mapFolding 0.6.0__py3-none-any.whl → 0.7.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (53) hide show
  1. mapFolding/__init__.py +6 -104
  2. mapFolding/basecamp.py +12 -8
  3. mapFolding/beDRY.py +96 -286
  4. mapFolding/filesystem.py +87 -0
  5. mapFolding/noHomeYet.py +20 -0
  6. mapFolding/oeis.py +46 -39
  7. mapFolding/reference/flattened.py +377 -0
  8. mapFolding/reference/hunterNumba.py +132 -0
  9. mapFolding/reference/irvineJavaPort.py +120 -0
  10. mapFolding/reference/jax.py +208 -0
  11. mapFolding/reference/lunnan.py +153 -0
  12. mapFolding/reference/lunnanNumpy.py +123 -0
  13. mapFolding/reference/lunnanWhile.py +121 -0
  14. mapFolding/reference/rotatedEntryPoint.py +240 -0
  15. mapFolding/reference/total_countPlus1vsPlusN.py +211 -0
  16. mapFolding/someAssemblyRequired/Z0Z_workbench.py +34 -0
  17. mapFolding/someAssemblyRequired/__init__.py +16 -0
  18. mapFolding/someAssemblyRequired/getLLVMforNoReason.py +21 -0
  19. mapFolding/someAssemblyRequired/ingredientsNumba.py +100 -0
  20. mapFolding/someAssemblyRequired/synthesizeCountingFunctions.py +7 -0
  21. mapFolding/someAssemblyRequired/synthesizeDataConverters.py +135 -0
  22. mapFolding/someAssemblyRequired/synthesizeNumba.py +91 -0
  23. mapFolding/someAssemblyRequired/synthesizeNumbaJob.py +417 -0
  24. mapFolding/someAssemblyRequired/synthesizeNumbaModules.py +91 -0
  25. mapFolding/someAssemblyRequired/transformationTools.py +425 -0
  26. mapFolding/someAssemblyRequired/whatWillBe.py +311 -0
  27. mapFolding/syntheticModules/__init__.py +0 -0
  28. mapFolding/syntheticModules/dataNamespaceFlattened.py +30 -0
  29. mapFolding/syntheticModules/numbaCount.py +90 -0
  30. mapFolding/syntheticModules/numbaCountExample.py +158 -0
  31. mapFolding/syntheticModules/numbaCountSequential.py +110 -0
  32. mapFolding/syntheticModules/numbaCount_doTheNeedful.py +13 -0
  33. mapFolding/syntheticModules/numba_doTheNeedful.py +12 -0
  34. mapFolding/syntheticModules/numba_doTheNeedfulExample.py +13 -0
  35. mapFolding/theDao.py +203 -227
  36. mapFolding/theSSOT.py +255 -102
  37. {mapfolding-0.6.0.dist-info → mapfolding-0.7.0.dist-info}/METADATA +7 -6
  38. mapfolding-0.7.0.dist-info/RECORD +50 -0
  39. {mapfolding-0.6.0.dist-info → mapfolding-0.7.0.dist-info}/WHEEL +1 -1
  40. {mapfolding-0.6.0.dist-info → mapfolding-0.7.0.dist-info}/top_level.txt +1 -0
  41. tests/__init__.py +0 -0
  42. tests/conftest.py +278 -0
  43. tests/test_computations.py +49 -0
  44. tests/test_filesystem.py +52 -0
  45. tests/test_oeis.py +128 -0
  46. tests/test_other.py +84 -0
  47. tests/test_tasks.py +50 -0
  48. mapFolding/theConfiguration.py +0 -58
  49. mapFolding/theSSOTdatatypes.py +0 -155
  50. mapFolding/theWrongWay.py +0 -7
  51. mapfolding-0.6.0.dist-info/RECORD +0 -16
  52. {mapfolding-0.6.0.dist-info → mapfolding-0.7.0.dist-info}/LICENSE +0 -0
  53. {mapfolding-0.6.0.dist-info → mapfolding-0.7.0.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,120 @@
1
+ """
2
+ Ported from the Java version by Sean A. Irvine:
3
+ https://github.com/archmageirvine/joeis/blob/80e3e844b11f149704acbab520bc3a3a25ac34ff/src/irvine/oeis/a001/A001415.java
4
+
5
+ Citation: mapFolding/citations/jOEIS.bibtex
6
+ """
7
+ def foldings(p: list[int], res: int = 0, mod: int = 0) -> int:
8
+ """
9
+ Compute the total number of foldings for a map with dimensions specified in p.
10
+
11
+ Parameters:
12
+ p: List of integers representing the dimensions of the map.
13
+ res: Residue for modulo operation (integer).
14
+ mod: Modulus for modulo operation (integer).
15
+
16
+ Returns:
17
+ total_count: The total number of foldings (integer).
