mapFolding 0.6.0__py3-none-any.whl → 0.7.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mapFolding/__init__.py +6 -104
- mapFolding/basecamp.py +12 -8
- mapFolding/beDRY.py +96 -286
- mapFolding/filesystem.py +87 -0
- mapFolding/noHomeYet.py +20 -0
- mapFolding/oeis.py +46 -39
- mapFolding/reference/flattened.py +377 -0
- mapFolding/reference/hunterNumba.py +132 -0
- mapFolding/reference/irvineJavaPort.py +120 -0
- mapFolding/reference/jax.py +208 -0
- mapFolding/reference/lunnan.py +153 -0
- mapFolding/reference/lunnanNumpy.py +123 -0
- mapFolding/reference/lunnanWhile.py +121 -0
- mapFolding/reference/rotatedEntryPoint.py +240 -0
- mapFolding/reference/total_countPlus1vsPlusN.py +211 -0
- mapFolding/someAssemblyRequired/Z0Z_workbench.py +34 -0
- mapFolding/someAssemblyRequired/__init__.py +16 -0
- mapFolding/someAssemblyRequired/getLLVMforNoReason.py +21 -0
- mapFolding/someAssemblyRequired/ingredientsNumba.py +100 -0
- mapFolding/someAssemblyRequired/synthesizeCountingFunctions.py +7 -0
- mapFolding/someAssemblyRequired/synthesizeDataConverters.py +135 -0
- mapFolding/someAssemblyRequired/synthesizeNumba.py +91 -0
- mapFolding/someAssemblyRequired/synthesizeNumbaJob.py +417 -0
- mapFolding/someAssemblyRequired/synthesizeNumbaModules.py +91 -0
- mapFolding/someAssemblyRequired/transformationTools.py +425 -0
- mapFolding/someAssemblyRequired/whatWillBe.py +311 -0
- mapFolding/syntheticModules/__init__.py +0 -0
- mapFolding/syntheticModules/dataNamespaceFlattened.py +30 -0
- mapFolding/syntheticModules/numbaCount.py +90 -0
- mapFolding/syntheticModules/numbaCountExample.py +158 -0
- mapFolding/syntheticModules/numbaCountSequential.py +110 -0
- mapFolding/syntheticModules/numbaCount_doTheNeedful.py +13 -0
- mapFolding/syntheticModules/numba_doTheNeedful.py +12 -0
- mapFolding/syntheticModules/numba_doTheNeedfulExample.py +13 -0
- mapFolding/theDao.py +203 -227
- mapFolding/theSSOT.py +255 -102
- {mapfolding-0.6.0.dist-info → mapfolding-0.7.0.dist-info}/METADATA +7 -6
- mapfolding-0.7.0.dist-info/RECORD +50 -0
- {mapfolding-0.6.0.dist-info → mapfolding-0.7.0.dist-info}/WHEEL +1 -1
- {mapfolding-0.6.0.dist-info → mapfolding-0.7.0.dist-info}/top_level.txt +1 -0
- tests/__init__.py +0 -0
- tests/conftest.py +278 -0
- tests/test_computations.py +49 -0
- tests/test_filesystem.py +52 -0
- tests/test_oeis.py +128 -0
- tests/test_other.py +84 -0
- tests/test_tasks.py +50 -0
- mapFolding/theConfiguration.py +0 -58
- mapFolding/theSSOTdatatypes.py +0 -155
- mapFolding/theWrongWay.py +0 -7
- mapfolding-0.6.0.dist-info/RECORD +0 -16
- {mapfolding-0.6.0.dist-info → mapfolding-0.7.0.dist-info}/LICENSE +0 -0
- {mapfolding-0.6.0.dist-info → mapfolding-0.7.0.dist-info}/entry_points.txt +0 -0
|
@@ -0,0 +1,120 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Ported from the Java version by Sean A. Irvine:
|
|
3
|
+
https://github.com/archmageirvine/joeis/blob/80e3e844b11f149704acbab520bc3a3a25ac34ff/src/irvine/oeis/a001/A001415.java
|
|
4
|
+
|
|
5
|
+
Citation: mapFolding/citations/jOEIS.bibtex
|
|
6
|
+
"""
|
|
7
|
+
def foldings(p: list[int], res: int = 0, mod: int = 0) -> int:
|
|
8
|
+
"""
|
|
9
|
+
Compute the total number of foldings for a map with dimensions specified in p.
|
|
10
|
+
|
|
11
|
+
Parameters:
|
|
12
|
+
p: List of integers representing the dimensions of the map.
|
|
13
|
+
res: Residue for modulo operation (integer).
|
|
14
|
+
mod: Modulus for modulo operation (integer).
|
|
15
|
+
|
|
16
|
+
Returns:
|
|
17
|
+
total_count: The total number of foldings (integer).
