matrice-analytics 0.1.2__py3-none-any.whl → 0.1.31__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of matrice-analytics might be problematic. Click here for more details.

Files changed (59) hide show
  1. matrice_analytics/post_processing/advanced_tracker/matching.py +3 -3
  2. matrice_analytics/post_processing/advanced_tracker/strack.py +1 -1
  3. matrice_analytics/post_processing/face_reg/compare_similarity.py +5 -5
  4. matrice_analytics/post_processing/face_reg/embedding_manager.py +14 -7
  5. matrice_analytics/post_processing/face_reg/face_recognition.py +123 -34
  6. matrice_analytics/post_processing/face_reg/face_recognition_client.py +332 -82
  7. matrice_analytics/post_processing/face_reg/people_activity_logging.py +29 -22
  8. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/__init__.py +9 -0
  9. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/__init__.py +4 -0
  10. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/cli.py +33 -0
  11. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/dataset_stats.py +139 -0
  12. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/export.py +398 -0
  13. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/train.py +447 -0
  14. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/utils.py +129 -0
  15. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/valid.py +93 -0
  16. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/validate_dataset.py +240 -0
  17. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_augmentation.py +176 -0
  18. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/cli/visualize_predictions.py +96 -0
  19. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/__init__.py +3 -0
  20. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/process.py +246 -0
  21. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/types.py +60 -0
  22. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/core/utils.py +87 -0
  23. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/__init__.py +3 -0
  24. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/config.py +82 -0
  25. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/hub.py +141 -0
  26. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/inference/plate_recognizer.py +323 -0
  27. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/py.typed +0 -0
  28. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/__init__.py +0 -0
  29. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/__init__.py +0 -0
  30. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/augmentation.py +101 -0
  31. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/data/dataset.py +97 -0
  32. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/__init__.py +0 -0
  33. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/config.py +114 -0
  34. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/layers.py +553 -0
  35. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/loss.py +55 -0
  36. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/metric.py +86 -0
  37. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_builders.py +95 -0
  38. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/model/model_schema.py +395 -0
  39. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/__init__.py +0 -0
  40. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/backend_utils.py +38 -0
  41. matrice_analytics/post_processing/ocr/fast_plate_ocr_py38/train/utilities/utils.py +214 -0
  42. matrice_analytics/post_processing/ocr/postprocessing.py +0 -1
  43. matrice_analytics/post_processing/post_processor.py +19 -5
  44. matrice_analytics/post_processing/usecases/color/clip.py +292 -132
  45. matrice_analytics/post_processing/usecases/color/color_mapper.py +2 -2
  46. matrice_analytics/post_processing/usecases/color_detection.py +429 -355
  47. matrice_analytics/post_processing/usecases/drone_traffic_monitoring.py +41 -386
  48. matrice_analytics/post_processing/usecases/flare_analysis.py +1 -56
  49. matrice_analytics/post_processing/usecases/license_plate_detection.py +476 -202