18
+ """
19
+ n = 1 # Total number of leaves
20
+ d = len(p) # Number of dimensions
21
+ for dimension in p:
22
+ n *= dimension
23
+
24
+ # Initialize arrays/lists
25
+ A = [0] * (n + 1) # Leaf above leaf m
26
+ B = [0] * (n + 1) # Leaf below leaf m
27
+ count = [0] * (n + 1) # Counts for potential gaps
28
+ gapter = [0] * (n + 1) # Indices for gap stack per leaf
29
+ gap = [0] * (n * n + 1) # Stack of potential gaps
30
+
31
+ # Compute arrays P, C, D as per the algorithm
32
+ P = [1] * (d + 1)
33
+ for i in range(1, d + 1):
34
+ P[i] = P[i - 1] * p[i - 1]
35
+
36
+ # C[i][m] holds the i-th coordinate of leaf m
37
+ C = [[0] * (n + 1) for _ in range(d + 1)]
38
+ for i in range(1, d + 1):
39
+ for m in range(1, n + 1):
40
+ C[i][m] = ((m - 1) // P[i - 1]) - ((m - 1) // P[i]) * p[i - 1] + 1
41
+
42
+ # D[i][l][m] computes the leaf connected to m in section i when inserting l
43
+ D = [[[0] * (n + 1) for _ in range(n + 1)] for _ in range(d + 1)]
44
+ for i in range(1, d + 1):
45
+ for l in range(1, n + 1):
46
+ for m in range(1, l + 1):
47
+ delta = C[i][l] - C[i][m]
48
+ if delta % 2 == 0:
49
+ # If delta is even
50
+ if C[i][m] == 1:
51
+ D[i][l][m] = m
52
+ else:
53
+ D[i][l][m] = m - P[i - 1]
54
+ else:
55
+ # If delta is odd
56
+ if C[i][m] == p[i - 1] or m + P[i - 1] > l:
57
+ D[i][l][m] = m
58
+ else:
59
+ D[i][l][m] = m + P[i - 1]
60
+
61
+ # Initialize variables for backtracking
62
+ total_count = 0 # Total number of foldings
63
+ g = 0 # Gap index
64
+ l = 1 # Current leaf
65
+
66
+ # Start backtracking loop
67
+ while l > 0:
68
+ # If we have processed all leaves, increment total count
69
+ if l > n:
70
+ total_count += 1
71
+ else:
72
+ dd = 0 # Number of sections where leaf l is unconstrained
73
+ gg = g # Temporary gap index
74
+ g = gapter[l - 1] # Reset gap index for current leaf
75
+
76
+ # Count possible gaps for leaf l in each section
77
+ for i in range(1, d + 1):
78
+ if D[i][l][l] == l:
79
+ dd += 1
80
+ else:
81
+ m = D[i][l][l]
82
+ while m != l:
83
+ if mod == 0 or l != mod or m % mod == res:
84
+ gap[gg] = m
85
+ if count[m] == 0:
86
+ gg += 1
87
+ count[m] += 1
88
+ m = D[i][l][B[m]]
89
+
90
+ # If leaf l is unconstrained in all sections, it can be inserted anywhere
91
+ if dd == d:
92
+ for m in range(l):
93
+ gap[gg] = m
94
+ gg += 1
95
+
96
+ # Filter gaps that are common to all sections
97
+ for j in range(g, gg):
98
+ gap[g] = gap[j]
99
+ if count[gap[j]] == d - dd:
100
+ g += 1
101
+ count[gap[j]] = 0 # Reset count for next iteration
102
+
103
+ # Recursive backtracking steps
104
+ while l > 0 and g == gapter[l - 1]:
105
+ # No more gaps to try, backtrack to previous leaf
106
+ l -= 1
107
+ B[A[l]] = B[l]
108
+ A[B[l]] = A[l]
109
+
110
+ if l > 0:
111
+ # Try next gap for leaf l
112
+ g -= 1
113
+ A[l] = gap[g]
114
+ B[l] = B[A[l]]
115
+ B[A[l]] = l
116
+ A[B[l]] = l
117
+ gapter[l] = g # Save current gap index
118
+ l += 1 # Move to next leaf
119
+
120
+ return total_count
@@ -0,0 +1,208 @@
1
+ """I was able to implement the algorithm with JAX, but I didn't see an advantage and it's a pain in the ass.
2
+ I don't maintain this module."""