|
|
18
|
+
"""
|
|
19
|
+
n = 1 # Total number of leaves
|
|
20
|
+
d = len(p) # Number of dimensions
|
|
21
|
+
for dimension in p:
|
|
22
|
+
n *= dimension
|
|
23
|
+
|
|
24
|
+
# Initialize arrays/lists
|
|
25
|
+
A = [0] * (n + 1) # Leaf above leaf m
|
|
26
|
+
B = [0] * (n + 1) # Leaf below leaf m
|
|
27
|
+
count = [0] * (n + 1) # Counts for potential gaps
|
|
28
|
+
gapter = [0] * (n + 1) # Indices for gap stack per leaf
|
|
29
|
+
gap = [0] * (n * n + 1) # Stack of potential gaps
|
|
30
|
+
|
|
31
|
+
# Compute arrays P, C, D as per the algorithm
|
|
32
|
+
P = [1] * (d + 1)
|
|
33
|
+
for i in range(1, d + 1):
|
|
34
|
+
P[i] = P[i - 1] * p[i - 1]
|
|
35
|
+
|
|
36
|
+
# C[i][m] holds the i-th coordinate of leaf m
|
|
37
|
+
C = [[0] * (n + 1) for _ in range(d + 1)]
|
|
38
|
+
for i in range(1, d + 1):
|
|
39
|
+
for m in range(1, n + 1):
|
|
40
|
+
C[i][m] = ((m - 1) // P[i - 1]) - ((m - 1) // P[i]) * p[i - 1] + 1
|
|
41
|
+
|
|
42
|
+
# D[i][l][m] computes the leaf connected to m in section i when inserting l
|
|
43
|
+
D = [[[0] * (n + 1) for _ in range(n + 1)] for _ in range(d + 1)]
|
|
44
|
+
for i in range(1, d + 1):
|
|
45
|
+
for l in range(1, n + 1):
|
|
46
|
+
for m in range(1, l + 1):
|
|
47
|
+
delta = C[i][l] - C[i][m]
|
|
48
|
+
if delta % 2 == 0:
|
|
49
|
+
# If delta is even
|
|
50
|
+
if C[i][m] == 1:
|
|
51
|
+
D[i][l][m] = m
|
|
52
|
+
else:
|
|
53
|
+
D[i][l][m] = m - P[i - 1]
|
|
54
|
+
else:
|
|
55
|
+
# If delta is odd
|
|
56
|
+
if C[i][m] == p[i - 1] or m + P[i - 1] > l:
|
|
57
|
+
D[i][l][m] = m
|
|
58
|
+
else:
|
|
59
|
+
D[i][l][m] = m + P[i - 1]
|
|
60
|
+
|
|
61
|
+
# Initialize variables for backtracking
|
|
62
|
+
total_count = 0 # Total number of foldings
|
|
63
|
+
g = 0 # Gap index
|
|
64
|
+
l = 1 # Current leaf
|
|
65
|
+
|
|
66
|
+
# Start backtracking loop
|
|
67
|
+
while l > 0:
|
|
68
|
+
# If we have processed all leaves, increment total count
|
|
69
|
+
if l > n:
|
|
70
|
+
total_count += 1
|
|
71
|
+
else:
|
|
72
|
+
dd = 0 # Number of sections where leaf l is unconstrained
|
|
73
|
+
gg = g # Temporary gap index
|
|
74
|
+
g = gapter[l - 1] # Reset gap index for current leaf
|
|
75
|
+
|
|
76
|
+
# Count possible gaps for leaf l in each section
|
|
77
|
+
for i in range(1, d + 1):
|
|
78
|
+
if D[i][l][l] == l:
|
|
79
|
+
dd += 1
|
|
80
|
+
else:
|
|
81
|
+
m = D[i][l][l]
|
|
82
|
+
while m != l:
|
|
83
|
+
if mod == 0 or l != mod or m % mod == res:
|
|
84
|
+
gap[gg] = m
|
|
85
|
+
if count[m] == 0:
|
|
86
|
+
gg += 1
|
|
87
|
+
count[m] += 1
|
|
88
|
+
m = D[i][l][B[m]]
|
|
89
|
+
|
|
90
|
+
# If leaf l is unconstrained in all sections, it can be inserted anywhere
|
|
91
|
+
if dd == d:
|
|
92
|
+
for m in range(l):
|
|
93
|
+
gap[gg] = m
|
|
94
|
+
gg += 1
|
|
95
|
+
|
|
96
|
+
# Filter gaps that are common to all sections
|
|
97
|
+
for j in range(g, gg):
|
|
98
|
+
gap[g] = gap[j]
|
|
99
|
+
if count[gap[j]] == d - dd:
|
|
100
|
+
g += 1
|
|
101
|
+
count[gap[j]] = 0 # Reset count for next iteration
|
|
102
|
+
|
|
103
|
+
# Recursive backtracking steps
|
|
104
|
+
while l > 0 and g == gapter[l - 1]:
|
|
105
|
+
# No more gaps to try, backtrack to previous leaf
|
|
106
|
+
l -= 1
|
|
107
|
+
B[A[l]] = B[l]
|
|
108
|
+
A[B[l]] = A[l]
|
|
109
|
+
|
|
110
|
+
if l > 0:
|
|
111
|
+
# Try next gap for leaf l
|
|
112
|
+
g -= 1
|
|
113
|
+
A[l] = gap[g]
|
|
114
|
+
B[l] = B[A[l]]
|
|
115
|
+
B[A[l]] = l
|
|
116
|
+
A[B[l]] = l
|
|
117
|
+
gapter[l] = g # Save current gap index
|
|
118
|
+
l += 1 # Move to next leaf
|
|
119
|
+
|
|
120
|
+
return total_count
|
|
@@ -0,0 +1,208 @@
|
|
|
1
|
+
"""I was able to implement the algorithm with JAX, but I didn't see an advantage and it's a pain in the ass.
|
|
2
|
+
I don't maintain this module."""