  50. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +252 -11
  51. matrice_analytics/post_processing/usecases/people_counting.py +408 -1431
  52. matrice_analytics/post_processing/usecases/people_counting_bckp.py +1683 -0
  53. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +39 -10
  54. matrice_analytics/post_processing/utils/__init__.py +8 -8
  55. {matrice_analytics-0.1.2.dist-info → matrice_analytics-0.1.31.dist-info}/METADATA +1 -1
  56. {matrice_analytics-0.1.2.dist-info → matrice_analytics-0.1.31.dist-info}/RECORD +59 -24
  57. {matrice_analytics-0.1.2.dist-info → matrice_analytics-0.1.31.dist-info}/WHEEL +0 -0
  58. {matrice_analytics-0.1.2.dist-info → matrice_analytics-0.1.31.dist-info}/licenses/LICENSE.txt +0 -0
  59. {matrice_analytics-0.1.2.dist-info → matrice_analytics-0.1.31.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,214 @@
1
+ """
2
+ Utility functions module
3
+ """
4
+
5
+ import logging
6
+ import pathlib
7
+ import pkgutil
8
+ import random
9
+ from collections.abc import Iterator
10
+ from importlib import import_module
11
+ from typing import Optional, Union
12
+
13
+ import cv2
14
+ import keras
15
+ import numpy as np
16
+ import numpy.typing as npt
17
+
18
+ from fast_plate_ocr.core.process import read_and_resize_plate_image
19
+ from fast_plate_ocr.core.types import ImageColorMode, ImageInterpolation, PaddingColor
20
+ from fast_plate_ocr.train.model.config import PlateOCRConfig
21
+ from fast_plate_ocr.train.model.loss import cce_loss, focal_cce_loss
22
+ from fast_plate_ocr.train.model.metric import (
23
+ cat_acc_metric,
24
+ plate_acc_metric,
25
+ plate_len_acc_metric,
26
+ top_3_k_metric,
27
+ )
28
+
29
+
30
+ def one_hot_plate(plate: str, alphabet: str) -> list[list[int]]:
31
+ return [[0 if char != letter else 1 for char in alphabet] for letter in plate]
32
+
33
+
34
+ def target_transform(
35
+ plate_text: str,
36
+ max_plate_slots: int,
37
+ alphabet: str,
38
+ pad_char: str,
39
+ ) -> npt.NDArray[np.uint8]:
40
+ # Pad the plates which length is smaller than 'max_plate_slots'
41
+ plate_text = plate_text.ljust(max_plate_slots, pad_char)
42
+ # Generate numpy arrays with one-hot encoding of plates
43
+ encoded_plate = np.array(one_hot_plate(plate_text, alphabet=alphabet), dtype=np.uint8)
44
+ return encoded_plate
45
+
46
+
47
+ def _register_custom_keras():
48
+ base_pkg = "fast_plate_ocr.train.model"
49
+ for _, name, _ in pkgutil.walk_packages(
50
+ import_module(base_pkg).__path__, prefix=f"{base_pkg}."
51
+ ):
52
+ if any(m in name for m in ("layers",)):
53
+ import_module(name)
54
+
55
+
56
+ def load_keras_model(
57
+ model_path: Union[str, pathlib.Path],
58
+ plate_config: PlateOCRConfig,
59
+ ) -> keras.Model:
60
+ """
61
+ Utility helper function to load the keras OCR model.
62
+ """
63
+ _register_custom_keras()
64
+ custom_objects = {
65
+ "cce": cce_loss(
66
+ vocabulary_size=plate_config.vocabulary_size,
67
+ ),
68
+ "focal_cce": focal_cce_loss(
69
+ vocabulary_size=plate_config.vocabulary_size,
70
+ ),
71
+ "cat_acc": cat_acc_metric(
72
+ max_plate_slots=plate_config.max_plate_slots,
73
+ vocabulary_size=plate_config.vocabulary_size,
74
+ ),
75
+ "plate_acc": plate_acc_metric(
76
+ max_plate_slots=plate_config.max_plate_slots,
77
+ vocabulary_size=plate_config.vocabulary_size,
78
+ ),
79
+ "top_3_k": top_3_k_metric(
80
+ vocabulary_size=plate_config.vocabulary_size,
81
+ ),
82
+ "plate_len_acc": plate_len_acc_metric(
83
+ max_plate_slots=plate_config.max_plate_slots,
84
+ vocabulary_size=plate_config.vocabulary_size,
85
+ pad_token_index=plate_config.pad_idx,
86
+ ),
87
+ }
88
+ model = keras.models.load_model(model_path, custom_objects=custom_objects)
89
+ return model
90
+
91
+
92
+ IMG_EXTENSIONS: set[str] = {".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff", ".webp"}
93
+ """Valid image extensions for the scope of this script."""
94
+
95
+
96
+ def load_images_from_folder( # noqa: PLR0913
97
+ img_dir: pathlib.Path,
98
+ width: int,
99
+ height: int,
100
