magic-pdf 1.2.2__py3-none-any.whl → 1.3.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- magic_pdf/data/batch_build_dataset.py +156 -0
- magic_pdf/data/dataset.py +56 -25
- magic_pdf/data/utils.py +108 -9
- magic_pdf/dict2md/ocr_mkcontent.py +4 -3
- magic_pdf/libs/pdf_image_tools.py +11 -6
- magic_pdf/libs/performance_stats.py +12 -1
- magic_pdf/libs/version.py +1 -1
- magic_pdf/model/batch_analyze.py +175 -201
- magic_pdf/model/doc_analyze_by_custom_model.py +142 -92
- magic_pdf/model/pdf_extract_kit.py +5 -38
- magic_pdf/model/sub_modules/language_detection/utils.py +2 -4
- magic_pdf/model/sub_modules/language_detection/yolov11/YOLOv11.py +24 -19
- magic_pdf/model/sub_modules/layout/doclayout_yolo/DocLayoutYOLO.py +3 -1
- magic_pdf/model/sub_modules/mfd/yolov8/YOLOv8.py +3 -1
- magic_pdf/model/sub_modules/mfr/unimernet/Unimernet.py +31 -102
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/__init__.py +13 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/modeling_unimernet.py +189 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_mbart/__init__.py +8 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_mbart/configuration_unimer_mbart.py +163 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_mbart/modeling_unimer_mbart.py +2351 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_swin/__init__.py +9 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_swin/configuration_unimer_swin.py +132 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_swin/image_processing_unimer_swin.py +132 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_swin/modeling_unimer_swin.py +1084 -0
- magic_pdf/model/sub_modules/model_init.py +50 -37
- magic_pdf/model/sub_modules/model_utils.py +18 -12
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/__init__.py +1 -0
- magic_pdf/model/sub_modules/ocr/{paddleocr → paddleocr2pytorch}/ocr_utils.py +102 -97
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorch_paddle.py +193 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/base_ocr_v20.py +39 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/data/__init__.py +8 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/data/imaug/__init__.py +48 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/data/imaug/operators.py +418 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/architectures/__init__.py +25 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/architectures/base_model.py +105 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/__init__.py +62 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/det_mobilenet_v3.py +269 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_hgnet.py +290 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_lcnetv3.py +516 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_mobilenet_v3.py +136 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_mv1_enhance.py +234 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_svtrnet.py +638 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/common.py +76 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/heads/__init__.py +43 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/heads/cls_head.py +23 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/heads/det_db_head.py +109 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/heads/rec_ctc_head.py +54 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/heads/rec_multi_head.py +58 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/necks/__init__.py +29 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/necks/db_fpn.py +456 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/necks/intracl.py +117 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/necks/rnn.py +228 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/postprocess/__init__.py +33 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/postprocess/cls_postprocess.py +20 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/postprocess/db_postprocess.py +179 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/postprocess/rec_postprocess.py +690 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/__init__.py +0 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/arch_config.yaml +383 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/arabic_dict.txt +162 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/chinese_cht_dict.txt +8421 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/cyrillic_dict.txt +163 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/devanagari_dict.txt +167 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/en_dict.txt +95 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/japan_dict.txt +4399 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/ka_dict.txt +153 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/korean_dict.txt +3688 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/latin_dict.txt +185 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/ppocr_keys_v1.txt +6623 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/ta_dict.txt +128 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/te_dict.txt +151 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/models_config.yml +49 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/__init__.py +1 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/__init__.py +1 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/predict_cls.py +106 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/predict_det.py +217 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/predict_rec.py +440 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/predict_system.py +104 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/pytorchocr_utility.py +227 -0
- magic_pdf/model/sub_modules/table/rapidtable/rapid_table.py +15 -19
- magic_pdf/pdf_parse_union_core_v2.py +112 -74
- magic_pdf/pre_proc/ocr_dict_merge.py +9 -1
- magic_pdf/pre_proc/ocr_span_list_modify.py +51 -0
- magic_pdf/resources/model_config/model_configs.yaml +1 -1
- magic_pdf/resources/slanet_plus/slanet-plus.onnx +0 -0
- magic_pdf/tools/cli.py +30 -12
- magic_pdf/tools/common.py +90 -12
- {magic_pdf-1.2.2.dist-info → magic_pdf-1.3.1.dist-info}/METADATA +92 -59
- magic_pdf-1.3.1.dist-info/RECORD +203 -0
- {magic_pdf-1.2.2.dist-info → magic_pdf-1.3.1.dist-info}/WHEEL +1 -1
- magic_pdf/model/sub_modules/ocr/paddleocr/ppocr_273_mod.py +0 -204
- magic_pdf/model/sub_modules/ocr/paddleocr/ppocr_291_mod.py +0 -213
- magic_pdf/model/sub_modules/table/structeqtable/struct_eqtable.py +0 -37
- magic_pdf/model/sub_modules/table/tablemaster/tablemaster_paddle.py +0 -71
- magic_pdf/resources/model_config/UniMERNet/demo.yaml +0 -46
- magic_pdf/resources/model_config/layoutlmv3/layoutlmv3_base_inference.yaml +0 -351
- magic_pdf-1.2.2.dist-info/RECORD +0 -147
- /magic_pdf/model/sub_modules/{ocr/paddleocr/__init__.py → mfr/unimernet/unimernet_hf/unimer_mbart/tokenization_unimer_mbart.py} +0 -0
- /magic_pdf/model/sub_modules/{table/structeqtable → ocr/paddleocr2pytorch/pytorchocr}/__init__.py +0 -0
- /magic_pdf/model/sub_modules/{table/tablemaster → ocr/paddleocr2pytorch/pytorchocr/modeling}/__init__.py +0 -0
- {magic_pdf-1.2.2.dist-info → magic_pdf-1.3.1.dist-info}/LICENSE.md +0 -0
- {magic_pdf-1.2.2.dist-info → magic_pdf-1.3.1.dist-info}/entry_points.txt +0 -0
- {magic_pdf-1.2.2.dist-info → magic_pdf-1.3.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,2351 @@
|
|
1
|
+
# coding=utf-8
|
2
|
+
# Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved.
|
3
|
+
#
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
|
+
# you may not use this file except in compliance with the License.
|
6
|
+
# You may obtain a copy of the License at
|
7
|
+
#
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9
|
+
#
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
|
+
# See the License for the specific language governing permissions and
|
14
|
+
# limitations under the License.
|
15
|
+
"""PyTorch UnimerMBART model."""
|
16
|
+
|
17
|
+
import copy
|
18
|
+
import math
|
19
|
+
from dataclasses import dataclass
|
20
|
+
from typing import List, Optional, Tuple, Union
|
21
|
+
|
22
|
+
import torch
|
23
|
+
import torch.nn.functional as F
|
24
|
+
import torch.utils.checkpoint
|
25
|
+
from torch import nn
|
26
|
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
27
|
+
|
28
|
+
from transformers.activations import ACT2FN
|
29
|
+
from transformers.modeling_attn_mask_utils import (
|
30
|
+
_prepare_4d_attention_mask,
|
31
|
+
_prepare_4d_attention_mask_for_sdpa,
|
32
|
+
_prepare_4d_causal_attention_mask,
|
33
|
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
34
|
+
)
|
35
|
+
from transformers.modeling_outputs import (
|
36
|
+
BaseModelOutput,
|
37
|
+
BaseModelOutputWithPastAndCrossAttentions,
|
38
|
+
CausalLMOutputWithCrossAttentions,
|
39
|
+
Seq2SeqLMOutput,
|
40
|
+
Seq2SeqModelOutput,
|
41
|
+
Seq2SeqQuestionAnsweringModelOutput,
|
42
|
+
Seq2SeqSequenceClassifierOutput,
|
43
|
+
)
|
44
|
+
from transformers import GenerationMixin, PreTrainedModel
|
45
|
+
from transformers.utils import (
|
46
|
+
add_code_sample_docstrings,
|
47
|
+
add_end_docstrings,
|
48
|
+
add_start_docstrings,
|
49
|
+
add_start_docstrings_to_model_forward,
|
50
|
+
is_flash_attn_2_available,
|
51
|
+
is_flash_attn_greater_or_equal_2_10,
|
52
|
+
logging,
|
53
|
+
replace_return_docstrings,
|
54
|
+
)
|
55
|
+
from .configuration_unimer_mbart import UnimerMBartConfig
|
56
|
+
|
57
|
+
|
58
|
+
if is_flash_attn_2_available():
|
59
|
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
60
|
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
61
|
+
|
62
|
+
|
63
|
+
logger = logging.get_logger(__name__)
|
64
|
+
|
65
|
+
_CHECKPOINT_FOR_DOC = "facebook/mbart-large-cc25"
|
66
|
+
_CONFIG_FOR_DOC = "MBartConfig"
|
67
|
+
|
68
|
+
# Base model docstring
|
69
|
+
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
|
70
|
+
|
71
|
+
|
72
|
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
73
|
+
def _get_unpad_data(attention_mask):
|
74
|
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
75
|
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
76
|
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
77
|
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
78
|
+
return (
|
79
|
+
indices,
|
80
|
+
cu_seqlens,
|
81
|
+
max_seqlen_in_batch,
|
82
|
+
)
|
83
|
+
|
84
|
+
|
85
|
+
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int):
|
86
|
+
"""
|
87
|
+
Shift input ids one token to the right, and wrap the last non pad token (the <LID> token) Note that MBart does not
|
88
|
+
have a single `decoder_start_token_id` in contrast to other Bart-like models.