3
+ from mapFolding import validateListDimensions, getLeavesTotal, makeConnectionGraph
4
+ from typing import List, Tuple
5
+ import jax
6
+ import jaxtyping
7
+
8
+ dtypeMedium = jax.numpy.uint32
9
+ dtypeMaximum = jax.numpy.uint32
10
+
11
+ def countFolds(listDimensions: List[int]) -> int:
12
+ listDimensionsPositive: List[int] = validateListDimensions(listDimensions)
13
+
14
+ n: int = getLeavesTotal(listDimensionsPositive)
15
+ d: int = len(listDimensions)
16
+ import numpy
17
+ D: numpy.ndarray = makeConnectionGraph(listDimensionsPositive)
18
+ connectionGraph = jax.numpy.asarray(D, dtype=dtypeMedium)
19
+ del listDimensionsPositive
20
+
21
+ return foldingsJAX(n, d, connectionGraph)
22
+
23
+ def foldingsJAX(leavesTotal: jaxtyping.UInt32, dimensionsTotal: jaxtyping.UInt32, connectionGraph: jaxtyping.Array) -> jaxtyping.UInt32:
24
+
25
+ def doNothing(argument):
26
+ return argument
27
+
28
+ def while_activeLeaf1ndex_greaterThan_0(comparisonValues: Tuple):
29
+ comparand = comparisonValues[6]
30
+ return comparand > 0
31
+
32
+ def countFoldings(allValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32, jaxtyping.UInt32]):
33
+ _0, leafBelow, _2, _3, _4, _5, activeLeaf1ndex, _7 = allValues
34
+
35
+ sentinel = leafBelow.at[0].get().astype(jax.numpy.uint32)
36
+
37
+ allValues = jax.lax.cond(findGapsCondition(sentinel, activeLeaf1ndex),
38
+ lambda argumentX: dao(findGapsDo(argumentX)),
39
+ lambda argumentY: jax.lax.cond(incrementCondition(sentinel, activeLeaf1ndex), lambda argumentZ: dao(incrementDo(argumentZ)), dao, argumentY),
40
+ allValues)
41
+
42
+ return allValues
43
+
44
+ def findGapsCondition(leafBelowSentinel, activeLeafNumber):
45
+ return jax.numpy.logical_or(jax.numpy.logical_and(leafBelowSentinel == 1, activeLeafNumber <= leavesTotal), activeLeafNumber <= 1)
46
+
47
+ def findGapsDo(allValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32, jaxtyping.UInt32]):
48
+ def for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1(comparisonValues: Tuple):
49
+ return comparisonValues[-1] <= dimensionsTotal
50
+
51
+ def for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1_do(for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1Values: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32, jaxtyping.UInt32]):
52
+ def ifLeafIsUnconstrainedCondition(comparand):
53
+ return jax.numpy.equal(connectionGraph[comparand, activeLeaf1ndex, activeLeaf1ndex], activeLeaf1ndex)
54
+
55
+ def ifLeafIsUnconstrainedDo(unconstrainedValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
56
+ unconstrained_unconstrainedLeaf = unconstrainedValues[3]
57
+ unconstrained_unconstrainedLeaf = 1 + unconstrained_unconstrainedLeaf
58
+ return (unconstrainedValues[0], unconstrainedValues[1], unconstrainedValues[2], unconstrained_unconstrainedLeaf)
59
+
60
+ def ifLeafIsUnconstrainedElse(unconstrainedValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
61
+ def while_leaf1ndexConnectee_notEquals_activeLeaf1ndex(comparisonValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
62
+ return comparisonValues[-1] != activeLeaf1ndex
63
+
64
+ def countGaps(countGapsDoValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
65
+ countGapsCountDimensionsGapped, countGapsPotentialGaps, countGapsGap1ndexLowerBound, countGapsLeaf1ndexConnectee = countGapsDoValues
66
+
67
+ countGapsPotentialGaps = countGapsPotentialGaps.at[countGapsGap1ndexLowerBound].set(countGapsLeaf1ndexConnectee)
68
+ countGapsGap1ndexLowerBound = jax.numpy.where(jax.numpy.equal(countGapsCountDimensionsGapped[countGapsLeaf1ndexConnectee], 0), countGapsGap1ndexLowerBound + 1, countGapsGap1ndexLowerBound)
69
+ countGapsCountDimensionsGapped = countGapsCountDimensionsGapped.at[countGapsLeaf1ndexConnectee].add(1)
70
