mapFolding 0.6.0__py3-none-any.whl → 0.7.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (53) hide show
  1. mapFolding/__init__.py +6 -104
  2. mapFolding/basecamp.py +12 -8
  3. mapFolding/beDRY.py +96 -286
  4. mapFolding/filesystem.py +87 -0
  5. mapFolding/noHomeYet.py +20 -0
  6. mapFolding/oeis.py +46 -39
  7. mapFolding/reference/flattened.py +377 -0
  8. mapFolding/reference/hunterNumba.py +132 -0
  9. mapFolding/reference/irvineJavaPort.py +120 -0
  10. mapFolding/reference/jax.py +208 -0
  11. mapFolding/reference/lunnan.py +153 -0
  12. mapFolding/reference/lunnanNumpy.py +123 -0
  13. mapFolding/reference/lunnanWhile.py +121 -0
  14. mapFolding/reference/rotatedEntryPoint.py +240 -0
  15. mapFolding/reference/total_countPlus1vsPlusN.py +211 -0
  16. mapFolding/someAssemblyRequired/Z0Z_workbench.py +34 -0
  17. mapFolding/someAssemblyRequired/__init__.py +16 -0
  18. mapFolding/someAssemblyRequired/getLLVMforNoReason.py +21 -0
  19. mapFolding/someAssemblyRequired/ingredientsNumba.py +100 -0
  20. mapFolding/someAssemblyRequired/synthesizeCountingFunctions.py +7 -0
  21. mapFolding/someAssemblyRequired/synthesizeDataConverters.py +135 -0
  22. mapFolding/someAssemblyRequired/synthesizeNumba.py +91 -0
  23. mapFolding/someAssemblyRequired/synthesizeNumbaJob.py +417 -0
  24. mapFolding/someAssemblyRequired/synthesizeNumbaModules.py +91 -0
  25. mapFolding/someAssemblyRequired/transformationTools.py +425 -0
  26. mapFolding/someAssemblyRequired/whatWillBe.py +311 -0
  27. mapFolding/syntheticModules/__init__.py +0 -0
  28. mapFolding/syntheticModules/dataNamespaceFlattened.py +30 -0
  29. mapFolding/syntheticModules/numbaCount.py +90 -0
  30. mapFolding/syntheticModules/numbaCountExample.py +158 -0
  31. mapFolding/syntheticModules/numbaCountSequential.py +110 -0
  32. mapFolding/syntheticModules/numbaCount_doTheNeedful.py +13 -0
  33. mapFolding/syntheticModules/numba_doTheNeedful.py +12 -0
  34. mapFolding/syntheticModules/numba_doTheNeedfulExample.py +13 -0
  35. mapFolding/theDao.py +203 -227
  36. mapFolding/theSSOT.py +255 -102
  37. {mapfolding-0.6.0.dist-info → mapfolding-0.7.0.dist-info}/METADATA +7 -6
  38. mapfolding-0.7.0.dist-info/RECORD +50 -0
  39. {mapfolding-0.6.0.dist-info → mapfolding-0.7.0.dist-info}/WHEEL +1 -1
  40. {mapfolding-0.6.0.dist-info → mapfolding-0.7.0.dist-info}/top_level.txt +1 -0
  41. tests/__init__.py +0 -0
  42. tests/conftest.py +278 -0
  43. tests/test_computations.py +49 -0
  44. tests/test_filesystem.py +52 -0
  45. tests/test_oeis.py +128 -0
  46. tests/test_other.py +84 -0
  47. tests/test_tasks.py +50 -0
  48. mapFolding/theConfiguration.py +0 -58
  49. mapFolding/theSSOTdatatypes.py +0 -155
  50. mapFolding/theWrongWay.py +0 -7
  51. mapfolding-0.6.0.dist-info/RECORD +0 -16
  52. {mapfolding-0.6.0.dist-info → mapfolding-0.7.0.dist-info}/LICENSE +0 -0
  53. {mapfolding-0.6.0.dist-info → mapfolding-0.7.0.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,20 @@
1
+ from functools import cache
2
+ from mapFolding.oeis import settingsOEIS
3
+
4
+ @cache
5
+ def makeDictionaryFoldsTotalKnown() -> dict[tuple[int, ...], int]:
6
+ """Returns a dictionary mapping dimension tuples to their known folding totals."""
7
+ dictionaryMapDimensionsToFoldsTotalKnown: dict[tuple[int, ...], int] = {}
8
+
9
+ for settings in settingsOEIS.values():
10
+ sequence = settings['valuesKnown']
11
+
12
+ for n, foldingsTotal in sequence.items():
13
+ mapShape = settings['getMapShape'](n)
14
+ mapShape = sorted(mapShape)
15
+ dictionaryMapDimensionsToFoldsTotalKnown[tuple(mapShape)] = foldingsTotal
16
+ return dictionaryMapDimensionsToFoldsTotalKnown
17
+
18
+ def getFoldsTotalKnown(mapShape: tuple[int, ...]) -> int:
19
+ lookupFoldsTotal = makeDictionaryFoldsTotalKnown()
20
+ return lookupFoldsTotal.get(tuple(mapShape), -1)
mapFolding/oeis.py CHANGED
@@ -1,9 +1,9 @@
1
1
  """Everything implementing the The Online Encyclopedia of Integer Sequences (OEIS); _only_ things that implement _only_ the OEIS."""