|
89
|
+
"""
|
90
|
+
prev_output_tokens = input_ids.clone()
|
91
|
+
|
92
|
+
if pad_token_id is None:
|
93
|
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
94
|
+
# replace possible -100 values in labels by `pad_token_id`
|
95
|
+
prev_output_tokens.masked_fill_(prev_output_tokens == -100, pad_token_id)
|
96
|
+
|
97
|
+
index_of_eos = (prev_output_tokens.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1)
|
98
|
+
decoder_start_tokens = prev_output_tokens.gather(1, index_of_eos).squeeze()
|
99
|
+
prev_output_tokens[:, 1:] = prev_output_tokens[:, :-1].clone()
|
100
|
+
prev_output_tokens[:, 0] = decoder_start_tokens
|
101
|
+
|
102
|
+
return prev_output_tokens
|
103
|
+
|
104
|
+
@dataclass
|
105
|
+
class CausalLMOutputWithCrossAttentionsAndCounting(CausalLMOutputWithCrossAttentions):
|
106
|
+
"""
|
107
|
+
Base class for causal language model (or autoregressive) outputs.
|
108
|
+
|
109
|
+
Args:
|
110
|
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
111
|
+
Language modeling loss (for next-token prediction).
|
112
|
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
113
|
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
114
|
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
115
|
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
116
|
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
117
|
+
|
118
|
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
119
|
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
120
|
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
121
|
+
sequence_length)`.
|
122
|
+
|
123
|
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
124
|
+
heads.
|
125
|
+
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
126
|
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
127
|
+
sequence_length)`.
|
128
|
+
|
129
|
+
Cross attentions weights after the attention softmax, used to compute the weighted average in the
|
130
|
+
cross-attention heads.
|
131
|
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
132
|
+
Tuple of `torch.FloatTensor` tuples of length `config.n_layers`, with each tuple containing the cached key,
|
133
|
+
value states of the self-attention and the cross-attention layers if model is used in encoder-decoder
|
134
|
+
setting. Only relevant if `config.is_decoder = True`.
|
135
|
+
|
136
|
+
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
|
137
|
+
`past_key_values` input) to speed up sequential decoding.
|
138
|
+
counting:
|
139
|
+
Counting
|
140
|
+
"""
|
141
|
+
counting: Optional[torch.FloatTensor] = None
|
142
|
+
|
143
|
+
# Copied from transformers.models.bart.modeling_bart.BartLearnedPositionalEmbedding with Bart->MBart
|
144
|
+
class UnimerMBartLearnedPositionalEmbedding(nn.Embedding):
|
145
|
+
"""
|
146
|
+
This module learns positional embeddings up to a fixed maximum size.
|
147
|
+
"""
|
148
|
+
|
149
|
+
def __init__(self, num_embeddings: int, embedding_dim: int):
|
150
|
+
# MBart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
151
|
+
# and adjust num_embeddings appropriately. Other models don't have this hack
|
152
|
+
self.offset = 2
|
153
|
+
super().__init__(num_embeddings + self.offset, embedding_dim)
|
154
|
+
|
155
|
+
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
|
156
|
+
"""`input_ids' shape is expected to be [bsz x seqlen]."""
|
157
|
+
|
158
|
+
bsz, seq_len = input_ids.shape[:2]
|
159
|
+
positions = torch.arange(
|
160
|
+
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
|
161
|
+
).expand(bsz, -1)
|
162
|
+
|
163
|
+
return super().forward(positions + self.offset)
|
164
|
+
|
165
|
+
|
166
|
+
# Copied from transformers.models.bart.modeling_bart.BartScaledWordEmbedding with Bart->MBart
|
167
|
+
class UnimerMBartScaledWordEmbedding(nn.Embedding):
|
168
|
+
"""
|
169
|
+
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
|
170
|
+
"""
|
171
|
+
|
172
|
+
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
|
173
|
+
super().__init__(num_embeddings, embedding_dim, padding_idx)
|
174
|
+
self.embed_scale = embed_scale
|
175
|
+
|
176
|
+
def forward(self, input_ids: torch.Tensor):
|
177
|
+
return super().forward(input_ids) * self.embed_scale
|
178
|
+
|
179
|
+
|
180
|
+
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->MBart
|
181
|
+
class UnimerMBartAttention(nn.Module):
|
182
|
+
"""Multi-headed attention from 'Attention Is All You Need' paper, with qk_squeeze"""
|
183
|
+
|
184
|
+
def __init__(
|
185
|
+
self,
|
186
|
+
embed_dim: int,
|
187
|
+
num_heads: int,
|
188
|
+
dropout: float = 0.0,
|
189
|
+
is_decoder: bool = False,
|
190
|
+
bias: bool = True,
|
191
|
+
is_causal: bool = False,
|
192
|
+
*,
|
193
|
+
config: UnimerMBartConfig,
|
194
|
+
):
|
195
|
+
super().__init__()
|
196
|
+
self.embed_dim = embed_dim
|
197
|
+
self.num_heads = num_heads
|
198
|
+
self.dropout = dropout
|
199
|
+
self.head_dim = embed_dim // num_heads
|
200
|
+
self.config = config
|
201
|
+
|
202
|
+
if (self.head_dim * num_heads) != self.embed_dim:
|
203
|
+
raise ValueError(
|
204
|
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
205
|
+
f" and `num_heads`: {num_heads})."