+ countGapsLeaf1ndexConnectee = connectionGraph.at[dimensionNumber, activeLeaf1ndex, leafBelow.at[countGapsLeaf1ndexConnectee].get()].get().astype(jax.numpy.uint32)
71
+
72
+ return (countGapsCountDimensionsGapped, countGapsPotentialGaps, countGapsGap1ndexLowerBound, countGapsLeaf1ndexConnectee)
73
+
74
+ unconstrained_countDimensionsGapped, unconstrained_gapsWhere, unconstrained_gap1ndexCeiling, unconstrained_unconstrainedLeaf = unconstrainedValues
75
+
76
+ leaf1ndexConnectee = connectionGraph.at[dimensionNumber, activeLeaf1ndex, activeLeaf1ndex].get().astype(jax.numpy.uint32)
77
+
78
+ countGapsValues = (unconstrained_countDimensionsGapped, unconstrained_gapsWhere, unconstrained_gap1ndexCeiling, leaf1ndexConnectee)
79
+ countGapsValues = jax.lax.while_loop(while_leaf1ndexConnectee_notEquals_activeLeaf1ndex, countGaps, countGapsValues)
80
+ unconstrained_countDimensionsGapped, unconstrained_gapsWhere, unconstrained_gap1ndexCeiling, leaf1ndexConnectee = countGapsValues
81
+
82
+ return (unconstrained_countDimensionsGapped, unconstrained_gapsWhere, unconstrained_gap1ndexCeiling, unconstrained_unconstrainedLeaf)
83
+
84
+ dimensions_countDimensionsGapped, dimensions_gapsWhere, dimensions_gap1ndexCeiling, dimensions_unconstrainedLeaf, dimensionNumber = for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1Values
85
+
86
+ ifLeafIsUnconstrainedValues = (dimensions_countDimensionsGapped, dimensions_gapsWhere, dimensions_gap1ndexCeiling, dimensions_unconstrainedLeaf)
87
+ ifLeafIsUnconstrainedValues = jax.lax.cond(ifLeafIsUnconstrainedCondition(dimensionNumber), ifLeafIsUnconstrainedDo, ifLeafIsUnconstrainedElse, ifLeafIsUnconstrainedValues)
88
+ dimensions_countDimensionsGapped, dimensions_gapsWhere, dimensions_gap1ndexCeiling, dimensions_unconstrainedLeaf = ifLeafIsUnconstrainedValues
89
+
90
+ dimensionNumber = 1 + dimensionNumber
91
+ return (dimensions_countDimensionsGapped, dimensions_gapsWhere, dimensions_gap1ndexCeiling, dimensions_unconstrainedLeaf, dimensionNumber)
92
+
93
+ def almostUselessCondition(comparand):
94
+ return comparand == dimensionsTotal
95
+
96
+ def almostUselessConditionDo(for_leaf1ndex_in_range_activeLeaf1ndexValues: Tuple[jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
97
+ def for_leaf1ndex_in_range_activeLeaf1ndex(comparisonValues):
98
+ return comparisonValues[-1] < activeLeaf1ndex
99
+
100
+ def for_leaf1ndex_in_range_activeLeaf1ndex_do(for_leaf1ndex_in_range_activeLeaf1ndexValues: Tuple[jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
101
+ leafInRangePotentialGaps, gapNumberLowerBound, leafNumber = for_leaf1ndex_in_range_activeLeaf1ndexValues
102
+ leafInRangePotentialGaps = leafInRangePotentialGaps.at[gapNumberLowerBound].set(leafNumber)
103
+ gapNumberLowerBound = 1 + gapNumberLowerBound
104
+ leafNumber = 1 + leafNumber
105
+ return (leafInRangePotentialGaps, gapNumberLowerBound, leafNumber)
106
+ return jax.lax.while_loop(for_leaf1ndex_in_range_activeLeaf1ndex, for_leaf1ndex_in_range_activeLeaf1ndex_do, for_leaf1ndex_in_range_activeLeaf1ndexValues)
107
+
108
+ def for_range_from_activeGap1ndex_to_gap1ndexCeiling(comparisonValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
109
+ return comparisonValues[-1] < gap1ndexCeiling
110
+
111
+ def miniGapDo(gapToGapValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
112
+ gapToGapCountDimensionsGapped, gapToGapPotentialGaps, activeGapNumber, index = gapToGapValues
113
+ gapToGapPotentialGaps = gapToGapPotentialGaps.at[activeGapNumber].set(gapToGapPotentialGaps.at[index].get())
114
+ activeGapNumber = jax.numpy.where(jax.numpy.equal(gapToGapCountDimensionsGapped.at[gapToGapPotentialGaps.at[index].get()].get(), dimensionsTotal - unconstrainedLeaf), activeGapNumber + 1, activeGapNumber).astype(jax.numpy.uint32)
115