2
2
  from collections.abc import Callable
3
3
  from datetime import datetime, timedelta
4
- from mapFolding import countFolds, pathPackage
4
+ from mapFolding.theSSOT import thePathPackage
5
5
  from pathlib import Path
6
- from typing import Any, cast, Final, TYPE_CHECKING
6
+ from typing import Any, Final, TYPE_CHECKING
7
7
  import argparse
8
8
  import pathlib
9
9
  import random
@@ -23,11 +23,11 @@ cacheDays = 7
23
23
  """
24
24
  Section: make `settingsOEIS`"""
25
25
 
26
- pathCache: Path = pathPackage / ".cache"
26
+ pathCache: Path = thePathPackage / ".cache"
27
27
 
28
28
  class SettingsOEIS(TypedDict):
29
29
  description: str
30
- getMapShape: Callable[[int], list[int]]
30
+ getMapShape: Callable[[int], tuple[int, ...]]
31
31
  offset: int
32
32
  valuesBenchmark: list[int]
33
33
  valuesKnown: dict[int, int]
@@ -35,38 +35,45 @@ class SettingsOEIS(TypedDict):
35
35
  valuesTestValidation: list[int]
36
36
  valueUnknown: int
37
37
 
38
- settingsOEIShardcodedValues: dict[str, dict[str, Any]] = {
39
- 'A001415': {
40
- 'getMapShape': cast(Callable[[int], list[int]], lambda n: sorted([2, n])), # type: ignore
41
- 'valuesBenchmark': [14],
42
- 'valuesTestParallelization': [*range(3, 7)],
43
- 'valuesTestValidation': [random.randint(2, 9)],
44
- },
45
- 'A001416': {
46
- 'getMapShape': cast(Callable[[int], list[int]], lambda n: sorted([3, n])), # type: ignore
47
- 'valuesBenchmark': [9],
48
- 'valuesTestParallelization': [*range(3, 5)],
49
- 'valuesTestValidation': [random.randint(2, 6)],
50
- },
51
- 'A001417': {
52
- 'getMapShape': cast(Callable[[int], list[int]], lambda n: [2] * n), # type: ignore
53
- 'valuesBenchmark': [6],
54
- 'valuesTestParallelization': [*range(2, 4)],
55
- 'valuesTestValidation': [random.randint(2, 4)],
56
- },
57
- 'A195646': {
58
- 'getMapShape': cast(Callable[[int], list[int]], lambda n: [3] * n), # type: ignore
59
- 'valuesBenchmark': [3],
60
- 'valuesTestParallelization': [*range(2, 3)],
61
- 'valuesTestValidation': [2],
62
- },
63
- 'A001418': {
64
- 'getMapShape': cast(Callable[[int], list[int]], lambda n: [n, n]), # type: ignore
65
- 'valuesBenchmark': [5],
66
- 'valuesTestParallelization': [*range(2, 4)],
67
- 'valuesTestValidation': [random.randint(2, 4)],
68
- },
38
+ class SettingsOEIShardcodedValues(TypedDict):
39
+ getMapShape: Callable[[int], tuple[int, ...]]
40
+ valuesBenchmark: list[int]
41
+ valuesTestParallelization: list[int]
42
+ valuesTestValidation: list[int]
43
+
44
+ settingsOEIShardcodedValues: dict[str, SettingsOEIShardcodedValues] = {
45
+ 'A001415': {
46
+ 'getMapShape': lambda n: (2, n) if n >= 2 else (n, 2),
47
+ 'valuesBenchmark': [14],
48
+ 'valuesTestParallelization': [*range(3, 7)],
49
+ 'valuesTestValidation': [random.randint(2, 9)],
50
+ },
51
+ 'A001416': {
52
+ 'getMapShape': lambda n: (3, n) if n >= 3 else (n, 3),
53
+ 'valuesBenchmark': [9],
54
+ 'valuesTestParallelization': [*range(3, 5)],
55
+ 'valuesTestValidation': [random.randint(2, 6)],
56
+ },
57
+ 'A001417': {
58
+ 'getMapShape': lambda n: tuple(2 for _dimension in range(n)),
59
+ 'valuesBenchmark': [6],
60
+ 'valuesTestParallelization': [*range(2, 4)],
61
+ 'valuesTestValidation': [random.randint(2, 4)],
62
+ },
63
+ 'A195646': {
64
+ 'getMapShape': lambda n: tuple(3 for _dimension in range(n)),
65
+ 'valuesBenchmark': [3],
66
+ 'valuesTestParallelization': [*range(2, 3)],
67
+ 'valuesTestValidation': [2],
68
+ },
69
+ 'A001418': {
70
+ 'getMapShape': lambda n: (n, n),
71
+ 'valuesBenchmark': [5],
72
+ 'valuesTestParallelization': [*range(2, 4)],
73
+ 'valuesTestValidation': [random.randint(2, 4)],
74
+ },
69
75
  }
76
+
70
77
  oeisIDsImplemented: Final[list[str]] = sorted([oeisID.upper().strip() for oeisID in settingsOEIShardcodedValues.keys()])
71
78
  """Directly implemented OEIS IDs; standardized, e.g., 'A001415'."""