|
206
|
+
)
|
207
|
+
|
208
|
+
self.squeeze_dim = embed_dim // config.qk_squeeze
|
209
|
+
self.squeeze_head_dim = self.squeeze_dim // num_heads
|
210
|
+
self.scaling = self.squeeze_head_dim**-0.5
|
211
|
+
self.is_decoder = is_decoder
|
212
|
+
self.is_causal = is_causal
|
213
|
+
|
214
|
+
self.q_proj = nn.Linear(embed_dim, self.squeeze_dim, bias=bias)
|
215
|
+
self.k_proj = nn.Linear(embed_dim, self.squeeze_dim, bias=bias)
|
216
|
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
217
|
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
218
|
+
|
219
|
+
def _shape_qk(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
220
|
+
return tensor.view(bsz, seq_len, self.num_heads, self.squeeze_head_dim).transpose(1, 2).contiguous()
|
221
|
+
|
222
|
+
def _shape_v(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
223
|
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
224
|
+
|
225
|
+
def forward(
|
226
|
+
self,
|
227
|
+
hidden_states: torch.Tensor,
|
228
|
+
key_value_states: Optional[torch.Tensor] = None,
|
229
|
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
230
|
+
attention_mask: Optional[torch.Tensor] = None,
|
231
|
+
layer_head_mask: Optional[torch.Tensor] = None,
|
232
|
+
output_attentions: bool = False,
|
233
|
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
234
|
+
"""Input shape: Batch x Time x Channel"""
|
235
|
+
|
236
|
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
237
|
+
# for the decoder
|
238
|
+
is_cross_attention = key_value_states is not None
|
239
|
+
|
240
|
+
bsz, tgt_len, _ = hidden_states.size()
|
241
|
+
|
242
|
+
# get query proj
|
243
|
+
query_states = self.q_proj(hidden_states) * self.scaling
|
244
|
+
# get key, value proj
|
245
|
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
246
|
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
247
|
+
# the provided `key_value_states` to support prefix tuning
|
248
|
+
if (
|
249
|
+
is_cross_attention
|
250
|
+
and past_key_value is not None
|
251
|
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
252
|
+
):
|
253
|
+
# reuse k,v, cross_attentions
|
254
|
+
key_states = past_key_value[0]
|
255
|
+
value_states = past_key_value[1]
|
256
|
+
elif is_cross_attention:
|
257
|
+
# cross_attentions
|
258
|
+
key_states = self._shape_qk(self.k_proj(key_value_states), -1, bsz)
|
259
|
+
value_states = self._shape_v(self.v_proj(key_value_states), -1, bsz)
|
260
|
+
elif past_key_value is not None:
|
261
|
+
# reuse k, v, self_attention
|
262
|
+
key_states = self._shape_qk(self.k_proj(hidden_states), -1, bsz)
|
263
|
+
value_states = self._shape_v(self.v_proj(hidden_states), -1, bsz)
|
264
|
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
265
|
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
266
|
+
else:
|
267
|
+
# self_attention
|
268
|
+
key_states = self._shape_qk(self.k_proj(hidden_states), -1, bsz)
|
269
|
+
value_states = self._shape_v(self.v_proj(hidden_states), -1, bsz)
|
270
|
+
|
271
|
+
if self.is_decoder:
|
272
|
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
273
|
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
274
|
+
# key/value_states (first "if" case)
|
275
|
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
276
|
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
277
|
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
278
|
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
279
|
+
past_key_value = (key_states, value_states)
|
280
|
+
|
281
|
+
proj_shape = (bsz * self.num_heads, -1, self.squeeze_head_dim)
|
282
|
+
value_shape = (bsz * self.num_heads, -1, self.head_dim)
|
283
|
+
query_states = self._shape_qk(query_states, tgt_len, bsz).view(*proj_shape)
|
284
|
+
key_states = key_states.reshape(*proj_shape)
|
285
|
+
value_states = value_states.reshape(*value_shape)
|
286
|
+
|
287
|
+
src_len = key_states.size(1)
|
288
|
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
289
|
+
|
290
|
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
291
|
+
raise ValueError(
|
292
|
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
293
|
+
f" {attn_weights.size()}"
|
294
|
+
)
|
295
|
+
|
296
|
+
if attention_mask is not None:
|
297
|
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
298
|
+
raise ValueError(
|
299
|
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
300
|
+
)
|
301
|
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
302
|
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
303
|
+
|
304
|
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
305
|
+
|
306
|
+
if layer_head_mask is not None:
|
307
|
+
if layer_head_mask.size() != (self.num_heads,):
|
308
|
+
raise ValueError(
|
309
|
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
310
|
+
f" {layer_head_mask.size()}"
|
311
|
+
)
|
312
|
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
313
|
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
314
|
+
|
315
|
+
if output_attentions:
|
316
|
+
# this operation is a bit awkward, but it's required to
|
317
|
+
# make sure that attn_weights keeps its gradient.
|
318
|
+
# In order to do so, attn_weights have to be reshaped
|
319
|
+
# twice and have to be reused in the following
|
320
|
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
321
|
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
322
|
+
else:
|
323
|
+
attn_weights_reshaped = None
|
324
|
+
|
325
|
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
326
|
+
attn_output = torch.bmm(attn_probs, value_states)
|
327
|
+
|
328
|
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
329
|
+
raise ValueError(
|
330
|
+
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
|
331
|
+
f" {attn_output.size()}"
|
332
|
+
)
|
333
|
+
|
334
|
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
335
|
+
attn_output = attn_output.transpose(1, 2)
|
336
|
+
|
337
|
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
338
|
+
# partitioned across GPUs when using tensor-parallelism.
|
339
|
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
340
|
+
|
341
|
+
attn_output = self.out_proj(attn_output)
|
342
|
+
|
343
|
+
return attn_output, attn_weights_reshaped, past_key_value
|
344
|
+
|
345
|
+
|
346
|
+
# Copied from transformers.models.bart.modeling_bart.BartFlashAttention2 with Bart->MBart
|
347
|
+
class UnimerMBartFlashAttention2(UnimerMBartAttention):
|
348
|
+
"""
|
349
|
+
MBart flash attention module. This module inherits from `MBartSqueezeAttention` as the weights of the module stays
|
350
|
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
351
|
+
flash attention and deal with padding tokens in case the input contains any of them.
|
352
|
+
"""
|
353
|
+
|
354
|
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
355
|
+
def __init__(self, *args, **kwargs):
|
356
|
+
super().__init__(*args, **kwargs)
|
357
|
+
|
358
|
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
359
|
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
360
|
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
361
|
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
362
|
+
|
363
|
+
# def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
364
|
+
# return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
365
|
+
|
366
|
+
def _shape_qk(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
367
|
+
return tensor.view(bsz, seq_len, self.num_heads, self.squeeze_head_dim)
|
368
|
+
|
369
|
+
def _shape_v(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
370
|
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
371
|
+
|
372
|
+
def forward(
|
373
|
+
self,
|
374
|
+
hidden_states: torch.Tensor,
|
375
|
+
key_value_states: Optional[torch.Tensor] = None,
|
376
|
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
377
|
+
attention_mask: Optional[torch.Tensor] = None,
|
378
|
+
layer_head_mask: Optional[torch.Tensor] = None,
|
379
|
+
output_attentions: bool = False,
|
380
|
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
381
|
+
# MBartFlashAttention2 attention does not support output_attentions
|
382
|
+
if output_attentions:
|
383
|
+
raise ValueError("MBartFlashAttention2 attention does not support output_attentions")
|
384
|
+
|
385
|
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
386
|
+
# for the decoder
|
387
|
+
is_cross_attention = key_value_states is not None
|
388
|
+
|
389
|
+
bsz, q_len, _ = hidden_states.size()
|
390
|
+
|
391
|
+
# get query proj
|
392
|
+
query_states = self._shape_qk(self.q_proj(hidden_states), -1, bsz)
|
393
|
+
|
394
|
+
# get key, value proj
|
395
|
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
396
|
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
397
|
+
# the provided `key_value_states` to support prefix tuning
|
398
|
+
if (
|
399
|
+
is_cross_attention
|
400
|
+
and past_key_value is not None
|
401
|
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
402
|
+
):
|
403
|
+
# reuse k,v, cross_attentions
|
404
|
+
key_states = past_key_value[0].transpose(1, 2)
|
405
|
+
value_states = past_key_value[1].transpose(1, 2)
|
406
|
+
elif is_cross_attention:
|
407
|
+
# cross_attentions
|
408
|
+
key_states = self._shape_qk(self.k_proj(key_value_states), -1, bsz)
|
409
|
+
value_states = self._shape_v(self.v_proj(key_value_states), -1, bsz)
|
410
|
+
elif past_key_value is not None:
|
411
|
+
# reuse k, v, self_attention
|
412
|
+
key_states = self._shape_qk(self.k_proj(hidden_states), -1, bsz)
|
413
|
+
value_states = self._shape_v(self.v_proj(hidden_states), -1, bsz)
|
414
|
+
key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
|
415
|
+
value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
|
416
|
+
else:
|
417
|
+
# self_attention
|
418
|
+
key_states = self._shape_qk(self.k_proj(hidden_states), -1, bsz)
|
419
|
+
value_states = self._shape_v(self.v_proj(hidden_states), -1, bsz)
|
420
|
+
|
421
|
+
if self.is_decoder:
|
422
|
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
423
|
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
424
|
+
# key/value_states (first "if" case)
|
425
|
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
426
|
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
427
|
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
428
|
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
429
|
+
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
|
430
|
+
|
431
|
+
kv_seq_len = key_states.shape[-2]
|
432
|
+
if past_key_value is not None:
|
433
|
+
kv_seq_len += past_key_value[0].shape[-2]
|
434
|
+
|
435
|
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
436
|
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
437
|
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
438
|
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
439
|
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
440
|
+
|
441
|
+
input_dtype = query_states.dtype
|
442
|
+
if input_dtype == torch.float32:
|
443
|
+
if torch.is_autocast_enabled():
|
444
|
+
target_dtype = torch.get_autocast_gpu_dtype()
|
445
|
+
# Handle the case where the model is quantized
|
446
|
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
447
|
+
target_dtype = self.config._pre_quantization_dtype
|
448
|
+
else:
|
449
|
+
target_dtype = self.q_proj.weight.dtype
|
450
|
+
|
451
|
+
logger.warning_once(
|
452
|
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
453
|
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
454
|
+
f" {target_dtype}."