|
|
3
|
+
from mapFolding import validateListDimensions, getLeavesTotal, makeConnectionGraph
|
|
4
|
+
from typing import List, Tuple
|
|
5
|
+
import jax
|
|
6
|
+
import jaxtyping
|
|
7
|
+
|
|
8
|
+
dtypeMedium = jax.numpy.uint32
|
|
9
|
+
dtypeMaximum = jax.numpy.uint32
|
|
10
|
+
|
|
11
|
+
def countFolds(listDimensions: List[int]) -> int:
|
|
12
|
+
listDimensionsPositive: List[int] = validateListDimensions(listDimensions)
|
|
13
|
+
|
|
14
|
+
n: int = getLeavesTotal(listDimensionsPositive)
|
|
15
|
+
d: int = len(listDimensions)
|
|
16
|
+
import numpy
|
|
17
|
+
D: numpy.ndarray = makeConnectionGraph(listDimensionsPositive)
|
|
18
|
+
connectionGraph = jax.numpy.asarray(D, dtype=dtypeMedium)
|
|
19
|
+
del listDimensionsPositive
|
|
20
|
+
|
|
21
|
+
return foldingsJAX(n, d, connectionGraph)
|
|
22
|
+
|
|
23
|
+
def foldingsJAX(leavesTotal: jaxtyping.UInt32, dimensionsTotal: jaxtyping.UInt32, connectionGraph: jaxtyping.Array) -> jaxtyping.UInt32:
|
|
24
|
+
|
|
25
|
+
def doNothing(argument):
|
|
26
|
+
return argument
|
|
27
|
+
|
|
28
|
+
def while_activeLeaf1ndex_greaterThan_0(comparisonValues: Tuple):
|
|
29
|
+
comparand = comparisonValues[6]
|
|
30
|
+
return comparand > 0
|
|
31
|
+
|
|
32
|
+
def countFoldings(allValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32, jaxtyping.UInt32]):
|
|
33
|
+
_0, leafBelow, _2, _3, _4, _5, activeLeaf1ndex, _7 = allValues
|
|
34
|
+
|
|
35
|
+
sentinel = leafBelow.at[0].get().astype(jax.numpy.uint32)
|
|
36
|
+
|
|
37
|
+
allValues = jax.lax.cond(findGapsCondition(sentinel, activeLeaf1ndex),
|
|
38
|
+
lambda argumentX: dao(findGapsDo(argumentX)),
|
|
39
|
+
lambda argumentY: jax.lax.cond(incrementCondition(sentinel, activeLeaf1ndex), lambda argumentZ: dao(incrementDo(argumentZ)), dao, argumentY),
|
|
40
|
+
allValues)
|
|
41
|
+
|
|
42
|
+
return allValues
|
|
43
|
+
|
|
44
|
+
def findGapsCondition(leafBelowSentinel, activeLeafNumber):
|
|
45
|
+
return jax.numpy.logical_or(jax.numpy.logical_and(leafBelowSentinel == 1, activeLeafNumber <= leavesTotal), activeLeafNumber <= 1)
|
|
46
|
+
|
|
47
|
+
def findGapsDo(allValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32, jaxtyping.UInt32]):
|
|
48
|
+
def for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1(comparisonValues: Tuple):
|
|
49
|
+
return comparisonValues[-1] <= dimensionsTotal
|
|
50
|
+
|
|
51
|
+
def for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1_do(for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1Values: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32, jaxtyping.UInt32]):
|
|
52
|
+
def ifLeafIsUnconstrainedCondition(comparand):
|
|
53
|
+
return jax.numpy.equal(connectionGraph[comparand, activeLeaf1ndex, activeLeaf1ndex], activeLeaf1ndex)
|
|
54
|
+
|
|
55
|
+
def ifLeafIsUnconstrainedDo(unconstrainedValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
|
|
56
|
+
unconstrained_unconstrainedLeaf = unconstrainedValues[3]
|
|
57
|
+
unconstrained_unconstrainedLeaf = 1 + unconstrained_unconstrainedLeaf
|
|
58
|
+
return (unconstrainedValues[0], unconstrainedValues[1], unconstrainedValues[2], unconstrained_unconstrainedLeaf)
|
|
59
|
+
|
|
60
|
+
def ifLeafIsUnconstrainedElse(unconstrainedValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
|
|
61
|
+
def while_leaf1ndexConnectee_notEquals_activeLeaf1ndex(comparisonValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
|
|
62
|
+
return comparisonValues[-1] != activeLeaf1ndex
|
|
63
|
+
|
|
64
|
+
def countGaps(countGapsDoValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
|
|
65
|
+
countGapsCountDimensionsGapped, countGapsPotentialGaps, countGapsGap1ndexLowerBound, countGapsLeaf1ndexConnectee = countGapsDoValues
|
|
66
|
+
|
|
67
|
+
countGapsPotentialGaps = countGapsPotentialGaps.at[countGapsGap1ndexLowerBound].set(countGapsLeaf1ndexConnectee)
|
|
68
|
+
countGapsGap1ndexLowerBound = jax.numpy.where(jax.numpy.equal(countGapsCountDimensionsGapped[countGapsLeaf1ndexConnectee], 0), countGapsGap1ndexLowerBound + 1, countGapsGap1ndexLowerBound)
|
|
69
|
+
countGapsCountDimensionsGapped = countGapsCountDimensionsGapped.at[countGapsLeaf1ndexConnectee].add(1)
|
|
70
|
+
countGapsLeaf1ndexConnectee = connectionGraph.at[dimensionNumber, activeLeaf1ndex, leafBelow.at[countGapsLeaf1ndexConnectee].get()].get().astype(jax.numpy.uint32)
