or len(l2) < 4:
761
+ return 0.0
762
+ x1_min, y1_min, x1_max, y1_max = l1
763
+ x2_min, y2_min, x2_max, y2_max = l2
764
+
765
+ # Ensure correct order
766
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
767
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
768
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
769
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
770
+
771
+ inter_x_min = max(x1_min, x2_min)
772
+ inter_y_min = max(y1_min, y2_min)
773
+ inter_x_max = min(x1_max, x2_max)
774
+ inter_y_max = min(y1_max, y2_max)
775
+
776
+ inter_w = max(0.0, inter_x_max - inter_x_min)
777
+ inter_h = max(0.0, inter_y_max - inter_y_min)
778
+ inter_area = inter_w * inter_h
779
+
780
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
781
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
782
+ union_area = area1 + area2 - inter_area
783
+
784
+ return (inter_area / union_area) if union_area > 0 else 0.0
785
+
786
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
787
+ """Return a stable canonical ID for a raw tracker ID, merging fragmented
788
+ tracks when IoU and temporal constraints indicate they represent the
789
+ same physical."""
790
+ if raw_id is None or bbox is None:
791
+ # Nothing to merge
792
+ return raw_id
793
+
794
+ now = time.time()
795
+
796
+ # Fast path – raw_id already mapped
797
+ if raw_id in self._track_aliases:
798
+ canonical_id = self._track_aliases[raw_id]
799
+ track_info = self._canonical_tracks.get(canonical_id)
800
+ if track_info is not None:
801
+ track_info["last_bbox"] = bbox
802
+ track_info["last_update"] = now
803
+ track_info["raw_ids"].add(raw_id)
804
+ return canonical_id
805
+
806
+ # Attempt to merge with an existing canonical track
807
+ for canonical_id, info in self._canonical_tracks.items():
808
+ # Only consider recently updated tracks
809
+ if now - info["last_update"] > self._track_merge_time_window:
810
+ continue
811
+ iou = self._compute_iou(bbox, info["last_bbox"])
812
+ if iou >= self._track_merge_iou_threshold:
813
+ # Merge
814
+ self._track_aliases[raw_id] = canonical_id
815
+ info["last_bbox"] = bbox
816
+ info["last_update"] = now
817
+ info["raw_ids"].add(raw_id)
818
+ return canonical_id
819
+
820
+ # No match – register new canonical track
821
+ canonical_id = raw_id
822
+ self._track_aliases[raw_id] = canonical_id
823
+ self._canonical_tracks[canonical_id] = {
824
+ "last_bbox": bbox,
825
+ "last_update": now,
826
+ "raw_ids": {raw_id},
827
+ }
828
+ return canonical_id
829
+
830
+ def _format_timestamp(self, timestamp: float) -> str:
831
+ """Format a timestamp for human-readable output."""
832
+ return datetime.fromtimestamp(timestamp, timezone.utc).strftime('%Y-%m-%d %H:%M:%S UTC')
833
+
834
+ def _get_tracking_start_time(self) -> str:
835
+ """Get the tracking start time, formatted as a string."""
836
+ if self._tracking_start_time is None:
837
+ return "N/A"
838
+ return self._format_timestamp(self._tracking_start_time)
839
+
840
+ def _set_tracking_start_time(self) -> None:
841
+ """Set the tracking start time to the current time."""
842
+ self._tracking_start_time = time.time()