|
455
|
+
)
|
456
|
+
|
457
|
+
query_states = query_states.to(target_dtype)
|
458
|
+
key_states = key_states.to(target_dtype)
|
459
|
+
value_states = value_states.to(target_dtype)
|
460
|
+
|
461
|
+
attn_output = self._flash_attention_forward(
|
462
|
+
query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout
|
463
|
+
)
|
464
|
+
|
465
|
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
466
|
+
attn_output = self.out_proj(attn_output)
|
467
|
+
|
468
|
+
if not output_attentions:
|
469
|
+
attn_weights = None
|
470
|
+
|
471
|
+
return attn_output, attn_weights, past_key_value
|
472
|
+
|
473
|
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
474
|
+
def _flash_attention_forward(
|
475
|
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
476
|
+
):
|
477
|
+
"""
|
478
|
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
479
|
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
480
|
+
|
481
|
+
Args:
|
482
|
+
query_states (`torch.Tensor`):
|
483
|
+
Input query states to be passed to Flash Attention API
|
484
|
+
key_states (`torch.Tensor`):
|
485
|
+
Input key states to be passed to Flash Attention API
|
486
|
+
value_states (`torch.Tensor`):
|
487
|
+
Input value states to be passed to Flash Attention API
|
488
|
+
attention_mask (`torch.Tensor`):
|
489
|
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
490
|
+
position of padding tokens and 1 for the position of non-padding tokens.
|
491
|
+
dropout (`float`):
|
492
|
+
Attention dropout
|
493
|
+
softmax_scale (`float`, *optional*):
|
494
|
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
495
|
+
"""
|
496
|
+
if not self._flash_attn_uses_top_left_mask:
|
497
|
+
causal = self.is_causal
|
498
|
+
else:
|
499
|
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
500
|
+
causal = self.is_causal and query_length != 1
|
501
|
+
|
502
|
+
# Contains at least one padding token in the sequence
|
503
|
+
if attention_mask is not None:
|
504
|
+
batch_size = query_states.shape[0]
|
505
|
+
|
506
|
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
507
|
+
query_states, key_states, value_states, attention_mask, query_length
|
508
|
+
)
|
509
|
+
|
510
|
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
511
|
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
512
|
+
|
513
|
+
attn_output_unpad = flash_attn_varlen_func(
|
514
|
+
query_states,
|
515
|
+
key_states,
|
516
|
+
value_states,
|
517
|
+
cu_seqlens_q=cu_seqlens_q,
|
518
|
+
cu_seqlens_k=cu_seqlens_k,
|
519
|
+
max_seqlen_q=max_seqlen_in_batch_q,
|
520
|
+
max_seqlen_k=max_seqlen_in_batch_k,
|
521
|
+
dropout_p=dropout,
|
522
|
+
softmax_scale=softmax_scale,
|
523
|
+
causal=causal,
|
524
|
+
)
|
525
|
+
|
526
|
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
527
|
+
else:
|
528
|
+
attn_output = flash_attn_func(
|
529
|
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
530
|
+
)
|
531
|
+
|
532
|
+
return attn_output
|
533
|
+
|
534
|
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
535
|
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
536
|
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
537
|
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
538
|
+
|
539
|
+
key_layer = index_first_axis(
|
540
|
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
541
|
+
)
|
542
|
+
value_layer = index_first_axis(
|
543
|
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
544
|
+
)
|
545
|
+
if query_length == kv_seq_len:
|
546
|
+
query_layer = index_first_axis(
|
547
|
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
548
|
+
)
|
549
|
+
cu_seqlens_q = cu_seqlens_k
|
550
|
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
551
|
+
indices_q = indices_k
|
552
|
+
elif query_length == 1:
|
553
|
+
max_seqlen_in_batch_q = 1
|
554
|
+
cu_seqlens_q = torch.arange(
|
555
|
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
556
|
+
) # There is a memcpy here, that is very bad.
|
557
|
+
indices_q = cu_seqlens_q[:-1]
|
558
|
+
query_layer = query_layer.squeeze(1)
|
559
|
+
else:
|
560
|
+
# The -q_len: slice assumes left padding.
|
561
|
+
attention_mask = attention_mask[:, -query_length:]
|
562
|
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
563
|
+
|
564
|
+
return (
|
565
|
+
query_layer,
|
566
|
+
key_layer,
|
567
|
+
value_layer,
|
568
|
+
indices_q,
|
569
|
+
(cu_seqlens_q, cu_seqlens_k),
|
570
|
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
571
|
+
)
|
572
|
+
|
573
|
+
class UnimerMBartSdpaAttention(UnimerMBartAttention):
|
574
|
+
def forward(
|
575
|
+
self,
|
576
|
+
hidden_states: torch.Tensor,
|
577
|
+
key_value_states: Optional[torch.Tensor] = None,
|
578
|
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
579
|
+
attention_mask: Optional[torch.Tensor] = None,
|
580
|
+
layer_head_mask: Optional[torch.Tensor] = None,
|
581
|
+
output_attentions: bool = False,
|
582
|
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
583
|
+
"""Input shape: Batch x Time x Channel"""
|
584
|
+
if output_attentions or layer_head_mask is not None:
|
585
|
+
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
|
586
|
+
logger.warning(
|
587
|
+
"BartModel is using BartSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
|
588
|
+
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
589
|
+
)
|
590
|
+
return super().forward(
|
591
|
+
hidden_states,
|
592
|
+
key_value_states=key_value_states,
|
593
|
+
past_key_value=past_key_value,
|
594
|
+
attention_mask=attention_mask,
|
595
|
+
layer_head_mask=layer_head_mask,
|
596
|
+
output_attentions=output_attentions,
|
597
|
+
)
|
598
|
+
|
599
|
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
600
|
+
# for the decoder
|
601
|
+
is_cross_attention = key_value_states is not None
|
602
|
+
|
603
|
+
bsz, tgt_len, _ = hidden_states.size()
|
604
|
+
|
605
|
+
# get query proj
|
606
|
+
query_states = self.q_proj(hidden_states)
|
607
|
+
# get key, value proj
|
608
|
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
609
|
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
610
|
+
# the provided `key_value_states` to support prefix tuning
|
611
|
+
if (
|
612
|
+
is_cross_attention
|
613
|
+
and past_key_value is not None
|
614
|
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
615
|
+
):
|
616
|
+
# reuse k,v, cross_attentions
|
617
|
+
key_states = past_key_value[0]
|
618
|
+
value_states = past_key_value[1]
|
619
|
+
elif is_cross_attention:
|
620
|
+
# cross_attentions
|
621
|
+
key_states = self._shape_qk(self.k_proj(key_value_states), -1, bsz)
|
622
|
+
value_states = self._shape_v(self.v_proj(key_value_states), -1, bsz)
|
623
|
+
elif past_key_value is not None:
|
624
|
+
# reuse k, v, self_attention
|
625
|
+
key_states = self._shape_qk(self.k_proj(hidden_states), -1, bsz)
|
626
|
+
value_states = self._shape_v(self.v_proj(hidden_states), -1, bsz)
|
627
|
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
628
|
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
629
|
+
else:
|
630
|
+
# self_attention
|
631
|
+
key_states = self._shape_qk(self.k_proj(hidden_states), -1, bsz)
|
632
|
+
value_states = self._shape_v(self.v_proj(hidden_states), -1, bsz)
|
633
|
+
|
634
|
+
if self.is_decoder:
|
635
|
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
636
|
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
637
|
+
# key/value_states (first "if" case)
|
638
|
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
639
|
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
640
|
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
641
|
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
642
|
+
past_key_value = (key_states, value_states)
|
643
|
+
|
644
|
+
query_states = self._shape_qk(query_states, tgt_len, bsz)
|
645
|
+
|
646
|
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
647
|
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
648
|
+
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
|
649
|
+
is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False
|
650
|
+
|
651
|
+
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
|
652
|
+
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
|
653
|
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
654
|
+
query_states,
|
655
|
+
key_states,
|
656
|
+
value_states,
|
657
|
+
attn_mask=attention_mask,
|
658
|
+
dropout_p=self.dropout if self.training else 0.0,
|
659
|
+
is_causal=is_causal,
|
660
|
+
)
|
661
|
+
|
662
|
+
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
|
663
|
+
raise ValueError(
|
664
|
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
665
|
+
f" {attn_output.size()}"
|
666
|
+
)
|
667
|
+
|
668
|
+
attn_output = attn_output.transpose(1, 2)