+ gapToGapCountDimensionsGapped = gapToGapCountDimensionsGapped.at[gapToGapPotentialGaps.at[index].get()].set(0)
116
+ index = 1 + index
117
+ return (gapToGapCountDimensionsGapped, gapToGapPotentialGaps, activeGapNumber, index)
118
+
119
+ _0, leafBelow, countDimensionsGapped, gapRangeStart, gapsWhere, _5, activeLeaf1ndex, activeGap1ndex = allValues
120
+
121
+ unconstrainedLeaf = jax.numpy.uint32(0)
122
+ dimension1ndex = jax.numpy.uint32(1)
123
+ gap1ndexCeiling = gapRangeStart.at[activeLeaf1ndex - 1].get().astype(jax.numpy.uint32)
124
+ activeGap1ndex = gap1ndexCeiling
125
+ for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1Values = (countDimensionsGapped, gapsWhere, gap1ndexCeiling, unconstrainedLeaf, dimension1ndex)
126
+ for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1Values = jax.lax.while_loop(for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1, for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1_do, for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1Values)
127
+ countDimensionsGapped, gapsWhere, gap1ndexCeiling, unconstrainedLeaf, dimension1ndex = for_dimension1ndex_in_range_1_to_dimensionsTotalPlus1Values
128
+ del dimension1ndex
129
+
130
+ leaf1ndex = jax.numpy.uint32(0)
131
+ for_leaf1ndex_in_range_activeLeaf1ndexValues = (gapsWhere, gap1ndexCeiling, leaf1ndex)
132
+ for_leaf1ndex_in_range_activeLeaf1ndexValues = jax.lax.cond(almostUselessCondition(unconstrainedLeaf), almostUselessConditionDo, doNothing, for_leaf1ndex_in_range_activeLeaf1ndexValues)
133
+ gapsWhere, gap1ndexCeiling, leaf1ndex = for_leaf1ndex_in_range_activeLeaf1ndexValues
134
+ del leaf1ndex
135
+
136
+ indexMiniGap = activeGap1ndex
137
+ miniGapValues = (countDimensionsGapped, gapsWhere, activeGap1ndex, indexMiniGap)
138
+ miniGapValues = jax.lax.while_loop(for_range_from_activeGap1ndex_to_gap1ndexCeiling, miniGapDo, miniGapValues)
139
+ countDimensionsGapped, gapsWhere, activeGap1ndex, indexMiniGap = miniGapValues
140
+ del indexMiniGap
141
+
142
+ return (allValues[0], leafBelow, countDimensionsGapped, gapRangeStart, gapsWhere, allValues[5], activeLeaf1ndex, activeGap1ndex)
143
+
144
+ def incrementCondition(leafBelowSentinel, activeLeafNumber):
145
+ return jax.numpy.logical_and(activeLeafNumber > leavesTotal, leafBelowSentinel == 1)
146
+
147
+ def incrementDo(allValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32, jaxtyping.UInt32]):
148
+ foldingsSubTotal = allValues[5]
149
+ foldingsSubTotal = leavesTotal + foldingsSubTotal
150
+ return (allValues[0], allValues[1], allValues[2], allValues[3], allValues[4], foldingsSubTotal, allValues[6], allValues[7])
151
+
152
+ def dao(allValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32, jaxtyping.UInt32]):
153
+ def whileBacktrackingCondition(backtrackingValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32]):
154
+ comparand = backtrackingValues[2]
155
+ return jax.numpy.logical_and(comparand > 0, jax.numpy.equal(activeGap1ndex, gapRangeStart.at[comparand - 1].get()))
156
+
157
+ def whileBacktrackingDo(backtrackingValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32]):
158
+ backtrackAbove, backtrackBelow, activeLeafNumber = backtrackingValues
159
+
160
+ activeLeafNumber = activeLeafNumber - 1
161
+ backtrackBelow = backtrackBelow.at[backtrackAbove.at[activeLeafNumber].get()].set(backtrackBelow.at[activeLeafNumber].get())
162
+ backtrackAbove = backtrackAbove.at[backtrackBelow.at[activeLeafNumber].get()].set(backtrackAbove.at[activeLeafNumber].get())
163
+
164
+ return (backtrackAbove, backtrackBelow, activeLeafNumber)
165
+
166
+ def if_activeLeaf1ndex_greaterThan_0(activeLeafNumber):
167
+ return activeLeafNumber > 0
168
+
169
+ def if_activeLeaf1ndex_greaterThan_0_do(leafPlacementValues: Tuple[jaxtyping.Array, jaxtyping.Array, jaxtyping.Array, jaxtyping.UInt32, jaxtyping.UInt32]):