72
79
 
@@ -286,16 +293,16 @@ def oeisIDfor_n(oeisID: str, n: int | Any) -> int:
286
293
  if not isinstance(n, int) or n < 0:
287
294
  raise ValueError("`n` must be non-negative integer.")
288
295
 
289
- listDimensions: list[int] = settingsOEIS[oeisID]['getMapShape'](n)
296
+ mapShape: tuple[int, ...] = settingsOEIS[oeisID]['getMapShape'](n)
290
297
 
291
- if n <= 1 or len(listDimensions) < 2:
298
+ if n <= 1 or len(mapShape) < 2:
292
299
  offset: int = settingsOEIS[oeisID]['offset']
293
300
  if n < offset:
294
301
  raise ArithmeticError(f"OEIS sequence {oeisID} is not defined at n={n}.")
295
302
  foldsTotal: int = settingsOEIS[oeisID]['valuesKnown'][n]
296
303
  return foldsTotal
297
-
298
- return countFolds(listDimensions)
304
+ from mapFolding.basecamp import countFolds
305
+ return countFolds(mapShape)
299
306
 
300
307
  def OEIS_for_n() -> None:
301
308
  """Command-line interface for oeisIDfor_n."""
@@ -0,0 +1,377 @@
1
+ """The algorithm flattened into semantic sections.
2
+ This version is not maintained, so you may see differences from the current version."""
3
+ from numpy import integer
4
+ from numpy.typing import NDArray
5
+ from typing import List, Any, Final, Optional, Union, Sequence, Tuple, Type, TypedDict
6
+ import enum
7
+ import numpy
8
+ import sys
9
+
10
+ def countFolds(listDimensions: Sequence[int], computationDivisions = None, CPUlimit: Optional[Union[int, float, bool]] = None):
11
+ def doWhile():
12
+
13
+ while activeLeafGreaterThan0Condition():
14
+
15
+ if activeLeafIsTheFirstLeafCondition() or leafBelowSentinelIs1Condition():
16
+
17
+ if activeLeafGreaterThanLeavesTotalCondition():
18
+ foldsSubTotalsIncrement()
19
+
20
+ else:
21
+
22
+ findGapsInitializeVariables()
23
+ while loopingTheDimensions():
24
+
25
+ if dimensionsUnconstrainedCondition():
26
+ dimensionsUnconstrainedIncrement()
27
+
28
+ else:
29
+
30
+ leafConnecteeInitialization()
31
+ while loopingLeavesConnectedToActiveLeaf():
32
+ if thereAreComputationDivisionsYouMightSkip():
33
+ countGaps()
34
+ leafConnecteeUpdate()
35
+
36
+ dimension1ndexIncrement()
37
+
38
+ if allDimensionsAreUnconstrained():
39
+ insertUnconstrainedLeaf()
40
+
41
+ indexMiniGapInitialization()
42
+ while loopingToActiveGapCeiling():
43
+ filterCommonGaps()
44
+ indexMiniGapIncrement()
45
+
46
+ while backtrackCondition():
47
+ backtrack()
48
+
49
+ if placeLeafCondition():
50
+ placeLeaf()
51
+
52
+ def activeGapIncrement():
53
+ my[indexMy.gap1ndex] += 1
54
+
55
+ def activeLeafGreaterThan0Condition():
56
+ return my[indexMy.leaf1ndex] > 0
57
+
58
+ def activeLeafGreaterThanLeavesTotalCondition():
59
+ return my[indexMy.leaf1ndex] > the[indexThe.leavesTotal]
60
+
61
+ def activeLeafIsTheFirstLeafCondition():
62
+ return my[indexMy.leaf1ndex] <= 1
63
+
64
+ def activeLeafNotEqualToTaskDivisionsCondition():
65
+ return my[indexMy.leaf1ndex] != the[indexThe.taskDivisions]
66
+
67
+ def allDimensionsAreUnconstrained():
68
+ return my[indexMy.dimensionsUnconstrained] == the[indexThe.dimensionsTotal]
69
+
70
+ def backtrack():
71
+ my[indexMy.leaf1ndex] -= 1
72
+ track[indexTrack.leafBelow, track[indexTrack.leafAbove, my[indexMy.leaf1ndex]]] = track[indexTrack.leafBelow, my[indexMy.leaf1ndex]]
73
+ track[indexTrack.leafAbove, track[indexTrack.leafBelow, my[indexMy.leaf1ndex]]] = track[indexTrack.leafAbove, my[indexMy.leaf1ndex]]
74
+
75
+ def backtrackCondition():
76
+ return my[indexMy.leaf1ndex] > 0 and my[indexMy.gap1ndex] == track[indexTrack.gapRangeStart, my[indexMy.leaf1ndex] - 1]
77
+
78
+ def computationDivisionsCondition():
79
+ return the[indexThe.taskDivisions] == int(False)
80
+
81
+ def countGaps():
82
+ gapsWhere[my[indexMy.gap1ndexCeiling]] = my[indexMy.leafConnectee]
83
+ if track[indexTrack.countDimensionsGapped, my[indexMy.leafConnectee]] == 0:
84
+ gap1ndexCeilingIncrement()
85
+ track[indexTrack.countDimensionsGapped, my[indexMy.leafConnectee]] += 1
86
+
87
+ def dimension1ndexIncrement():
88
+ my[indexMy.dimension1ndex] += 1
89
+
90
+ def dimensionsUnconstrainedCondition():
91
+ return connectionGraph[my[indexMy.dimension1ndex], my[indexMy.leaf1ndex], my[indexMy.leaf1ndex]] == my[indexMy.leaf1ndex]
92
+
93
+ def dimensionsUnconstrainedIncrement():
94
+ my[indexMy.dimensionsUnconstrained] += 1
95
+
96