|
669
|
+
|
670
|
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
671
|
+
# partitioned across GPUs when using tensor-parallelism.
|
672
|
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
673
|
+
|
674
|
+
attn_output = self.out_proj(attn_output)
|
675
|
+
|
676
|
+
return attn_output, None, past_key_value
|
677
|
+
|
678
|
+
UNIMER_MBART_ATTENTION_CLASSES = {
|
679
|
+
"eager": UnimerMBartAttention,
|
680
|
+
"flash_attention_2": UnimerMBartFlashAttention2,
|
681
|
+
"sdpa": UnimerMBartSdpaAttention,
|
682
|
+
}
|
683
|
+
|
684
|
+
|
685
|
+
class UnimerMBartEncoderLayer(nn.Module):
|
686
|
+
def __init__(self, config: UnimerMBartConfig):
|
687
|
+
super().__init__()
|
688
|
+
self.embed_dim = config.d_model
|
689
|
+
|
690
|
+
self.self_attn = UNIMER_MBART_ATTENTION_CLASSES[config._attn_implementation](
|
691
|
+
embed_dim=self.embed_dim,
|
692
|
+
num_heads=config.encoder_attention_heads,
|
693
|
+
dropout=config.attention_dropout,
|
694
|
+
config=config,
|
695
|
+
)
|
696
|
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
697
|
+
self.dropout = config.dropout
|
698
|
+
self.activation_fn = ACT2FN[config.activation_function]
|
699
|
+
self.activation_dropout = config.activation_dropout
|
700
|
+
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
701
|
+
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
702
|
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
703
|
+
|
704
|
+
def forward(
|
705
|
+
self,
|
706
|
+
hidden_states: torch.Tensor,
|
707
|
+
attention_mask: torch.Tensor,
|
708
|
+
layer_head_mask: torch.Tensor,
|
709
|
+
output_attentions: bool = False,
|
710
|
+
) -> torch.Tensor:
|
711
|
+
"""
|
712
|
+
Args:
|
713
|
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
714
|
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
715
|
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
716
|
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
717
|
+
`(encoder_attention_heads,)`.
|
718
|
+
output_attentions (`bool`, *optional*):
|
719
|
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
720
|
+
returned tensors for more detail.
|
721
|
+
"""
|
722
|
+
residual = hidden_states
|
723
|
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
724
|
+
hidden_states, attn_weights, _ = self.self_attn(
|
725
|
+
hidden_states=hidden_states,
|
726
|
+
attention_mask=attention_mask,
|
727
|
+
layer_head_mask=layer_head_mask,
|
728
|
+
output_attentions=output_attentions,
|
729
|
+
)
|
730
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
731
|
+
hidden_states = residual + hidden_states
|
732
|
+
|
733
|
+
residual = hidden_states
|
734
|
+
hidden_states = self.final_layer_norm(hidden_states)
|
735
|
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
736
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
737
|
+
hidden_states = self.fc2(hidden_states)
|
738
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
739
|
+
hidden_states = residual + hidden_states
|
740
|
+
|
741
|
+
if hidden_states.dtype == torch.float16 and (
|
742
|
+
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
|
743
|
+
):
|
744
|
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
745
|
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
746
|
+
|
747
|
+
outputs = (hidden_states,)
|
748
|
+
|
749
|
+
if output_attentions:
|
750
|
+
outputs += (attn_weights,)
|
751
|
+
|
752
|
+
return outputs
|
753
|
+
|
754
|
+
|
755
|
+
class UnimerMBartDecoderLayer(nn.Module):
|
756
|
+
def __init__(self, config: UnimerMBartConfig):
|
757
|
+
super().__init__()
|
758
|
+
self.embed_dim = config.d_model
|
759
|
+
|
760
|
+
self.self_attn = UNIMER_MBART_ATTENTION_CLASSES[config._attn_implementation](
|
761
|
+
embed_dim=self.embed_dim,
|
762
|
+
num_heads=config.decoder_attention_heads,
|
763
|
+
dropout=config.attention_dropout,
|
764
|
+
is_decoder=True,
|
765
|
+
is_causal=True,
|
766
|
+
config=config,
|
767
|
+
)
|
768
|
+
self.dropout = config.dropout
|
769
|
+
self.activation_fn = ACT2FN[config.activation_function]
|
770
|
+
self.activation_dropout = config.activation_dropout
|
771
|
+
|
772
|
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
773
|
+
self.encoder_attn = UNIMER_MBART_ATTENTION_CLASSES[config._attn_implementation](
|
774
|
+
self.embed_dim,
|
775
|
+
config.decoder_attention_heads,
|
776
|
+
dropout=config.attention_dropout,
|
777
|
+
is_decoder=True,
|
778
|
+
config=config,
|
779
|
+
)
|
780
|
+
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
781
|
+
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
782
|
+
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
|
783
|
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
784
|
+
|
785
|
+
def forward(
|
786
|
+
self,
|
787
|
+
hidden_states: torch.Tensor,
|
788
|
+
attention_mask: Optional[torch.Tensor] = None,
|
789
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
790
|
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
791
|
+
layer_head_mask: Optional[torch.Tensor] = None,
|
792
|
+
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
|
793
|
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
794
|
+
output_attentions: Optional[bool] = False,
|
795
|
+
use_cache: Optional[bool] = True,
|
796
|
+
) -> torch.Tensor:
|
797
|
+
"""
|
798
|
+
Args:
|
799
|
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
800
|
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
801
|
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
802
|
+
encoder_hidden_states (`torch.FloatTensor`):
|
803
|
+
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
|
804
|
+
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
|
805
|
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
806
|
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
807
|
+
`(encoder_attention_heads,)`.
|
808
|
+
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
|
809
|
+
size `(decoder_attention_heads,)`.
|
810
|
+
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
|
811
|
+
output_attentions (`bool`, *optional*):
|
812
|
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
813
|
+
returned tensors for more detail.
|
814
|
+
"""
|
815
|
+
residual = hidden_states
|
816
|
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
817
|
+
|
818
|
+
# Self Attention
|
819
|
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
820
|
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
821
|
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
822
|
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
823
|
+
hidden_states=hidden_states,
|
824
|
+
past_key_value=self_attn_past_key_value,
|
825
|
+
attention_mask=attention_mask,
|
826
|
+
layer_head_mask=layer_head_mask,
|
827
|
+
output_attentions=output_attentions,
|
828
|
+
)
|
829
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
830
|
+
hidden_states = residual + hidden_states
|
831
|
+
|
832
|
+
# Cross-Attention Block
|
833
|
+
cross_attn_present_key_value = None
|
834
|
+
cross_attn_weights = None
|
835
|
+
if encoder_hidden_states is not None:
|
836
|
+
residual = hidden_states
|
837
|
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
838
|
+
|
839
|
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
840
|
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
841
|
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
842
|
+
hidden_states=hidden_states,
|
843
|
+
key_value_states=encoder_hidden_states,
|
844
|
+
attention_mask=encoder_attention_mask,
|
845
|
+
layer_head_mask=cross_attn_layer_head_mask,
|
846
|
+
past_key_value=cross_attn_past_key_value,
|
847
|
+
output_attentions=output_attentions,
|
848
|
+
)
|
849
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
850
|
+
hidden_states = residual + hidden_states
|
851
|
+
|
852
|
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
853
|
+
present_key_value = present_key_value + cross_attn_present_key_value
|
854
|
+
|
855
|
+
# Fully Connected
|
856
|
+
residual = hidden_states
|
857
|
+
hidden_states = self.final_layer_norm(hidden_states)
|
858
|
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
859
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
860
|
+
hidden_states = self.fc2(hidden_states)
|
861
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
862
|
+
hidden_states = residual + hidden_states
|
863
|
+
|
864
|
+
outputs = (hidden_states,)
|
865
|
+
|
866
|
+
if output_attentions:
|
867
|
+
outputs += (self_attn_weights, cross_attn_weights)
|
868
|
+
|
869
|
+
if use_cache:
|
870
|
+
outputs += (present_key_value,)
|
871
|
+
|
872
|
+
return outputs
|
873
|
+
|
874
|
+
|
875
|
+
# Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->MBart
|
876
|
+
class UnimerMBartClassificationHead(nn.Module):
|
877
|
+
"""Head for sentence-level classification tasks."""