170
+ placeLeafAbove, placeLeafBelow, placeGapRangeStart, activeLeafNumber, activeGapNumber = leafPlacementValues
171
+ activeGapNumber = activeGapNumber - 1
172
+ placeLeafAbove = placeLeafAbove.at[activeLeafNumber].set(gapsWhere.at[activeGapNumber].get())
173
+ placeLeafBelow = placeLeafBelow.at[activeLeafNumber].set(placeLeafBelow.at[placeLeafAbove.at[activeLeafNumber].get()].get())
174
+ placeLeafBelow = placeLeafBelow.at[placeLeafAbove.at[activeLeafNumber].get()].set(activeLeafNumber)
175
+ placeLeafAbove = placeLeafAbove.at[placeLeafBelow.at[activeLeafNumber].get()].set(activeLeafNumber)
176
+ placeGapRangeStart = placeGapRangeStart.at[activeLeafNumber].set(activeGapNumber)
177
+
178
+ activeLeafNumber = 1 + activeLeafNumber
179
+ return (placeLeafAbove, placeLeafBelow, placeGapRangeStart, activeLeafNumber, activeGapNumber)
180
+
181
+ leafAbove, leafBelow, _2, gapRangeStart, gapsWhere, _5, activeLeaf1ndex, activeGap1ndex = allValues
182
+
183
+ whileBacktrackingValues = (leafAbove, leafBelow, activeLeaf1ndex)
184
+ whileBacktrackingValues = jax.lax.while_loop(whileBacktrackingCondition, whileBacktrackingDo, whileBacktrackingValues)
185
+ leafAbove, leafBelow, activeLeaf1ndex = whileBacktrackingValues
186
+
187
+ if_activeLeaf1ndex_greaterThan_0_values = (leafAbove, leafBelow, gapRangeStart, activeLeaf1ndex, activeGap1ndex)
188
+ if_activeLeaf1ndex_greaterThan_0_values = jax.lax.cond(if_activeLeaf1ndex_greaterThan_0(activeLeaf1ndex), if_activeLeaf1ndex_greaterThan_0_do, doNothing, if_activeLeaf1ndex_greaterThan_0_values)
189
+ leafAbove, leafBelow, gapRangeStart, activeLeaf1ndex, activeGap1ndex = if_activeLeaf1ndex_greaterThan_0_values
190
+
191
+ return (leafAbove, leafBelow, allValues[2], gapRangeStart, gapsWhere, allValues[5], activeLeaf1ndex, activeGap1ndex)
192
+
193
+ # Dynamic values
194
+ A = jax.numpy.zeros(leavesTotal + 1, dtype=dtypeMedium)
195
+ B = jax.numpy.zeros(leavesTotal + 1, dtype=dtypeMedium)
196
+ count = jax.numpy.zeros(leavesTotal + 1, dtype=dtypeMedium)
197
+ gapter = jax.numpy.zeros(leavesTotal + 1, dtype=dtypeMedium)
198
+ gap = jax.numpy.zeros(leavesTotal * leavesTotal + 1, dtype=dtypeMaximum)
199
+
200
+ foldingsTotal = jax.numpy.uint32(0)
201
+ l = jax.numpy.uint32(1)
202
+ g = jax.numpy.uint32(0)
203
+
204
+ foldingsValues = (A, B, count, gapter, gap, foldingsTotal, l, g)
205
+ foldingsValues = jax.lax.while_loop(while_activeLeaf1ndex_greaterThan_0, countFoldings, foldingsValues)
206
+ return foldingsValues[5]
207
+
208
+ foldingsJAX = jax.jit(foldingsJAX, static_argnums=(0, 1))
@@ -0,0 +1,153 @@
1
+ """
2
+ An unnecessarily literal translation of the original Atlas Autocode code by W. F. Lunnon to Python.
3
+ W. F. Lunnon, Multi-dimensional map-folding, The Computer Journal, Volume 14, Issue 1, 1971, Pages 75-80, https://doi.org/10.1093/comjnl/14.1.75
4
+ """# NOTE not functional yet
5
+ def foldings(p, job=None):
6
+ """An unnecessarily literal translation of the original Atlas Autocode code."""
7
+ p = list(p)
8
+ p.append(None) # NOTE mimics Atlas `array` type
9
+ p.insert(0, None) # NOTE mimics Atlas `array` type
10
+
11
+ if job is None:
12
+ global G
13
+ G = 0
14
+ def job(A, B):
15
+ global G
16
+ G = G + 1
17
+ return foldings(p, job)
18
+ # perform job (A, B) on each folding of a p[1] x ... x p[d] map,
19
+ # where A and B are the above and below vectors. p[d + 1] < 0 terminates p;
20
+
21
+ d: int
22
+ n: int
23
+ j: int
24
+ i: int
25
+ m: int
26
+ l: int
27
+ g: int
28
+ gg: int
29
+ dd: int
30
+
31
+ n = 1
32
+ i, d = 0, 0
33
+
34
+ while (i := i + 1) and p[i] is not None:
35
+ d = i
36
+ n = n * p[i]
37
+
38
+ # d dimensions and n leaves;
39
+
40
+ # A: list[int] = [None] * (n + 1) # type: ignore
41
+ # B: list[int] = [None] * (n + 1) # type: ignore