+ def filterCommonGaps():
97
+ gapsWhere[my[indexMy.gap1ndex]] = gapsWhere[my[indexMy.indexMiniGap]]
98
+ if track[indexTrack.countDimensionsGapped, gapsWhere[my[indexMy.indexMiniGap]]] == the[indexThe.dimensionsTotal] - my[indexMy.dimensionsUnconstrained]:
99
+ activeGapIncrement()
100
+ track[indexTrack.countDimensionsGapped, gapsWhere[my[indexMy.indexMiniGap]]] = 0
101
+
102
+ def findGapsInitializeVariables():
103
+ my[indexMy.dimensionsUnconstrained] = 0
104
+ my[indexMy.gap1ndexCeiling] = track[indexTrack.gapRangeStart, my[indexMy.leaf1ndex] - 1]
105
+ my[indexMy.dimension1ndex] = 1
106
+
107
+ def foldsSubTotalsIncrement():
108
+ foldsSubTotals[my[indexMy.taskIndex]] += the[indexThe.leavesTotal]
109
+
110
+ def gap1ndexCeilingIncrement():
111
+ my[indexMy.gap1ndexCeiling] += 1
112
+
113
+ def indexMiniGapIncrement():
114
+ my[indexMy.indexMiniGap] += 1
115
+
116
+ def indexMiniGapInitialization():
117
+ my[indexMy.indexMiniGap] = my[indexMy.gap1ndex]
118
+
119
+ def insertUnconstrainedLeaf():
120
+ my[indexMy.indexLeaf] = 0
121
+ while my[indexMy.indexLeaf] < my[indexMy.leaf1ndex]:
122
+ gapsWhere[my[indexMy.gap1ndexCeiling]] = my[indexMy.indexLeaf]
123
+ my[indexMy.gap1ndexCeiling] += 1
124
+ my[indexMy.indexLeaf] += 1
125
+
126
+ def leafBelowSentinelIs1Condition():
127
+ return track[indexTrack.leafBelow, 0] == 1
128
+
129
+ def leafConnecteeInitialization():
130
+ my[indexMy.leafConnectee] = connectionGraph[my[indexMy.dimension1ndex], my[indexMy.leaf1ndex], my[indexMy.leaf1ndex]]
131
+
132
+ def leafConnecteeUpdate():
133
+ my[indexMy.leafConnectee] = connectionGraph[my[indexMy.dimension1ndex], my[indexMy.leaf1ndex], track[indexTrack.leafBelow, my[indexMy.leafConnectee]]]
134
+
135
+ def loopingLeavesConnectedToActiveLeaf():
136
+ return my[indexMy.leafConnectee] != my[indexMy.leaf1ndex]
137
+
138
+ def loopingTheDimensions():
139
+ return my[indexMy.dimension1ndex] <= the[indexThe.dimensionsTotal]
140
+
141
+ def loopingToActiveGapCeiling():
142
+ return my[indexMy.indexMiniGap] < my[indexMy.gap1ndexCeiling]
143
+
144
+ def placeLeaf():
145
+ my[indexMy.gap1ndex] -= 1
146
+ track[indexTrack.leafAbove, my[indexMy.leaf1ndex]] = gapsWhere[my[indexMy.gap1ndex]]
147
+ track[indexTrack.leafBelow, my[indexMy.leaf1ndex]] = track[indexTrack.leafBelow, track[indexTrack.leafAbove, my[indexMy.leaf1ndex]]]
148
+ track[indexTrack.leafBelow, track[indexTrack.leafAbove, my[indexMy.leaf1ndex]]] = my[indexMy.leaf1ndex]
149
+ track[indexTrack.leafAbove, track[indexTrack.leafBelow, my[indexMy.leaf1ndex]]] = my[indexMy.leaf1ndex]
150
+ track[indexTrack.gapRangeStart, my[indexMy.leaf1ndex]] = my[indexMy.gap1ndex]
151
+ my[indexMy.leaf1ndex] += 1
152
+
153
+ def placeLeafCondition():
154
+ return my[indexMy.leaf1ndex] > 0
155
+
156
+ def taskIndexCondition():
157
+ return my[indexMy.leafConnectee] % the[indexThe.taskDivisions] == my[indexMy.taskIndex]
158
+
159
+ def thereAreComputationDivisionsYouMightSkip():
160
+ if computationDivisionsCondition():
161
+ return True
162
+ if activeLeafNotEqualToTaskDivisionsCondition():
163
+ return True
164
+ if taskIndexCondition():
165
+ return True
166
+ return False
167
+
168
+ stateUniversal = outfitFoldings(listDimensions, computationDivisions=computationDivisions, CPUlimit=CPUlimit)
169
+ connectionGraph: Final[numpy.ndarray] = stateUniversal['connectionGraph']
170
+ foldsSubTotals = stateUniversal['foldsSubTotals']
171
+ gapsWhere = stateUniversal['gapsWhere']
172
+ my = stateUniversal['my']
173
+ the: Final[numpy.ndarray] = stateUniversal['the']
174
+ track = stateUniversal['track']
175
+
176
+ if the[indexThe.taskDivisions] == int(False):
177
+ doWhile()
178
+ else:
179
+ stateUniversal['my'] = my.copy()
180
+ stateUniversal['gapsWhere'] = gapsWhere.copy()
181
+ stateUniversal['track'] = track.copy()
182
+ for indexSherpa in range(the[indexThe.taskDivisions]):
183
+ my = stateUniversal['my'].copy()
184
+ my[indexMy.taskIndex] = indexSherpa
185
+ gapsWhere = stateUniversal['gapsWhere'].copy()
186
+ track = stateUniversal['track'].copy()
187
+ doWhile()
188
+
189
+ return numpy.sum(foldsSubTotals).item()
190
+
191
+ @enum.verify(enum.CONTINUOUS, enum.UNIQUE) if sys.version_info >= (3, 11) else lambda x: x
192
+ class EnumIndices(enum.IntEnum):
193
+ """Base class for index enums."""