|
878
|
+
|
879
|
+
def __init__(
|
880
|
+
self,
|
881
|
+
input_dim: int,
|
882
|
+
inner_dim: int,
|
883
|
+
num_classes: int,
|
884
|
+
pooler_dropout: float,
|
885
|
+
):
|
886
|
+
super().__init__()
|
887
|
+
self.dense = nn.Linear(input_dim, inner_dim)
|
888
|
+
self.dropout = nn.Dropout(p=pooler_dropout)
|
889
|
+
self.out_proj = nn.Linear(inner_dim, num_classes)
|
890
|
+
|
891
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
892
|
+
hidden_states = self.dropout(hidden_states)
|
893
|
+
hidden_states = self.dense(hidden_states)
|
894
|
+
hidden_states = torch.tanh(hidden_states)
|
895
|
+
hidden_states = self.dropout(hidden_states)
|
896
|
+
hidden_states = self.out_proj(hidden_states)
|
897
|
+
return hidden_states
|
898
|
+
|
899
|
+
|
900
|
+
class UnimerMBartPreTrainedModel(PreTrainedModel):
|
901
|
+
config_class = UnimerMBartConfig
|
902
|
+
base_model_prefix = "model"
|
903
|
+
supports_gradient_checkpointing = True
|
904
|
+
_no_split_modules = ["MBartDecoderLayer", "MBartSqueezeAttention"]
|
905
|
+
_supports_flash_attn_2 = True
|
906
|
+
_supports_sdpa = True
|
907
|
+
|
908
|
+
def _init_weights(self, module):
|
909
|
+
std = self.config.init_std
|
910
|
+
if isinstance(module, nn.Linear):
|
911
|
+
module.weight.data.normal_(mean=0.0, std=std)
|
912
|
+
if module.bias is not None:
|
913
|
+
module.bias.data.zero_()
|
914
|
+
elif isinstance(module, nn.Embedding):
|
915
|
+
module.weight.data.normal_(mean=0.0, std=std)
|
916
|
+
if module.padding_idx is not None:
|
917
|
+
module.weight.data[module.padding_idx].zero_()
|
918
|
+
|
919
|
+
@property
|
920
|
+
def dummy_inputs(self):
|
921
|
+
pad_token = self.config.pad_token_id
|
922
|
+
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
|
923
|
+
dummy_inputs = {
|
924
|
+
"attention_mask": input_ids.ne(pad_token),
|
925
|
+
"input_ids": input_ids,
|
926
|
+
}
|
927
|
+
return dummy_inputs
|
928
|
+
|
929
|
+
|
930
|
+
MBART_START_DOCSTRING = r"""
|
931
|
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
932
|
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
933
|
+
etc.)
|
934
|
+
|
935
|
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
936
|
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
937
|
+
and behavior.
|
938
|
+
|
939
|
+
Parameters:
|
940
|
+
config ([`MBartConfig`]):
|
941
|
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
942
|
+
load the weights associated with the model, only the configuration. Check out the
|
943
|
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
944
|
+
"""
|
945
|
+
|
946
|
+
MBART_GENERATION_EXAMPLE = r"""
|
947
|
+
Translation example:
|
948
|
+
|
949
|
+
```python
|
950
|
+
>>> from transformers import AutoTokenizer, MBartForConditionalGeneration
|
951
|
+
|
952
|
+
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
|
953
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-en-ro")
|
954
|
+
|
955
|
+
>>> example_english_phrase = "42 is the answer"
|
956
|
+
>>> inputs = tokenizer(example_english_phrase, return_tensors="pt")
|
957
|
+
|
958
|
+
>>> # Translate
|
959
|
+
>>> generated_ids = model.generate(**inputs, num_beams=4, max_length=5)
|
960
|
+
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
961
|
+
'42 este răspuns'
|
962
|
+
```
|
963
|
+
|
964
|
+
Mask filling example:
|
965
|
+
|
966
|
+
```python
|
967
|
+
>>> from transformers import AutoTokenizer, MBartForConditionalGeneration
|
968
|
+
|
969
|
+
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
|
970
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
|
971
|
+
|
972
|
+
>>> # de_DE is the language symbol id <LID> for German
|
973
|
+
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
|
974
|
+
|
975
|
+
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="pt")["input_ids"]
|
976
|
+
>>> logits = model(input_ids).logits
|
977
|
+
|
978
|
+
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
|
979
|
+
>>> probs = logits[0, masked_index].softmax(dim=0)
|
980
|
+
>>> values, predictions = probs.topk(5)
|
981
|
+
|
982
|
+
>>> tokenizer.decode(predictions).split()
|
983
|
+
['nett', 'sehr', 'ganz', 'nicht', 'so']
|
984
|
+
```
|
985
|
+
"""
|
986
|
+
|
987
|
+
MBART_INPUTS_DOCSTRING = r"""
|
988
|
+
Args:
|
989
|
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
990
|
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
991
|
+
it.
|
992
|
+
|
993
|
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
994
|
+
[`PreTrainedTokenizer.__call__`] for details.
|
995
|
+
|
996
|
+
[What are input IDs?](../glossary#input-ids)
|
997
|
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
998
|
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
999
|
+
|
1000
|
+
- 1 for tokens that are **not masked**,
|
1001
|
+
- 0 for tokens that are **masked**.
|
1002
|
+
|
1003
|
+
[What are attention masks?](../glossary#attention-mask)
|
1004
|
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
1005
|
+
Indices of decoder input sequence tokens in the vocabulary.
|
1006
|
+
|
1007
|
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1008
|
+
[`PreTrainedTokenizer.__call__`] for details.
|
1009
|
+
|
1010
|
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
1011
|
+
|
1012
|
+
MBart uses a specific language id token as the starting token for `decoder_input_ids` generation that
|
1013
|
+
varies according to source and target language, *e.g.* 25004 for *en_XX*, and 25003 for *de_DE*. If
|
1014
|
+
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
1015
|
+
`past_key_values`).
|
1016
|
+
|
1017
|
+
For translation and summarization training, `decoder_input_ids` should be provided. If no
|
1018
|
+
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
|
1019
|
+
for denoising pre-training following the paper.
|
1020
|
+
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
1021
|
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
1022
|
+
be used by default.
|
1023
|
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
1024
|
+
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
1025
|
+
|
1026
|
+
- 1 indicates the head is **not masked**,
|
1027
|
+
- 0 indicates the head is **masked**.
|
1028
|
+
|
1029
|
+
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
1030
|
+
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
|
1031
|
+
|
1032
|
+
- 1 indicates the head is **not masked**,
|
1033
|
+
- 0 indicates the head is **masked**.
|
1034
|
+
|
1035
|
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
1036
|
+
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
|
1037
|
+
1]`:
|
1038
|
+
|
1039
|
+
- 1 indicates the head is **not masked**,
|
1040
|
+
- 0 indicates the head is **masked**.
|
1041
|
+
|
1042
|
+
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
1043
|
+
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
1044
|
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
1045
|
+
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
1046
|
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1047
|
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
1048
|
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
1049
|
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
1050
|
+
|
1051
|
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1052
|
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1053
|
+
|
1054
|
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1055
|
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1056
|
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1057
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1058
|
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
1059
|
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
1060
|
+
than the model's internal embedding lookup matrix.
|
1061
|
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
1062
|
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
1063
|
+
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
|
1064
|
+
input (see `past_key_values`). This is useful if you want more control over how to convert
|
1065
|
+
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
1066
|
+
|
1067
|
+
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
|
1068
|
+
of `inputs_embeds`.
|
1069
|
+
use_cache (`bool`, *optional*):
|
1070
|
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1071
|
+
`past_key_values`).
|
1072
|
+
output_attentions (`bool`, *optional*):
|
1073
|
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1074
|
+
tensors for more detail.
|
1075
|
+
output_hidden_states (`bool`, *optional*):
|
1076
|
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1077
|
+
more detail.
|
1078
|
+
return_dict (`bool`, *optional*):
|
1079
|
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1080
|
+
"""
|
1081
|
+
|
1082
|
+
|
1083
|
+
class UnimerMBartEncoder(UnimerMBartPreTrainedModel):
|
1084
|
+
"""
|
1085
|
+
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
1086
|
+
[`MBartEncoderLayer`].