42
+ # count: list[int] = [None] * (n + 1) # type: ignore
43
+ # gapter: list[int] = [None] * (n + 1) # type: ignore
44
+ # gap: list[int] = [None] * (n * n + 1) # type: ignore
45
+ A: list[int] = [0] * (n + 1) # type: ignore
46
+ B: list[int] = [0] * (n + 1) # type: ignore
47
+ count: list[int] = [0] * (n + 1) # type: ignore
48
+ gapter: list[int] = [0] * (n + 1) # type: ignore
49
+ gap: list[int] = [0] * (n * n + 1) # type: ignore
50
+
51
+ # B[m] is the leaf below leaf m in the current folding,
52
+ # A[m] the leaf above. count[m] is the no. of sections in which
53
+ # there is a gap for the new leaf l below leaf m,
54
+ # gap[gapter[l - 1] + j] is the j-th (possible or actual) gap for leaf l,
55
+ # and later gap[gapter[l]] is the gap where leaf l is currently inserted;
56
+
57
+ P: list[int] = [0] * (d + 1) # type: ignore
58
+ C: list[list[int]] = [[0] * (n + 1) for dimension1 in range(d + 1)] # type: ignore
59
+ # D: list[list[list[int]]] = [[[None] * (n + 1) for dimension2 in range(n + 1)] for dimension1 in range(d + 1)] # type: ignore
60
+ D: list[list[list[int]]] = [[[0] * (n + 1) for dimension2 in range(n + 1)] for dimension1 in range(d + 1)]
61
+
62
+ P[0] = 1
63
+ for i in range(1, d + 1):
64
+ P[i] = P[i - 1] * p[i]
65
+
66
+ for i in range(1, d + 1):
67
+ for m in range(1, n + 1):
68
+ C[i][m] = ((m - 1) // P[i - 1]) - ((m - 1) // P[i]) * p[i] + 1
69
+
70
+ for i in range(1, d + 1):
71
+ for l in range(1, n + 1):
72
+ for m in range(1, l + 1):
73
+ D[i][l][m] = (0 if m == 0
74
+ else
75
+ ((m if C[i][m] == 1
76
+ else m - P[i - 1])
77
+ if C[i][l] - C[i][m] == (C[i][l] - C[i][m]) // 2 * 2
78
+ else
79
+ (m if C[i][m] == p[i] or m + P[i - 1] > l
80
+ else m + P[i - 1])))
81
+ # P[i] = p[1] x ... x p[i], C[i][m] = i-th co-ordinate of leaf m,
82
+ # D[i][l][m] = leaf connected to m in section i when inserting l;
83
+
84
+ for m in range(n + 1):
85
+ count[m] = 0
86
+
87
+ A[0], B[0], g, l = 0, 0, 0, 0
88
+
89
+ state = 'entry'
90
+ while True:
91
+ if state == 'entry':
92
+ gapter[l] = g
93
+ l = l + 1
94
+ if l <= n:
95
+ state = 'down'
96
+ continue
97
+ else:
98
+ job(A, B)
99
+ state = 'up'
100
+ continue
101
+
102
+ elif state == 'down':
103
+ dd = 0
104
+ gg = gapter[l - 1]
105
+ g = gg
106
+ for i in range(1, d + 1):
107
+ if D[i][l][l] == l:
108
+ dd = dd + 1
109
+ else:
110
+ m = D[i][l][l]
111
+ while m != l:
112
+ gap[gg] = m
113
+ if count[m] == 0:
114
+ gg = gg + 1
115
+ count[m] = count[m] + 1
116
+ m = D[i][l][B[m]]
117
+
118
+ if dd == d:
119
+ for m in range(l):
120
+ gap[gg] = m
121
+ gg = gg + 1
122
+
123
+ for j in range(g, gg):
124
+ gap[g] = gap[j]
125
+ if count[gap[j]] == d - dd:
126
+ g = g + 1
127
+ count[gap[j]] = 0
128
+ state = 'along'
129
+ continue
130
+
131
+ elif state == 'along':
132
+ if g == gapter[l - 1]:
133
+ state = 'up'
134
+ continue
135
+ g = g - 1
136
+ A[l] = gap[g]
137
+ B[l] = B[A[l]]
138
+ B[A[l]] = l
139
+ A[B[l]] = l
140
+ state = 'entry'
141
+ continue
142
+
143
+ elif state == 'up':
144
+ l = l - 1
145
+ B[A[l]] = B[l]
146
+ A[B[l]] = A[l]
147
+ if l > 0:
148
+ state = 'along'
149
+ continue
150
+ else:
151
+ break
152
+
153
+ return G #if job.__closure__ else None
@@ -0,0 +1,123 @@
1
+ """
2
+ A generally faithful translation of the original Atlas Autocode code by W. F. Lunnon to Python using NumPy.
3
+ W. F. Lunnon, Multi-dimensional map-folding, The Computer Journal, Volume 14, Issue 1, 1971, Pages 75-80, https://doi.org/10.1093/comjnl/14.1.75
4
+ """
5
+ from typing import List
6
+ import numpy
7
+
8
+ def foldings(p: List[int]) -> int:
9
+ """
10
+ Run loop with (A, B) on each folding of a p[1] x ... x p[d] map, where A and B are the above and below vectors.
11
+
12
+ Parameters:
13
+ p: A list of integers representing the dimensions of the map.