|
|
71
|
+
|
|
72
|
+
return (countGapsCountDimensionsGapped, countGapsPotentialGaps, countGapsGap1ndexLowerBound, countGapsLeaf1ndexConnectee)
|
|
73
|
+
|
|
74
|
+
unconstrained_countDimensionsGapped, unconstrained_gapsWhere, unconstrained_gap1ndexCeiling, unconstrained_unconstrainedLeaf = unconstrainedValues
|
|
75
|
+
|
|
76
|
+
leaf1ndexConnectee = connectionGraph.at[dimensionNumber, activeLeaf1ndex, activeLeaf1ndex].get().astype(jax.numpy.uint32)
|
|
77
|
+
|
|
78
|
+
countGapsValues = (unconstrained_countDimensionsGapped, unconstrained_gapsWhere, unconstrained_gap1ndexCeiling, leaf1ndexConnectee)
|
|
79
|
+
countGapsValues = jax.lax.while_loop(while_leaf1ndexConnectee_notEquals_activeLeaf1ndex, countGaps, countGapsValues)
|
|
80
|
+
unconstrained_countDimensionsGapped, unconstrained_gapsWhere, unconstrained_gap1ndexCeiling, leaf1ndexConnectee = countGapsValues
|
|
81
|
+
|
|
82
|
+
return (unconstrained_countDimensionsGapped, unconstrained_gapsWhere, unconstrained_gap1ndexCeiling, unconstrained_unconstrainedLeaf)
|
|
83
|
+
|
|
84
|
+
dimensions_countDimensionsGapped, dimensions_gapsWhere, dimensions_gap1ndexCeiling, dimensions_unconstrainedLeaf, dimensionNumber = for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1Values
|
|
85
|
+
|
|
86
|
+
ifLeafIsUnconstrainedValues = (dimensions_countDimensionsGapped, dimensions_gapsWhere, dimensions_gap1ndexCeiling, dimensions_unconstrainedLeaf)
|
|
87
|
+
ifLeafIsUnconstrainedValues = jax.lax.cond(ifLeafIsUnconstrainedCondition(dimensionNumber), ifLeafIsUnconstrainedDo, ifLeafIsUnconstrainedElse, ifLeafIsUnconstrainedValues)
|
|
88
|
+
dimensions_countDimensionsGapped, dimensions_gapsWhere, dimensions_gap1ndexCeiling, dimensions_unconstrainedLeaf = ifLeafIsUnconstrainedValues
|
|
89
|
+
|
|
90
|
+
dimensionNumber = 1 + dimensionNumber
|
|
91
|
+
return (dimensions_countDimensionsGapped, dimensions_gapsWhere, dimensions_gap1ndexCeiling, dimensions_unconstrainedLeaf, dimensionNumber)
|
|
92
|
+
|
|
93
|
+
def almostUselessCondition(comparand):
|
|
94
|
+
return comparand == dimensionsTotal
|
|
95
|
+
|
|
96
|
+
def almostUselessConditionDo(for_leaf1ndex_in_range_activeLeaf1ndexValues: Tuple[jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
|
|
97
|
+
def for_leaf1ndex_in_range_activeLeaf1ndex(comparisonValues):
|
|
98
|
+
return comparisonValues[-1] < activeLeaf1ndex
|
|
99
|
+
|
|
100
|
+
def for_leaf1ndex_in_range_activeLeaf1ndex_do(for_leaf1ndex_in_range_activeLeaf1ndexValues: Tuple[jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
|
|
101
|
+
leafInRangePotentialGaps, gapNumberLowerBound, leafNumber = for_leaf1ndex_in_range_activeLeaf1ndexValues
|
|
102
|
+
leafInRangePotentialGaps = leafInRangePotentialGaps.at[gapNumberLowerBound].set(leafNumber)
|
|
103
|
+
gapNumberLowerBound = 1 + gapNumberLowerBound
|
|
104
|
+
leafNumber = 1 + leafNumber
|
|
105
|
+
return (leafInRangePotentialGaps, gapNumberLowerBound, leafNumber)
|
|
106
|
+
return jax.lax.while_loop(for_leaf1ndex_in_range_activeLeaf1ndex, for_leaf1ndex_in_range_activeLeaf1ndex_do, for_leaf1ndex_in_range_activeLeaf1ndexValues)
|
|
107
|
+
|
|
108
|
+
def for_range_from_activeGap1ndex_to_gap1ndexCeiling(comparisonValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
|
|
109
|
+
return comparisonValues[-1] < gap1ndexCeiling
|
|
110
|
+
|
|
111
|
+
def miniGapDo(gapToGapValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
|
|
112
|
+
gapToGapCountDimensionsGapped, gapToGapPotentialGaps, activeGapNumber, index = gapToGapValues
|
|
113
|
+
gapToGapPotentialGaps = gapToGapPotentialGaps.at[activeGapNumber].set(gapToGapPotentialGaps.at[index].get())
|
|
114
|
+
activeGapNumber = jax.numpy.where(jax.numpy.equal(gapToGapCountDimensionsGapped.at[gapToGapPotentialGaps.at[index].get()].get(), dimensionsTotal - unconstrainedLeaf), activeGapNumber + 1, activeGapNumber).astype(jax.numpy.uint32)
|
|
115
|
+
gapToGapCountDimensionsGapped = gapToGapCountDimensionsGapped.at[gapToGapPotentialGaps.at[index].get()].set(0)
|
|
116
|
+
index = 1 + index
|
|
117
|
+
return (gapToGapCountDimensionsGapped, gapToGapPotentialGaps, activeGapNumber, index)
|
|
118
|
+
|
|
119
|
+
_0, leafBelow, countDimensionsGapped, gapRangeStart, gapsWhere, _5, activeLeaf1ndex, activeGap1ndex = allValues