194
+ @staticmethod
195
+ def _generate_next_value_(name, start, count, last_values):
196
+ """0-indexed."""
197
+ return count
198
+
199
+ def __index__(self) -> int:
200
+ """Adapt enum to the ultra-rare event of indexing a NumPy 'ndarray', which is not the
201
+ same as `array.array`. See NumPy.org; I think it will be very popular someday."""
202
+ return self
203
+
204
+ class indexMy(EnumIndices):
205
+ """Indices for dynamic values."""
206
+ dimension1ndex = enum.auto()
207
+ dimensionsUnconstrained = enum.auto()
208
+ gap1ndex = enum.auto()
209
+ gap1ndexCeiling = enum.auto()
210
+ indexLeaf = enum.auto()
211
+ indexMiniGap = enum.auto()
212
+ leaf1ndex = enum.auto()
213
+ leafConnectee = enum.auto()
214
+ taskIndex = enum.auto()
215
+
216
+ class indexThe(EnumIndices):
217
+ """Indices for static values."""
218
+ dimensionsTotal = enum.auto()
219
+ leavesTotal = enum.auto()
220
+ taskDivisions = enum.auto()
221
+
222
+ class indexTrack(EnumIndices):
223
+ """Indices for state tracking array."""
224
+ leafAbove = enum.auto()
225
+ leafBelow = enum.auto()
226
+ countDimensionsGapped = enum.auto()
227
+ gapRangeStart = enum.auto()
228
+
229
+ class computationState(TypedDict):
230
+ connectionGraph: NDArray[integer[Any]]
231
+ foldsSubTotals: NDArray[integer[Any]]
232
+ mapShape: Tuple[int, ...]
233
+ my: NDArray[integer[Any]]
234
+ gapsWhere: NDArray[integer[Any]]
235
+ the: NDArray[integer[Any]]
236
+ track: NDArray[integer[Any]]
237
+
238
+ dtypeLarge = numpy.int64
239
+ dtypeMedium = dtypeLarge
240
+
241
+ def getLeavesTotal(listDimensions: Sequence[int]) -> int:
242
+ """
243
+ How many leaves are in the map.
244
+
245
+ Parameters:
246
+ listDimensions: A list of integers representing dimensions.
247
+
248
+ Returns:
249
+ productDimensions: The product of all positive integer dimensions.
250
+ """
251
+ listNonNegative = parseDimensions(listDimensions, 'listDimensions')
252
+ listPositive = [dimension for dimension in listNonNegative if dimension > 0]
253
+
254
+ if not listPositive:
255
+ return 0
256
+ else:
257
+ productDimensions = 1
258
+ for dimension in listPositive:
259
+ if dimension > sys.maxsize // productDimensions:
260
+ raise OverflowError(f"I received {dimension=} in {listDimensions=}, but the product of the dimensions exceeds the maximum size of an integer on this system.")
261
+ productDimensions *= dimension
262
+
263
+ return productDimensions
264
+
265
+ def getTaskDivisions(computationDivisions: Optional[Union[int, str]], concurrencyLimit: int, CPUlimit: Optional[Union[bool, float, int]], listDimensions: Sequence[int]):
266
+ if not computationDivisions:
267
+ return 0
268
+ else:
269
+ leavesTotal = getLeavesTotal(listDimensions)
270
+ taskDivisions = 0
271
+ if isinstance(computationDivisions, int):
272
+ taskDivisions = computationDivisions
273
+ elif isinstance(computationDivisions, str):
274
+ computationDivisions = computationDivisions.lower()
275
+ if computationDivisions == "maximum":
276
+ taskDivisions = leavesTotal
277
+ elif computationDivisions == "cpu":
278
+ taskDivisions = min(concurrencyLimit, leavesTotal)
279
+ else:
280
+ raise ValueError("Not my problem.")