|
1087
|
+
|
1088
|
+
Args:
|
1089
|
+
config: MBartConfig
|
1090
|
+
embed_tokens (nn.Embedding): output embedding
|
1091
|
+
"""
|
1092
|
+
|
1093
|
+
def __init__(self, config: UnimerMBartConfig, embed_tokens: Optional[nn.Embedding] = None):
|
1094
|
+
super().__init__(config)
|
1095
|
+
|
1096
|
+
self.dropout = config.dropout
|
1097
|
+
self.layerdrop = config.encoder_layerdrop
|
1098
|
+
|
1099
|
+
embed_dim = config.d_model
|
1100
|
+
self.padding_idx = config.pad_token_id
|
1101
|
+
self.max_source_positions = config.max_position_embeddings
|
1102
|
+
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
1103
|
+
|
1104
|
+
self.embed_tokens = UnimerMBartScaledWordEmbedding(
|
1105
|
+
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
|
1106
|
+
)
|
1107
|
+
|
1108
|
+
if embed_tokens is not None:
|
1109
|
+
self.embed_tokens.weight = embed_tokens.weight
|
1110
|
+
|
1111
|
+
self.embed_positions = UnimerMBartLearnedPositionalEmbedding(
|
1112
|
+
config.max_position_embeddings,
|
1113
|
+
embed_dim,
|
1114
|
+
)
|
1115
|
+
self.layers = nn.ModuleList([UnimerMBartEncoderLayer(config) for _ in range(config.encoder_layers)])
|
1116
|
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1117
|
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
1118
|
+
self.layernorm_embedding = nn.LayerNorm(embed_dim)
|
1119
|
+
self.layer_norm = nn.LayerNorm(config.d_model)
|
1120
|
+
|
1121
|
+
self.gradient_checkpointing = False
|
1122
|
+
# Initialize weights and apply final processing
|
1123
|
+
self.post_init()
|
1124
|
+
|
1125
|
+
def _backward_compatibility_gradient_checkpointing(self):
|
1126
|
+
# Override to not delete the attribute from the config
|
1127
|
+
if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
|
1128
|
+
self.gradient_checkpointing_enable()
|
1129
|
+
|
1130
|
+
def forward(
|
1131
|
+
self,
|
1132
|
+
input_ids: torch.LongTensor = None,
|
1133
|
+
attention_mask: Optional[torch.Tensor] = None,
|
1134
|
+
head_mask: Optional[torch.Tensor] = None,
|
1135
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1136
|
+
output_attentions: Optional[bool] = None,
|
1137
|
+
output_hidden_states: Optional[bool] = None,
|
1138
|
+
return_dict: Optional[bool] = None,
|
1139
|
+
) -> Union[Tuple, BaseModelOutput]:
|
1140
|
+
r"""
|
1141
|
+
Args:
|
1142
|
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1143
|
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
1144
|
+
provide it.
|
1145
|
+
|
1146
|
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1147
|
+
[`PreTrainedTokenizer.__call__`] for details.
|
1148
|
+
|
1149
|
+
[What are input IDs?](../glossary#input-ids)
|
1150
|
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1151
|
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1152
|
+
|
1153
|
+
- 1 for tokens that are **not masked**,
|
1154
|
+
- 0 for tokens that are **masked**.
|
1155
|
+
|
1156
|
+
[What are attention masks?](../glossary#attention-mask)
|
1157
|
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
1158
|
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
1159
|
+
|
1160
|
+
- 1 indicates the head is **not masked**,
|
1161
|
+
- 0 indicates the head is **masked**.
|
1162
|
+
|
1163
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1164
|
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
1165
|
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
1166
|
+
than the model's internal embedding lookup matrix.
|
1167
|
+
output_attentions (`bool`, *optional*):
|
1168
|
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1169
|
+
returned tensors for more detail.
|
1170
|
+
output_hidden_states (`bool`, *optional*):
|
1171
|
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
1172
|
+
for more detail.
|
1173
|
+
return_dict (`bool`, *optional*):
|
1174
|
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1175
|
+
"""
|
1176
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1177
|
+
output_hidden_states = (
|
1178
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1179
|
+
)
|
1180
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1181
|
+
|
1182
|
+
# retrieve input_ids and inputs_embeds
|
1183
|
+
if input_ids is not None and inputs_embeds is not None:
|
1184
|
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1185
|
+
elif input_ids is not None:
|
1186
|
+
input = input_ids
|
1187
|
+
input_shape = input.shape
|
1188
|
+
input_ids = input_ids.view(-1, input_shape[-1])
|
1189
|
+
elif inputs_embeds is not None:
|
1190
|
+
input = inputs_embeds[:, :, -1]
|
1191
|
+
else:
|
1192
|
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1193
|
+
|
1194
|
+
if inputs_embeds is None:
|
1195
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
1196
|
+
|
1197
|
+
embed_pos = self.embed_positions(input)
|
1198
|
+
|
1199
|
+
hidden_states = inputs_embeds + embed_pos.to(inputs_embeds.device)
|
1200
|
+
hidden_states = self.layernorm_embedding(hidden_states)
|
1201
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
1202
|
+
|
1203
|
+
# expand attention_mask
|
1204
|
+
if attention_mask is not None:
|
1205
|
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1206
|
+
if self._use_flash_attention_2:
|
1207
|
+
attention_mask = attention_mask if 0 in attention_mask else None
|
1208
|
+
elif self._use_sdpa and head_mask is None and not output_attentions:
|
1209
|
+
# output_attentions=True & head_mask can not be supported when using SDPA, fall back to
|
1210
|
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1211
|
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1212
|
+
attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype)
|
1213
|
+
else:
|
1214
|
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1215
|
+
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
|
1216
|
+
|
1217
|
+
encoder_states = () if output_hidden_states else None
|
1218
|
+
all_attentions = () if output_attentions else None
|
1219
|
+
|
1220
|
+
# check if head_mask has a correct number of layers specified if desired
|
1221
|
+
if head_mask is not None:
|
1222
|
+
if head_mask.size()[0] != len(self.layers):
|
1223
|
+
raise ValueError(
|
1224
|
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
|
1225
|
+
f" {head_mask.size()[0]}."
|
1226
|
+
)
|
1227
|
+
for idx, encoder_layer in enumerate(self.layers):
|
1228
|
+
if output_hidden_states:
|
1229
|
+
encoder_states = encoder_states + (hidden_states,)
|
1230
|
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1231
|
+
to_drop = False
|
1232
|
+
if self.training:
|
1233
|
+
dropout_probability = torch.rand([])
|
1234
|
+
if dropout_probability < self.layerdrop: # skip the layer
|
1235
|
+
to_drop = True
|
1236
|
+
|
1237
|
+
if to_drop:
|
1238
|
+
layer_outputs = (None, None)
|
1239
|
+
else:
|
1240
|
+
if self.gradient_checkpointing and self.training:
|
1241
|
+
layer_outputs = self._gradient_checkpointing_func(
|
1242
|
+
encoder_layer.__call__,
|
1243
|
+
hidden_states,
|
1244
|
+
attention_mask,
|
1245
|
+
(head_mask[idx] if head_mask is not None else None),
|
1246
|
+
output_attentions,
|
1247
|
+
)
|
1248
|
+
else:
|
1249
|
+
layer_outputs = encoder_layer(
|
1250
|
+
hidden_states,
|
1251
|
+
attention_mask,
|
1252
|
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
1253
|
+
output_attentions=output_attentions,
|
1254
|
+
)
|
1255
|
+
|
1256
|
+
hidden_states = layer_outputs[0]
|
1257
|
+
|
1258
|
+
if output_attentions:
|
1259
|
+
all_attentions = all_attentions + (layer_outputs[1],)
|
1260
|
+
|
1261
|
+
hidden_states = self.layer_norm(hidden_states)
|
1262
|
+
|
1263
|
+
if output_hidden_states:
|
1264
|
+
encoder_states = encoder_states + (hidden_states,)
|
1265
|
+
|
1266
|
+
if not return_dict:
|
1267
|
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
1268
|
+
return BaseModelOutput(
|
1269
|
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
1270
|
+
)
|
1271
|
+
|
1272
|
+
|
1273
|
+
class UnimerMBartDecoder(UnimerMBartPreTrainedModel):
|
1274
|
+
"""
|
1275
|
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MBartDecoderLayer`]
|
1276
|
+
|
1277
|
+
Args:
|
1278
|
+
config: MBartConfig
|
1279
|
+
embed_tokens (nn.Embedding): output embedding
|
1280
|
+
"""
|
1281
|
+
|
1282
|
+
def __init__(self, config: UnimerMBartConfig, embed_tokens: Optional[nn.Embedding] = None):
|
1283
|
+
super().__init__(config)
|
1284
|
+
self.dropout = config.dropout
|
1285
|
+
self.layerdrop = config.decoder_layerdrop
|
1286
|
+
self.padding_idx = config.pad_token_id
|
1287
|
+
self.max_target_positions = config.max_position_embeddings
|
1288
|
+
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
|
1289
|
+
|
1290
|
+
self.embed_tokens = UnimerMBartScaledWordEmbedding(
|
1291
|
+
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
|
1292
|
+
)
|
1293
|
+
|
1294
|
+
if embed_tokens is not None:
|
1295
|
+
self.embed_tokens.weight = embed_tokens.weight
|
1296
|
+
|