|
|
120
|
+
|
|
121
|
+
unconstrainedLeaf = jax.numpy.uint32(0)
|
|
122
|
+
dimension1ndex = jax.numpy.uint32(1)
|
|
123
|
+
gap1ndexCeiling = gapRangeStart.at[activeLeaf1ndex - 1].get().astype(jax.numpy.uint32)
|
|
124
|
+
activeGap1ndex = gap1ndexCeiling
|
|
125
|
+
for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1Values = (countDimensionsGapped, gapsWhere, gap1ndexCeiling, unconstrainedLeaf, dimension1ndex)
|
|
126
|
+
for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1Values = jax.lax.while_loop(for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1, for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1_do, for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1Values)
|
|
127
|
+
countDimensionsGapped, gapsWhere, gap1ndexCeiling, unconstrainedLeaf, dimension1ndex = for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1Values
|
|
128
|
+
del dimension1ndex
|
|
129
|
+
|
|
130
|
+
leaf1ndex = jax.numpy.uint32(0)
|
|
131
|
+
for_leaf1ndex_in_range_activeLeaf1ndexValues = (gapsWhere, gap1ndexCeiling, leaf1ndex)
|
|
132
|
+
for_leaf1ndex_in_range_activeLeaf1ndexValues = jax.lax.cond(almostUselessCondition(unconstrainedLeaf), almostUselessConditionDo, doNothing, for_leaf1ndex_in_range_activeLeaf1ndexValues)
|
|
133
|
+
gapsWhere, gap1ndexCeiling, leaf1ndex = for_leaf1ndex_in_range_activeLeaf1ndexValues
|
|
134
|
+
del leaf1ndex
|
|
135
|
+
|
|
136
|
+
indexMiniGap = activeGap1ndex
|
|
137
|
+
miniGapValues = (countDimensionsGapped, gapsWhere, activeGap1ndex, indexMiniGap)
|
|
138
|
+
miniGapValues = jax.lax.while_loop(for_range_from_activeGap1ndex_to_gap1ndexCeiling, miniGapDo, miniGapValues)
|
|
139
|
+
countDimensionsGapped, gapsWhere, activeGap1ndex, indexMiniGap = miniGapValues
|
|
140
|
+
del indexMiniGap
|
|
141
|
+
|
|
142
|
+
return (allValues[0], leafBelow, countDimensionsGapped, gapRangeStart, gapsWhere, allValues[5], activeLeaf1ndex, activeGap1ndex)
|
|
143
|
+
|
|
144
|
+
def incrementCondition(leafBelowSentinel, activeLeafNumber):
|
|
145
|
+
return jax.numpy.logical_and(activeLeafNumber > leavesTotal, leafBelowSentinel == 1)
|
|
146
|
+
|
|
147
|
+
def incrementDo(allValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32, jaxtyping.UInt32]):
|
|
148
|
+
foldingsSubTotal = allValues[5]
|
|
149
|
+
foldingsSubTotal = leavesTotal + foldingsSubTotal
|
|
150
|
+
return (allValues[0], allValues[1], allValues[2], allValues[3], allValues[4], foldingsSubTotal, allValues[6], allValues[7])
|
|
151
|
+
|
|
152
|
+
def dao(allValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32, jaxtyping.UInt32]):
|
|
153
|
+
def whileBacktrackingCondition(backtrackingValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32]):
|
|
154
|
+
comparand = backtrackingValues[2]
|
|
155
|
+
return jax.numpy.logical_and(comparand > 0, jax.numpy.equal(activeGap1ndex, gapRangeStart.at[comparand - 1].get()))
|
|
156
|
+
|
|
157
|
+
def whileBacktrackingDo(backtrackingValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32]):
|
|
158
|
+
backtrackAbove, backtrackBelow, activeLeafNumber = backtrackingValues
|
|
159
|
+
|
|
160
|
+
activeLeafNumber = activeLeafNumber - 1
|
|
161
|
+
backtrackBelow = backtrackBelow.at[backtrackAbove.at[activeLeafNumber].get()].set(backtrackBelow.at[activeLeafNumber].get())
|
|
162
|
+
backtrackAbove = backtrackAbove.at[backtrackBelow.at[activeLeafNumber].get()].set(backtrackAbove.at[activeLeafNumber].get())
|
|
163
|
+
|
|
164
|
+
return (backtrackAbove, backtrackBelow, activeLeafNumber)
|
|
165
|
+
|
|
166
|
+
def if_activeLeaf1ndex_greaterThan_0(activeLeafNumber):
|
|
167
|
+
return activeLeafNumber > 0
|
|
168
|
+
|
|
169
|
+
def if_activeLeaf1ndex_greaterThan_0_do(leafPlacementValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
|
|
170
|
+
placeLeafAbove, placeLeafBelow, placeGapRangeStart, activeLeafNumber, activeGapNumber = leafPlacementValues
|
|
171
|
+
activeGapNumber = activeGapNumber - 1
|
|
172
|
+
placeLeafAbove = placeLeafAbove.at[activeLeafNumber].set(gapsWhere.at[activeGapNumber].get())
|
|
173
|
+
placeLeafBelow = placeLeafBelow.at[activeLeafNumber].set(placeLeafBelow.at[placeLeafAbove.at[activeLeafNumber].get()].get())
|
|
174
|
+
placeLeafBelow = placeLeafBelow.at[placeLeafAbove.at[activeLeafNumber].get()].set(activeLeafNumber)