14
+
15
+ Returns:
16
+ G: The number of distinct foldings for the given map dimensions.
17
+
18
+ NOTE If there are fewer than two dimensions, any dimensions are not positive, or any dimensions are not integers, the output will be unreliable.
19
+ """
20
+
21
+ g: int = 0
22
+ d: int = len(p)
23
+ n: int = 1
24
+ for i in range(d):
25
+ n = n * p[i]
26
+
27
+ # d dimensions and n leaves
28
+
29
+ A = numpy.zeros(n + 1, dtype=int)
30
+ B = numpy.zeros(n + 1, dtype=int)
31
+ count = numpy.zeros(n + 1, dtype=int)
32
+ gapter = numpy.zeros(n + 1, dtype=int)
33
+ gap = numpy.zeros(n * n + 1, dtype=int)
34
+
35
+ # B[m] is the leaf below leaf m in the current folding,
36
+ # A[m] the leaf above. count[m] is the no. of sections in which
37
+ # there is a gap for the new leaf l below leaf m,
38
+ # gap[gapter[l - 1] + j] is the j-th (possible or actual) gap for leaf l,
39
+ # and later gap[gapter[l]] is the gap where leaf l is currently inserted
40
+
41
+ P = numpy.ones(d + 1, dtype=int)
42
+ C = numpy.zeros((d + 1, n + 1), dtype=int)
43
+ D = numpy.zeros((d + 1, n + 1, n + 1), dtype=int)
44
+
45
+ for i in range(1, d + 1):
46
+ P[i] = P[i - 1] * p[i - 1]
47
+
48
+ for i in range(1, d + 1):
49
+ for m in range(1, n + 1):
50
+ C[i][m] = ((m - 1) // P[i - 1]) % p[i - 1] + 1 # NOTE Because modulo is available, this statement is simpler.
51
+
52
+ for i in range(1, d + 1):
53
+ for l in range(1, n + 1):
54
+ for m in range(1, l + 1):
55
+ if C[i][l] - C[i][m] == (C[i][l] - C[i][m]) // 2 * 2:
56
+ if C[i][m] == 1:
57
+ D[i][l][m] = m
58
+ else:
59
+ D[i][l][m] = m - P[i - 1]
60
+ else:
61
+ if C[i][m] == p[i - 1] or m + P[i - 1] > l:
62
+ D[i][l][m] = m
63
+ else:
64
+ D[i][l][m] = m + P[i - 1]
65
+ # P[i] = p[1] x ... x p[i], C[i][m] = i-th co-ordinate of leaf m,
66
+ # D[i][l][m] = leaf connected to m in section i when inserting l;
67
+
68
+ G: int = 0
69
+ l: int = 1
70
+
71
+ # kick off with null folding
72
+ while l > 0:
73
+ if l <= 1 or B[0] == 1: # NOTE This statement is part of a significant divergence from the 1971 paper. As a result, this version is greater than one order of magnitude faster.
74
+ if l > n:
75
+ G = G + n # NOTE Due to `B[0] == 1`, this implementation increments the counted foldings in batches of `n`-many foldings, rather than immediately incrementing when a folding is found, i.e. `G = G + 1`
76
+ else:
77
+ dd: int = 0
78
+ gg: int = gapter[l - 1]
79
+ g = gg
80
+ # dd is the no. of sections in which l is unconstrained,
81
+ # gg the no. of possible and g the no. of actual gaps for l, + gapter[l - 1]
82
+
83
+ # find the possible gaps for leaf l in each section,
84
+ # then discard those not common to all. All possible if dd = d
85
+ for i in range(1, d + 1):
86
+ if D[i][l][l] == l:
87
+ dd = dd + 1
88
+ else:
89
+ m: int = D[i][l][l]
90
+ while m != l:
91
+ gap[gg] = m
92
+ if count[m] == 0:
93
+ gg = gg + 1
94
+ count[m] += 1
95
+ m = D[i][l][B[m]]
96
+
97
+ if dd == d:
98
+ for m in range(l):
99
+ gap[gg] = m
100
+ gg = gg + 1
101
+
102
+ for j in range(g, gg):
103
+ gap[g] = gap[j]
104
+ if count[gap[j]] == d - dd:
105
+ g = g + 1
106
+ count[gap[j]] = 0
107
+
108
+ # for each gap insert leaf l, [the main while loop shall progress],
109
+ # remove leaf l
110
+ while l > 0 and g == gapter[l - 1]:
111
+ l = l - 1
112
+ B[A[l]] = B[l]
113
+ A[B[l]] = A[l]
114
+
115
+ if l > 0:
116
+ g = g - 1
117
+ A[l] = gap[g]
118
+ B[l] = B[A[l]]
119
+ B[A[l]] = l
120
+ A[B[l]] = l
121
+ gapter[l] = g
122
+ l = l + 1
123
+ return G