281
+
282
+ if taskDivisions > leavesTotal:
283
+ raise ValueError("What are you doing?")
284
+
285
+ return taskDivisions
286
+
287
+ def makeConnectionGraph(listDimensions: Sequence[int], **keywordArguments: Optional[Type]) -> NDArray[integer[Any]]:
288
+ datatype = keywordArguments.get('datatype', dtypeMedium)
289
+ mapShape = validateListDimensions(listDimensions)
290
+ leavesTotal = getLeavesTotal(mapShape)
291
+ arrayDimensions = numpy.array(mapShape, dtype=datatype)
292
+ dimensionsTotal = len(arrayDimensions)
293
+
294
+ cumulativeProduct = numpy.multiply.accumulate([1] + mapShape, dtype=datatype)
295
+ coordinateSystem = numpy.zeros((dimensionsTotal + 1, leavesTotal + 1), dtype=datatype)
296
+ for dimension1ndex in range(1, dimensionsTotal + 1):
297
+ for leaf1ndex in range(1, leavesTotal + 1):
298
+ coordinateSystem[dimension1ndex, leaf1ndex] = ( ((leaf1ndex - 1) // cumulativeProduct[dimension1ndex - 1]) % arrayDimensions[dimension1ndex - 1] + 1 )
299
+
300
+ connectionGraph = numpy.zeros((dimensionsTotal + 1, leavesTotal + 1, leavesTotal + 1), dtype=datatype)
301
+ for dimension1ndex in range(1, dimensionsTotal + 1):
302
+ for activeLeaf1ndex in range(1, leavesTotal + 1):
303
+ for connectee1ndex in range(1, activeLeaf1ndex + 1):
304
+ isFirstCoord = coordinateSystem[dimension1ndex, connectee1ndex] == 1
305
+ isLastCoord = coordinateSystem[dimension1ndex, connectee1ndex] == arrayDimensions[dimension1ndex - 1]
306
+ exceedsActive = connectee1ndex + cumulativeProduct[dimension1ndex - 1] > activeLeaf1ndex
307
+ isEvenParity = (coordinateSystem[dimension1ndex, activeLeaf1ndex] & 1) == (coordinateSystem[dimension1ndex, connectee1ndex] & 1)
308
+
309
+ if (isEvenParity and isFirstCoord) or (not isEvenParity and (isLastCoord or exceedsActive)):
310
+ connectionGraph[dimension1ndex, activeLeaf1ndex, connectee1ndex] = connectee1ndex
311
+ elif isEvenParity and not isFirstCoord:
312
+ connectionGraph[dimension1ndex, activeLeaf1ndex, connectee1ndex] = connectee1ndex - cumulativeProduct[dimension1ndex - 1]
313
+ elif not isEvenParity and not (isLastCoord or exceedsActive):
314
+ connectionGraph[dimension1ndex, activeLeaf1ndex, connectee1ndex] = connectee1ndex + cumulativeProduct[dimension1ndex - 1]
315
+ else:
316
+ connectionGraph[dimension1ndex, activeLeaf1ndex, connectee1ndex] = connectee1ndex
317
+ return connectionGraph
318
+
319
+ def makeDataContainer(shape, datatype: Optional[Type] = None):
320
+ if datatype is None:
321
+ datatype = dtypeMedium
322
+ return numpy.zeros(shape, dtype=datatype)
323
+
324
+ def outfitFoldings(listDimensions: Sequence[int], computationDivisions: Optional[Union[int, str]] = None, CPUlimit: Optional[Union[bool, float, int]] = None, **keywordArguments: Optional[Type]) -> computationState:
325
+ datatypeMedium = keywordArguments.get('datatypeMedium', dtypeMedium)
326
+ datatypeLarge = keywordArguments.get('datatypeLarge', dtypeLarge)
327
+
328
+ the = makeDataContainer(len(indexThe), datatypeMedium)
329
+
330
+ mapShape = tuple(sorted(validateListDimensions(listDimensions)))
331
+ the[indexThe.leavesTotal] = getLeavesTotal(mapShape)
332
+ the[indexThe.dimensionsTotal] = len(mapShape)
333
+ concurrencyLimit = setCPUlimit(CPUlimit)
334
+ the[indexThe.taskDivisions] = getTaskDivisions(computationDivisions, concurrencyLimit, CPUlimit, listDimensions)
335
+
336
+ stateInitialized = computationState(
337
+ connectionGraph = makeConnectionGraph(mapShape, datatype=datatypeMedium),
338
+ foldsSubTotals = makeDataContainer(the[indexThe.leavesTotal], datatypeLarge),
339
+ mapShape = mapShape,
340
+ my = makeDataContainer(len(indexMy), datatypeLarge),
341
+ gapsWhere = makeDataContainer(int(the[indexThe.leavesTotal]) * int(the[indexThe.leavesTotal]) + 1, datatypeMedium),
342
+ the = the,
343
+ track = makeDataContainer((len(indexTrack), the[indexThe.leavesTotal] + 1), datatypeLarge)
344
+ )
345
+
346
+ stateInitialized['my'][indexMy.leaf1ndex] = 1
347
+ return stateInitialized
348
+
349
+ def parseDimensions(dimensions: Sequence[int], parameterName: str = 'unnamed parameter') -> List[int]:
350
+ # listValidated = intInnit(dimensions, parameterName)
351
+ listNOTValidated = dimensions if isinstance(dimensions, (list, tuple)) else list(dimensions)
352
+ listNonNegative = []
353
+ for dimension in listNOTValidated:
354
+ if dimension < 0:
355
+ raise ValueError(f"Dimension {dimension} must be non-negative")
356
+ listNonNegative.append(dimension)
357
+ if not listNonNegative:
358
+ raise ValueError("At least one dimension must be non-negative")
359
+ return listNonNegative
360
+
361
+ def setCPUlimit(CPUlimit: Union[bool, float, int, None]) -> int:
362
+ # if not (CPUlimit is None or isinstance(CPUlimit, (bool, int, float))):
363
+ # CPUlimit = oopsieKwargsie(CPUlimit)
364
+ # concurrencyLimit = defineConcurrencyLimit(CPUlimit)
365
+ # numba.set_num_threads(concurrencyLimit)
366
+ concurrencyLimitHARDCODED = 1
367
+ concurrencyLimit = concurrencyLimitHARDCODED
368
+ return concurrencyLimit
369
+
370
+ def validateListDimensions(listDimensions: Sequence[int]) -> List[int]:
371
+ if not listDimensions:
372
+ raise ValueError(f"listDimensions is a required parameter.")