|
|
175
|
+
placeLeafAbove = placeLeafAbove.at[placeLeafBelow.at[activeLeafNumber].get()].set(activeLeafNumber)
|
|
176
|
+
placeGapRangeStart = placeGapRangeStart.at[activeLeafNumber].set(activeGapNumber)
|
|
177
|
+
|
|
178
|
+
activeLeafNumber = 1 + activeLeafNumber
|
|
179
|
+
return (placeLeafAbove, placeLeafBelow, placeGapRangeStart, activeLeafNumber, activeGapNumber)
|
|
180
|
+
|
|
181
|
+
leafAbove, leafBelow, _2, gapRangeStart, gapsWhere, _5, activeLeaf1ndex, activeGap1ndex = allValues
|
|
182
|
+
|
|
183
|
+
whileBacktrackingValues = (leafAbove, leafBelow, activeLeaf1ndex)
|
|
184
|
+
whileBacktrackingValues = jax.lax.while_loop(whileBacktrackingCondition, whileBacktrackingDo, whileBacktrackingValues)
|
|
185
|
+
leafAbove, leafBelow, activeLeaf1ndex = whileBacktrackingValues
|
|
186
|
+
|
|
187
|
+
if_activeLeaf1ndex_greaterThan_0_values = (leafAbove, leafBelow, gapRangeStart, activeLeaf1ndex, activeGap1ndex)
|
|
188
|
+
if_activeLeaf1ndex_greaterThan_0_values = jax.lax.cond(if_activeLeaf1ndex_greaterThan_0(activeLeaf1ndex), if_activeLeaf1ndex_greaterThan_0_do, doNothing, if_activeLeaf1ndex_greaterThan_0_values)
|
|
189
|
+
leafAbove, leafBelow, gapRangeStart, activeLeaf1ndex, activeGap1ndex = if_activeLeaf1ndex_greaterThan_0_values
|
|
190
|
+
|
|
191
|
+
return (leafAbove, leafBelow, allValues[2], gapRangeStart, gapsWhere, allValues[5], activeLeaf1ndex, activeGap1ndex)
|
|
192
|
+
|
|
193
|
+
# Dynamic values
|
|
194
|
+
A = jax.numpy.zeros(leavesTotal + 1, dtype=dtypeMedium)
|
|
195
|
+
B = jax.numpy.zeros(leavesTotal + 1, dtype=dtypeMedium)
|
|
196
|
+
count = jax.numpy.zeros(leavesTotal + 1, dtype=dtypeMedium)
|
|
197
|
+
gapter = jax.numpy.zeros(leavesTotal + 1, dtype=dtypeMedium)
|
|
198
|
+
gap = jax.numpy.zeros(leavesTotal * leavesTotal + 1, dtype=dtypeMaximum)
|
|
199
|
+
|
|
200
|
+
foldingsTotal = jax.numpy.uint32(0)
|
|
201
|
+
l = jax.numpy.uint32(1)
|
|
202
|
+
g = jax.numpy.uint32(0)
|
|
203
|
+
|
|
204
|
+
foldingsValues = (A, B, count, gapter, gap, foldingsTotal, l, g)
|
|
205
|
+
foldingsValues = jax.lax.while_loop(while_activeLeaf1ndex_greaterThan_0, countFoldings, foldingsValues)
|
|
206
|
+
return foldingsValues[5]
|
|
207
|
+
|
|
208
|
+
foldingsJAX = jax.jit(foldingsJAX, static_argnums=(0, 1))
|
|
@@ -0,0 +1,153 @@
|
|
|
1
|
+
"""
|
|
2
|
+
An unnecessarily literal translation of the original Atlas Autocode code by W. F. Lunnon to Python.
|
|
3
|
+
W. F. Lunnon, Multi-dimensional map-folding, The Computer Journal, Volume 14, Issue 1, 1971, Pages 75-80, https://doi.org/10.1093/comjnl/14.1.75
|
|
4
|
+
"""# NOTE not functional yet
|
|
5
|
+
def foldings(p, job=None):
|
|
6
|
+
"""An unnecessarily literal translation of the original Atlas Autocode code."""
|
|
7
|
+
p = list(p)
|
|
8
|
+
p.append(None) # NOTE mimics Atlas `array` type
|
|
9
|
+
p.insert(0, None) # NOTE mimics Atlas `array` type
|
|
10
|
+
|
|
11
|
+
if job is None:
|
|
12
|
+
global G
|
|
13
|
+
G = 0
|
|
14
|
+
def job(A, B):
|
|
15
|
+
global G
|
|
16
|
+
G = G + 1
|
|
17
|
+
return foldings(p, job)
|
|
18
|
+
# perform job (A, B) on each folding of a p[1] x ... x p[d] map,
|
|
19
|
+
# where A and B are the above and below vectors. p[d + 1] < 0 terminates p;
|
|
20
|
+
|
|
21
|
+
d: int
|
|
22
|
+
n: int
|
|
23
|
+
j: int
|
|
24
|
+
i: int
|
|
25
|
+
m: int
|
|
26
|
+
l: int
|
|
27
|
+
g: int
|
|
28
|
+
gg: int
|
|
29
|
+
dd: int
|
|
30
|
+
|
|
31
|
+
n = 1
|
|
32
|
+
i, d = 0, 0
|
|
33
|
+
|
|
34
|
+
while (i := i + 1) and p[i] is not None:
|
|
35
|
+
d = i
|
|
36
|
+
n = n * p[i]
|
|
37
|
+
|
|
38
|
+
# d dimensions and n leaves;
|
|
39
|
+
|
|
40
|
+
# A: list[int] = [None] * (n + 1) # type: ignore
|
|
41
|
+
# B: list[int] = [None] * (n + 1) # type: ignore
|
|
42
|
+
# count: list[int] = [None] * (n + 1) # type: ignore
|
|
43
|
+
# gapter: list[int] = [None] * (n + 1) # type: ignore
|
|
44
|
+
# gap: list[int] = [None] * (n * n + 1) # type: ignore
|
|
45
|
+
A: list[int] = [0] * (n + 1) # type: ignore
|
|
46
|
+
B: list[int] = [0] * (n + 1) # type: ignore
|
|
47
|
+
count: list[int] = [0] * (n + 1) # type: ignore
|
|
48
|
+
gapter: list[int] = [0] * (n + 1) # type: ignore
|
|
49
|
+
gap: list[int] = [0] * (n * n + 1) # type: ignore
|
|
50
|
+
|
|
51
|
+