+ image_color_mode: ImageColorMode = "grayscale",
101
+ keep_aspect_ratio: bool = False,
102
+ interpolation_method: ImageInterpolation = "linear",
103
+ padding_color: PaddingColor = (114, 114, 114),
104
+ shuffle: bool = False,
105
+ limit: Optional[int] = None,
106
+ ) -> Iterator[npt.NDArray]:
107
+ """
108
+ Return all images read from a directory. This uses the same read function used during training.
109
+ """
110
+ # pylint: disable=too-many-arguments
111
+ image_paths = sorted(
112
+ str(f.resolve()) for f in img_dir.iterdir() if f.is_file() and f.suffix in IMG_EXTENSIONS
113
+ )
114
+ if limit:
115
+ image_paths = image_paths[:limit]
116
+ if shuffle:
117
+ random.shuffle(image_paths)
118
+ yield from (
119
+ read_and_resize_plate_image(
120
+ i,
121
+ img_height=height,
122
+ img_width=width,
123
+ image_color_mode=image_color_mode,
124
+ keep_aspect_ratio=keep_aspect_ratio,
125
+ interpolation_method=interpolation_method,
126
+ padding_color=padding_color,
127
+ )
128
+ for i in image_paths
129
+ )
130
+
131
+
132
+ def postprocess_model_output(
133
+ prediction: npt.NDArray,
134
+ alphabet: str,
135
+ max_plate_slots: int,
136
+ vocab_size: int,
137
+ ) -> tuple[str, npt.NDArray]:
138
+ """
139
+ Return plate text and confidence scores from raw model output.
140
+ """
141
+ prediction = prediction.reshape((max_plate_slots, vocab_size))
142
+ probs = np.max(prediction, axis=-1)
143
+ prediction = np.argmax(prediction, axis=-1)
144
+ plate = "".join([alphabet[x] for x in prediction])
145
+ return plate, probs
146
+
147
+
148
+ def low_confidence_positions(probs, thresh=0.3) -> npt.NDArray:
149
+ """Returns indices of elements in `probs` less than `thresh`, indicating low confidence."""
150
+ return np.where(np.array(probs) < thresh)[0]
151
+
152
+
153
+ def display_predictions(
154
+ image: npt.NDArray,
155
+ plate: str,
156
+ probs: npt.NDArray,
157
+ low_conf_thresh: float,
158
+ ) -> None:
159
+ """
160
+ Display plate and corresponding prediction.
161
+ """
162
+ plate_str = "".join(plate)
163
+ logging.info("Plate: %s", plate_str)
164
+ logging.info("Confidence: %s", probs)
165
+ image_to_show = cv2.resize(image, None, fx=3, fy=3, interpolation=cv2.INTER_LINEAR)
166
+ if len(image_to_show.shape) == 2:
167
+ image_to_show = cv2.cvtColor(image_to_show, cv2.COLOR_GRAY2RGB)
168
+ elif image_to_show.shape[2] == 3:
169
+ image_to_show = cv2.cvtColor(image_to_show, cv2.COLOR_BGR2RGB)
170
+ # Average probabilities
171
+ avg_prob = np.mean(probs) * 100
172
+ cv2.putText(
173
+ image_to_show,
174
+ f"{plate_str} {avg_prob:.{2}f}%",
175
+ org=(5, 30),
176
+ fontFace=cv2.FONT_HERSHEY_SIMPLEX,
177
+ fontScale=1,
178
+ color=(0, 0, 0),
179
+ lineType=1,
180
+ thickness=6,
181
+ )
182
+ cv2.putText(
183
+ image_to_show,
184
+ f"{plate_str} {avg_prob:.{2}f}%",
185
+ org=(5, 30),
186
+ fontFace=cv2.FONT_HERSHEY_SIMPLEX,
187
+ fontScale=1,
188
+ color=(255, 255, 255),
189
+ lineType=1,
190
+ thickness=2,
191
+ )
192
+ # Display character with low confidence
193
+ low_conf_chars = "Low conf. on: " + " ".join(
194
+ [plate[i] for i in low_confidence_positions(probs, thresh=low_conf_thresh)]
195
+ )
196
+ cv2.putText(
197
+ image_to_show,
198
+ low_conf_chars,
199
+ org=(5, 200),
200
+ fontFace=cv2.FONT_HERSHEY_SIMPLEX,
201
+ fontScale=0.7,
202
+ color=(0, 0, 220),
203
+ lineType=1,
204
+ thickness=2,
205
+ )
206
+ try:
207
+ cv2.imshow("plates", image_to_show)
208
+ if cv2.waitKey(0) & 0xFF == ord("q"):
209
+ return
210
+ except cv2.error as e: # pylint: disable=catching-non-exception
211
+ raise RuntimeError( # pylint: disable=bad-exception-cause
212
+ "This visualization requires full OpenCV with GUI support. "
213
+ "Install with `pip install opencv-python` instead of headless."
214
+ ) from e
@@ -9,7 +9,6 @@ class TextPostprocessor:
9
9
  Args:
10
10
  logging_level: The level of logging detail. Default is INFO.
11
11
  """
12
- logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging_level)
13
12
  self.logger = logging.getLogger('TextPostprocessor')
14
13
 