373
+ listNonNegative = parseDimensions(listDimensions, 'listDimensions')
374
+ dimensionsValid = [dimension for dimension in listNonNegative if dimension > 0]
375
+ if len(dimensionsValid) < 2:
376
+ raise NotImplementedError(f"This function requires listDimensions, {listDimensions}, to have at least two dimensions greater than 0. You may want to look at https://oeis.org/.")
377
+ return sorted(dimensionsValid)
@@ -0,0 +1,132 @@
1
+ from typing import List
2
+ import numba
3
+ import numpy
4
+
5
+ @numba.jit(cache=True, nopython=True, fastmath=True)
6
+ def countFolds(listDimensions: List[int]) -> int:
7
+ """
8
+ Count the number of distinct ways to fold a map with at least two positive dimensions.
9
+
10
+ Parameters:
11
+ listDimensions: A list of integers representing the dimensions of the map. Error checking and DRY code are impermissible in the numba and jax universes. Validate the list yourself before passing here. There might be some tools for that in this package unless I have become a pyL33t coder.
12
+
13
+ Returns:
14
+ foldsTotal: The total number of distinct folds for the given map dimensions.
15
+ """
16
+ def integerSmall(value) -> numpy.uint8:
17
+ return numpy.uint8(value)
18
+
19
+ def integerLarge(value) -> numpy.uint64:
20
+ return numpy.uint64(value)
21
+
22
+ dtypeMedium = numpy.uint8
23
+ dtypeMaximum = numpy.uint16
24
+
25
+ leavesTotal = integerSmall(1)
26
+ for 个 in listDimensions:
27
+ leavesTotal = leavesTotal * integerSmall(个)
28
+ dimensionsTotal = integerSmall(len(listDimensions))
29
+
30
+ """How to build a leaf connection graph, also called a "Cartesian Product Decomposition"
31
+ or a "Dimensional Product Mapping", with sentinels:
32
+ Step 1: find the cumulative product of the map's dimensions"""
33
+ cumulativeProduct = numpy.ones(dimensionsTotal + 1, dtype=dtypeMedium)
34
+ for dimension1ndex in range(1, dimensionsTotal + 1):
35
+ cumulativeProduct[dimension1ndex] = cumulativeProduct[dimension1ndex - 1] * listDimensions[dimension1ndex - 1]
36
+
37
+ """Step 2: for each dimension, create a coordinate system """
38
+ """coordinateSystem[dimension1ndex, leaf1ndex] holds the dimension1ndex-th coordinate of leaf leaf1ndex"""
39
+ coordinateSystem = numpy.zeros((dimensionsTotal + 1, leavesTotal + 1), dtype=dtypeMedium)
40
+ for dimension1ndex in range(1, dimensionsTotal + 1):
41
+ for leaf1ndex in range(1, leavesTotal + 1):
42
+ coordinateSystem[dimension1ndex, leaf1ndex] = ((leaf1ndex - 1) // cumulativeProduct[dimension1ndex - 1]) % listDimensions[dimension1ndex - 1] + 1
43
+
44
+ """Step 3: create a huge empty connection graph"""
45
+ connectionGraph = numpy.zeros((dimensionsTotal + 1, leavesTotal + 1, leavesTotal + 1), dtype=dtypeMedium)
46
+
47
+ """Step for... for... for...: fill the connection graph"""
48
+ for dimension1ndex in range(1, dimensionsTotal + 1):
49
+ for leaf1ndex in range(1, leavesTotal + 1):
50
+ for leafConnectee in range(1, leaf1ndex + 1):
51
+ connectionGraph[dimension1ndex, leaf1ndex, leafConnectee] = (0 if leafConnectee == 0
52
+ else ((leafConnectee if coordinateSystem[dimension1ndex, leafConnectee] == 1
53
+ else leafConnectee - cumulativeProduct[dimension1ndex - 1])
54
+ if (coordinateSystem[dimension1ndex, leaf1ndex] & 1) == (coordinateSystem[dimension1ndex, leafConnectee] & 1)
55
+ else (leafConnectee if coordinateSystem[dimension1ndex, leafConnectee] == listDimensions[dimension1ndex-1]
56
+ or leafConnectee + cumulativeProduct[dimension1ndex - 1] > leaf1ndex
57
+ else leafConnectee + cumulativeProduct[dimension1ndex - 1])))
58
+
59
+ """Indices of array `track` (to "track" the execution state), which is a collection of one-dimensional arrays each of length `leavesTotal + 1`."""