# B[m] is the leaf below leaf m in the current folding,
|
|
52
|
+
# A[m] the leaf above. count[m] is the no. of sections in which
|
|
53
|
+
# there is a gap for the new leaf l below leaf m,
|
|
54
|
+
# gap[gapter[l - 1] + j] is the j-th (possible or actual) gap for leaf l,
|
|
55
|
+
# and later gap[gapter[l]] is the gap where leaf l is currently inserted;
|
|
56
|
+
|
|
57
|
+
P: list[int] = [0] * (d + 1) # type: ignore
|
|
58
|
+
C: list[list[int]] = [[0] * (n + 1) for dimension1 in range(d + 1)] # type: ignore
|
|
59
|
+
# D: list[list[list[int]]] = [[[None] * (n + 1) for dimension2 in range(n + 1)] for dimension1 in range(d + 1)] # type: ignore
|
|
60
|
+
D: list[list[list[int]]] = [[[0] * (n + 1) for dimension2 in range(n + 1)] for dimension1 in range(d + 1)]
|
|
61
|
+
|
|
62
|
+
P[0] = 1
|
|
63
|
+
for i in range(1, d + 1):
|
|
64
|
+
P[i] = P[i - 1] * p[i]
|
|
65
|
+
|
|
66
|
+
for i in range(1, d + 1):
|
|
67
|
+
for m in range(1, n + 1):
|
|
68
|
+
C[i][m] = ((m - 1) // P[i - 1]) - ((m - 1) // P[i]) * p[i] + 1
|
|
69
|
+
|
|
70
|
+
for i in range(1, d + 1):
|
|
71
|
+
for l in range(1, n + 1):
|
|
72
|
+
for m in range(1, l + 1):
|
|
73
|
+
D[i][l][m] = (0 if m == 0
|
|
74
|
+
else
|
|
75
|
+
((m if C[i][m] == 1
|
|
76
|
+
else m - P[i - 1])
|
|
77
|
+
if C[i][l] - C[i][m] == (C[i][l] - C[i][m]) // 2 * 2
|
|
78
|
+
else
|
|
79
|
+
(m if C[i][m] == p[i] or m + P[i - 1] > l
|
|
80
|
+
else m + P[i - 1])))
|
|
81
|
+
# P[i] = p[1] x ... x p[i], C[i][m] = i-th co-ordinate of leaf m,
|
|
82
|
+
# D[i][l][m] = leaf connected to m in section i when inserting l;
|
|
83
|
+
|
|
84
|
+
for m in range(n + 1):
|
|
85
|
+
count[m] = 0
|
|
86
|
+
|
|
87
|
+
A[0], B[0], g, l = 0, 0, 0, 0
|
|
88
|
+
|
|
89
|
+
state = 'entry'
|
|
90
|
+
while True:
|
|
91
|
+
if state == 'entry':
|
|
92
|
+
gapter[l] = g
|
|
93
|
+
l = l + 1
|
|
94
|
+
if l <= n:
|
|
95
|
+
state = 'down'
|
|
96
|
+
continue
|
|
97
|
+
else:
|
|
98
|
+
job(A, B)
|
|
99
|
+
state = 'up'
|
|
100
|
+
continue
|
|
101
|
+
|
|
102
|
+
elif state == 'down':
|
|
103
|
+
dd = 0
|
|
104
|
+
gg = gapter[l - 1]
|
|
105
|
+
g = gg
|
|
106
|
+
for i in range(1, d + 1):
|
|
107
|
+
if D[i][l][l] == l:
|
|
108
|
+
dd = dd + 1
|
|
109
|
+
else:
|
|
110
|
+
m = D[i][l][l]
|
|
111
|
+
while m != l:
|
|
112
|
+
gap[gg] = m
|
|
113
|
+
if count[m] == 0:
|
|
114
|
+
gg = gg + 1
|
|
115
|
+
count[m] = count[m] + 1
|
|
116
|
+
m = D[i][l][B[m]]
|
|
117
|
+
|
|
118
|
+
if dd == d:
|
|
119
|
+
for m in range(l):
|
|
120
|
+
gap[gg] = m
|
|
121
|
+
gg = gg + 1
|
|
122
|
+
|
|
123
|
+
for j in range(g, gg):
|
|
124
|
+
gap[g] = gap[j]
|
|
125
|
+
if count[gap[j]] == d - dd:
|
|
126
|
+
g = g + 1
|
|
127
|
+
count[gap[j]] = 0
|
|
128
|
+
state = 'along'
|
|
129
|
+
continue
|
|
130
|
+
|
|
131
|
+
elif state == 'along':
|
|
132
|
+
if g == gapter[l - 1]:
|
|
133
|
+
state = 'up'
|
|
134
|
+
continue
|
|
135
|
+
g = g - 1
|
|
136
|
+
A[l] = gap[g]
|
|
137
|
+
B[l] = B[A[l]]
|
|
138
|
+
B[A[l]] = l
|
|
139
|
+
A[B[l]] = l
|
|
140
|
+
state = 'entry'
|
|
141
|
+
continue
|
|
142
|
+
|
|
143
|
+
elif state == 'up':
|
|
144
|
+
l = l - 1
|
|
145
|
+
B[A[l]] = B[l]
|
|
146
|
+
A[B[l]] = A[l]
|
|
147
|
+
if l > 0:
|
|
148
|
+
state = 'along'
|
|
149
|
+
continue
|
|
150
|
+
else:
|
|
151
|
+
break
|
|
152
|
+
|
|
153
|
+
return G #if job.__closure__ else None
|
|
@@ -0,0 +1,123 @@
|
|
|
1
|
+
"""
|
|
2
|
+
A generally faithful translation of the original Atlas Autocode code by W. F. Lunnon to Python using NumPy.
|
|
3
|
+
W. F. Lunnon, Multi-dimensional map-folding, The Computer Journal, Volume 14, Issue 1, 1971, Pages 75-80, https://doi.org/10.1093/comjnl/14.1.75
|
|
4
|
+
"""
|
|
5
|
+
from typing import List
|
|
6
|
+
import numpy
|
|
7
|
+
|
|
8
|
+
def foldings(p: List[int]) -> int:
|
|
9
|
+
"""
|
|
10
|
+
Run loop with (A, B) on each folding of a p[1] x ... x p[d] map, where A and B are the above and below vectors.
|
|
11
|
+
|
|
12
|
+
Parameters:
|
|
13
|
+
p: A list of integers representing the dimensions of the map.
|
|
14
|
+
|
|
15
|
+
Returns:
|
|
16
|
+
G: The number of distinct foldings for the given map dimensions.
|
|
17
|
+
|
|
18
|
+
NOTE If there are fewer than two dimensions, any dimensions are not positive, or any dimensions are not integers, the output will be unreliable.