15
14
  self.task_processors = {
@@ -312,6 +312,7 @@ class PostProcessor:
312
312
  ) -> None:
313
313
  """Remove parameters that aren't needed for specific use cases."""
314
314
  facial_recognition_usecases = {"face_recognition"}
315
+ license_plate_monitoring_usecases = {"license_plate_monitor"}
315
316
 
316
317
  if usecase not in facial_recognition_usecases:
317
318
  if "facial_recognition_server_id" in config_params:
@@ -319,7 +320,14 @@ class PostProcessor:
319
320
  f"Removing facial_recognition_server_id from {usecase} config"
320
321
  )
321
322
  config_params.pop("facial_recognition_server_id", None)
322
-
323
+
324
+ if usecase not in license_plate_monitoring_usecases:
325
+ if "lpr_server_id" in config_params:
326
+ logging.debug(f"Removing lpr_server_id from {usecase} config")
327
+ config_params.pop("lpr_server_id", None)
328
+
329
+ # Keep session and lpr_server_id only for use cases that need them
330
+ if usecase not in facial_recognition_usecases and usecase not in license_plate_monitoring_usecases:
323
331
  if "session" in config_params:
324
332
  logging.debug(f"Removing session from {usecase} config")
325
333
  config_params.pop("session", None)
@@ -660,8 +668,13 @@ class PostProcessor:
660
668
  if not use_case_class:
661
669
  raise ValueError(f"Use case '{config.category}/{config.usecase}' not found")
662
670
 
663
- # Instantiate use case
664
- use_case = use_case_class()
671
+
672
+ if isinstance(use_case_class, FaceRecognitionEmbeddingUseCase):
673
+ use_case = use_case_class(config=config)
674
+ else:
675
+ use_case = use_case_class()
676
+ logger.info(f"Created use case instance for: {config.category}/{config.usecase}")
677
+
665
678
 
666
679
  # Cache the instance
667
680
  self._use_case_cache[cache_key] = use_case
@@ -689,7 +702,8 @@ class PostProcessor:
689
702
  FlareAnalysisUseCase,
690
703
  LicensePlateMonitorUseCase,
691
704
  AgeGenderUseCase,
692
- PeopleTrackingUseCase
705
+ PeopleTrackingUseCase,
706
+ FaceRecognitionEmbeddingUseCase
693
707
  }
694
708
 
695
709
  # Async use cases
@@ -1017,7 +1031,7 @@ class PostProcessor:
1017
1031
  "total_processing_time": 0.0,
1018
1032
  }
1019
1033
 
1020
- def _parse_config(
1034
+ def _parse_config( # TODO: remove all of the kwargs that are not in the use case config
1021
1035
  self, config: Union[BaseConfig, Dict[str, Any], str, Path]
1022
1036
  ) -> BaseConfig:
1023
1037
  """Parse configuration from various input formats."""