60
+ leafAbove = numba.literally(0)
61
+ leafBelow = numba.literally(1)
62
+ countDimensionsGapped = numba.literally(2)
63
+ gapRangeStart = numba.literally(3)
64
+ track = numpy.zeros((4, leavesTotal + 1), dtype=dtypeMedium)
65
+
66
+ gapsWhere = numpy.zeros(integerLarge(integerLarge(leavesTotal) * integerLarge(leavesTotal) + 1), dtype=dtypeMaximum)
67
+
68
+ foldsTotal = integerLarge(0)
69
+ leaf1ndex = integerSmall(1)
70
+ gap1ndex = integerSmall(0)
71
+
72
+ while leaf1ndex > 0:
73
+ if leaf1ndex <= 1 or track[leafBelow, 0] == 1:
74
+ if leaf1ndex > leavesTotal:
75
+ foldsTotal += leavesTotal
76
+ else:
77
+ dimensionsUnconstrained = integerSmall(0)
78
+ """Track possible gaps for leaf1ndex in each section"""
79
+ gap1ndexCeiling = track[gapRangeStart, leaf1ndex - 1]
80
+
81
+ """Count possible gaps for leaf1ndex in each section"""
82
+ dimension1ndex = integerSmall(1)
83
+ while dimension1ndex <= dimensionsTotal:
84
+ if connectionGraph[dimension1ndex, leaf1ndex, leaf1ndex] == leaf1ndex:
85
+ dimensionsUnconstrained += 1
86
+ else:
87
+ leafConnectee = connectionGraph[dimension1ndex, leaf1ndex, leaf1ndex]
88
+ while leafConnectee != leaf1ndex:
89
+ gapsWhere[gap1ndexCeiling] = leafConnectee
90
+ if track[countDimensionsGapped, leafConnectee] == 0:
91
+ gap1ndexCeiling += 1
92
+ track[countDimensionsGapped, leafConnectee] += 1
93
+ leafConnectee = connectionGraph[dimension1ndex, leaf1ndex, track[leafBelow, leafConnectee]]
94
+ dimension1ndex += 1
95
+
96
+ """If leaf1ndex is unconstrained in all sections, it can be inserted anywhere"""
97
+ if dimensionsUnconstrained == dimensionsTotal:
98
+ indexLeaf = integerSmall(0)
99
+ while indexLeaf < leaf1ndex:
100
+ gapsWhere[gap1ndexCeiling] = indexLeaf
101
+ gap1ndexCeiling += 1
102
+ indexLeaf += 1
103
+
104
+ """Filter gaps that are common to all sections"""
105
+ indexMiniGap = gap1ndex
106
+ while indexMiniGap < gap1ndexCeiling:
107
+ gapsWhere[gap1ndex] = gapsWhere[indexMiniGap]
108
+ if track[countDimensionsGapped, gapsWhere[indexMiniGap]] == dimensionsTotal - dimensionsUnconstrained:
109
+ gap1ndex += 1
110
+ """Reset track[countDimensionsGapped] for next iteration"""
111
+ track[countDimensionsGapped, gapsWhere[indexMiniGap]] = 0
112
+ indexMiniGap += 1
113
+
114
+ """Recursive backtracking steps"""
115
+ while leaf1ndex > 0 and gap1ndex == track[gapRangeStart, leaf1ndex - 1]:
116
+ leaf1ndex -= 1
117
+ track[leafBelow, track[leafAbove, leaf1ndex]] = track[leafBelow, leaf1ndex]
118
+ track[leafAbove, track[leafBelow, leaf1ndex]] = track[leafAbove, leaf1ndex]
119
+
120
+ """Place leaf in valid position"""
121
+ if leaf1ndex > 0:
122
+ gap1ndex -= 1
123
+ track[leafAbove, leaf1ndex] = gapsWhere[gap1ndex]
124
+ track[leafBelow, leaf1ndex] = track[leafBelow, track[leafAbove, leaf1ndex]]
125
+ track[leafBelow, track[leafAbove, leaf1ndex]] = leaf1ndex
126
+ track[leafAbove, track[leafBelow, leaf1ndex]] = leaf1ndex
127
+ """Save current gap index"""
128
+ track[gapRangeStart, leaf1ndex] = gap1ndex
129
+ """Move to next leaf"""
130
+ leaf1ndex += 1
131
+
132
+ return int(foldsTotal)