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
g: int = 0
|
|
22
|
+
d: int = len(p)
|
|
23
|
+
n: int = 1
|
|
24
|
+
for i in range(d):
|
|
25
|
+
n = n * p[i]
|
|
26
|
+
|
|
27
|
+
# d dimensions and n leaves
|
|
28
|
+
|
|
29
|
+
A = numpy.zeros(n + 1, dtype=int)
|
|
30
|
+
B = numpy.zeros(n + 1, dtype=int)
|
|
31
|
+
count = numpy.zeros(n + 1, dtype=int)
|
|
32
|
+
gapter = numpy.zeros(n + 1, dtype=int)
|
|
33
|
+
gap = numpy.zeros(n * n + 1, dtype=int)
|
|
34
|
+
|
|
35
|
+
# B[m] is the leaf below leaf m in the current folding,
|
|
36
|
+
# A[m] the leaf above. count[m] is the no. of sections in which
|
|
37
|
+
# there is a gap for the new leaf l below leaf m,
|
|
38
|
+
# gap[gapter[l - 1] + j] is the j-th (possible or actual) gap for leaf l,
|
|
39
|
+
# and later gap[gapter[l]] is the gap where leaf l is currently inserted
|
|
40
|
+
|
|
41
|
+
P = numpy.ones(d + 1, dtype=int)
|
|
42
|
+
C = numpy.zeros((d + 1, n + 1), dtype=int)
|
|
43
|
+
D = numpy.zeros((d + 1, n + 1, n + 1), dtype=int)
|
|
44
|
+
|
|
45
|
+
for i in range(1, d + 1):
|
|
46
|
+
P[i] = P[i - 1] * p[i - 1]
|
|
47
|
+
|
|
48
|
+
for i in range(1, d + 1):
|
|
49
|
+
for m in range(1, n + 1):
|
|
50
|
+
C[i][m] = ((m - 1) // P[i - 1]) % p[i - 1] + 1 # NOTE Because modulo is available, this statement is simpler.
|
|
51
|
+
|
|
52
|
+
for i in range(1, d + 1):
|
|
53
|
+
for l in range(1, n + 1):
|
|
54
|
+
for m in range(1, l + 1):
|
|
55
|
+
if C[i][l] - C[i][m] == (C[i][l] - C[i][m]) // 2 * 2:
|
|
56
|
+
if C[i][m] == 1:
|
|
57
|
+
D[i][l][m] = m
|
|
58
|
+
else:
|
|
59
|
+
D[i][l][m] = m - P[i - 1]
|
|
60
|
+
else:
|
|
61
|
+
if C[i][m] == p[i - 1] or m + P[i - 1] > l:
|
|
62
|
+
D[i][l][m] = m
|
|
63
|
+
else:
|
|
64
|
+
D[i][l][m] = m + P[i - 1]
|
|
65
|
+
# P[i] = p[1] x ... x p[i], C[i][m] = i-th co-ordinate of leaf m,
|
|
66
|
+
# D[i][l][m] = leaf connected to m in section i when inserting l;
|
|
67
|
+
|
|
68
|
+
G: int = 0
|
|
69
|
+
l: int = 1
|
|
70
|
+
|
|
71
|
+
# kick off with null folding
|
|
72
|
+
while l > 0:
|
|
73
|
+
if l <= 1 or B[0] == 1: # NOTE This statement is part of a significant divergence from the 1971 paper. As a result, this version is greater than one order of magnitude faster.
|
|
74
|
+
if l > n:
|
|
75
|
+
G = G + n # NOTE Due to `B[0] == 1`, this implementation increments the counted foldings in batches of `n`-many foldings, rather than immediately incrementing when a folding is found, i.e. `G = G + 1`
|
|
76
|
+
else:
|
|
77
|
+
dd: int = 0
|
|
78
|
+
gg: int = gapter[l - 1]
|
|
79
|
+
g = gg
|
|
80
|
+
# dd is the no. of sections in which l is unconstrained,
|
|
81
|
+
# gg the no. of possible and g the no. of actual gaps for l, + gapter[l - 1]
|
|
82
|
+
|
|
83
|
+
# find the possible gaps for leaf l in each section,
|
|
84
|
+
# then discard those not common to all. All possible if dd = d
|
|
85
|
+
for i in range(1, d + 1):
|
|
86
|
+
if D[i][l][l] == l:
|
|
87
|
+
dd = dd + 1
|
|
88
|
+
else:
|
|
89
|
+
m: int = D[i][l][l]
|
|
90
|
+
while m != l:
|
|
91
|
+
gap[gg] = m
|
|
92
|
+
if count[m] == 0:
|
|
93
|
+
gg = gg + 1
|
|
94
|
+
count[m] += 1
|
|
95
|
+
m = D[i][l][B[m]]
|
|
96
|
+
|
|
97
|
+
if dd == d:
|
|
98
|
+
for m in range(l):
|
|
99
|
+
gap[gg] = m
|
|
100
|
+
gg = gg + 1
|
|
101
|
+
|
|
102
|
+
for j in range(g, gg):
|
|
103
|
+
gap[g] = gap[j]
|
|
104
|
+
if count[gap[j]] == d - dd:
|
|
105
|
+
g = g + 1
|
|
106
|
+
count[gap[j]] = 0
|
|
107
|
+
|
|
108
|
+
# for each gap insert leaf l, [the main while loop shall progress],
|
|
109
|
+
# remove leaf l
|
|
110
|
+
while l > 0 and g == gapter[l - 1]:
|
|
111
|
+
l = l - 1
|
|
112
|
+
B[A[l]] = B[l]
|
|
113
|
+
A[B[l]] = A[l]
|
|
114
|
+
|
|
115
|
+
if l > 0:
|
|
116
|
+
g = g - 1
|
|
117
|
+
A[l] = gap[g]
|
|
118
|
+
B[l] = B[A[l]]
|
|
119
|
+
B[A[l]] = l
|
|
120
|
+
A[B[l]] = l
|
|
121
|
+
gapter[l] = g
|
|
122
|
+
l = l + 1
|
|
123
|
+
return G
|