1297
|
+
self.embed_positions = UnimerMBartLearnedPositionalEmbedding(
|
1298
|
+
config.max_position_embeddings,
|
1299
|
+
config.d_model,
|
1300
|
+
)
|
1301
|
+
self.layers = nn.ModuleList([UnimerMBartDecoderLayer(config) for _ in range(config.decoder_layers)])
|
1302
|
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1303
|
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
1304
|
+
self.layernorm_embedding = nn.LayerNorm(config.d_model)
|
1305
|
+
self.layer_norm = nn.LayerNorm(config.d_model)
|
1306
|
+
|
1307
|
+
self.gradient_checkpointing = False
|
1308
|
+
# Initialize weights and apply final processing
|
1309
|
+
self.post_init()
|
1310
|
+
|
1311
|
+
def get_input_embeddings(self):
|
1312
|
+
return self.embed_tokens
|
1313
|
+
|
1314
|
+
def set_input_embeddings(self, value):
|
1315
|
+
self.embed_tokens = value
|
1316
|
+
|
1317
|
+
def forward(
|
1318
|
+
self,
|
1319
|
+
input_ids: torch.LongTensor = None,
|
1320
|
+
attention_mask: Optional[torch.Tensor] = None,
|
1321
|
+
count_pred: Optional[torch.FloatTensor] = None,
|
1322
|
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1323
|
+
encoder_attention_mask: Optional[torch.LongTensor] = None,
|
1324
|
+
head_mask: Optional[torch.Tensor] = None,
|
1325
|
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1326
|
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1327
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1328
|
+
use_cache: Optional[bool] = None,
|
1329
|
+
output_attentions: Optional[bool] = None,
|
1330
|
+
output_hidden_states: Optional[bool] = None,
|
1331
|
+
return_dict: Optional[bool] = None,
|
1332
|
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
1333
|
+
r"""
|
1334
|
+
Args:
|
1335
|
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1336
|
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
1337
|
+
provide it.
|
1338
|
+
|
1339
|
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1340
|
+
[`PreTrainedTokenizer.__call__`] for details.
|
1341
|
+
|
1342
|
+
[What are input IDs?](../glossary#input-ids)
|
1343
|
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1344
|
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1345
|
+
|
1346
|
+
- 1 for tokens that are **not masked**,
|
1347
|
+
- 0 for tokens that are **masked**.
|
1348
|
+
|
1349
|
+
[What are attention masks?](../glossary#attention-mask)
|
1350
|
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
1351
|
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
1352
|
+
of the decoder.
|
1353
|
+
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
1354
|
+
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
1355
|
+
selected in `[0, 1]`:
|
1356
|
+
|
1357
|
+
- 1 for tokens that are **not masked**,
|
1358
|
+
- 0 for tokens that are **masked**.
|
1359
|
+
|
1360
|
+
[What are attention masks?](../glossary#attention-mask)
|
1361
|
+
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
1362
|
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
1363
|
+
|
1364
|
+
- 1 indicates the head is **not masked**,
|
1365
|
+
- 0 indicates the head is **masked**.
|
1366
|
+
|
1367
|
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
1368
|
+
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
|
1369
|
+
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
|
1370
|
+
|
1371
|
+
- 1 indicates the head is **not masked**,
|
1372
|
+
- 0 indicates the head is **masked**.
|
1373
|
+
|
1374
|
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1375
|
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1376
|
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
1377
|
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
1378
|
+
|
1379
|
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
1380
|
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1381
|
+
|
1382
|
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
1383
|
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
1384
|
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1385
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1386
|
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
1387
|
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
1388
|
+
than the model's internal embedding lookup matrix.
|
1389
|
+
output_attentions (`bool`, *optional*):
|
1390
|
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1391
|
+
returned tensors for more detail.
|
1392
|
+
output_hidden_states (`bool`, *optional*):
|
1393
|
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
1394
|
+
for more detail.
|
1395
|
+
return_dict (`bool`, *optional*):
|
1396
|
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1397
|
+
"""
|
1398
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1399
|
+
output_hidden_states = (
|
1400
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1401
|
+
)
|
1402
|
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1403
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1404
|
+
|
1405
|
+
# retrieve input_ids and inputs_embeds
|
1406
|
+
if input_ids is not None and inputs_embeds is not None:
|
1407
|
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1408
|
+
elif input_ids is not None:
|
1409
|
+
input = input_ids
|
1410
|
+
input_shape = input.size()
|
1411
|
+
input_ids = input_ids.view(-1, input_shape[-1])
|
1412
|
+
elif inputs_embeds is not None:
|
1413
|
+
input_shape = inputs_embeds.size()[:-1]
|
1414
|
+
input = inputs_embeds[:, :, -1]
|
1415
|
+
else:
|
1416
|
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1417
|
+
|
1418
|
+
# past_key_values_length
|
1419
|
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1420
|
+
|
1421
|
+
if inputs_embeds is None:
|
1422
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
1423
|
+
|
1424
|
+
if self._use_flash_attention_2:
|
1425
|
+
# 2d mask is passed through the layers
|
1426
|
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1427
|
+
elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None:
|
1428
|
+
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
|
1429
|
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1430
|
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1431
|
+
attention_mask,
|
1432
|
+
input_shape,
|
1433
|
+
inputs_embeds,
|
1434
|
+
past_key_values_length,
|
1435
|
+
)
|
1436
|
+
else:
|
1437
|
+
# 4d mask is passed through the layers
|
1438
|
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1439
|
+
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
1440
|
+
)
|
1441
|
+
|
1442
|
+
# expand encoder attention mask
|
1443
|
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1444
|
+
if self._use_flash_attention_2:
|
1445
|
+
encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
|
1446
|
+
elif self._use_sdpa and cross_attn_head_mask is None and not output_attentions:
|
1447
|
+
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
|
1448
|
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1449
|
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1450
|
+
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
1451
|
+
encoder_attention_mask,
|
1452
|
+
inputs_embeds.dtype,
|
1453
|
+
tgt_len=input_shape[-1],
|
1454
|
+
)
|
1455
|
+
else:
|
1456
|
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1457
|
+
encoder_attention_mask = _prepare_4d_attention_mask(
|
1458
|
+
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
1459
|
+
)
|
1460
|
+
|
1461
|
+
# embed positions
|
1462
|
+
positions = self.embed_positions(input, past_key_values_length)
|
1463
|
+
|
1464
|
+
hidden_states = inputs_embeds + positions.to(inputs_embeds.device)
|
1465
|
+
|
1466
|
+
# TODO: add counting context weight to hidden_states
|
1467
|
+
if count_pred is not None:
|
1468
|
+
count_context_weight = self.counting_context_weight(count_pred)
|
1469
|
+
hidden_states = hidden_states + 0.5 * count_context_weight.unsqueeze(1)
|
1470
|
+
|
1471
|
+
hidden_states = self.layernorm_embedding(hidden_states)
|
1472
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
1473
|
+
|
1474
|
+
if self.gradient_checkpointing and self.training:
|
1475
|
+
if use_cache:
|
1476
|
+
logger.warning_once(
|
1477
|
+
"`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
|
1478
|
+
)
|
1479
|
+
use_cache = False
|
1480
|
+
|
1481
|
+
# decoder layers
|
1482
|
+
all_hidden_states = () if output_hidden_states else None
|
1483
|
+
all_self_attns = () if output_attentions else None
|
1484
|
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
1485
|
+
next_decoder_cache = () if use_cache else None
|
1486
|
+
|
1487
|
+
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
|
1488
|
+
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
|
1489
|
+
if attn_mask is not None:
|
1490
|
+
if attn_mask.size()[0] != len(self.layers):
|
1491
|
+
raise ValueError(
|
1492
|
+
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
1493
|
+
f" {attn_mask.size()[0]}."
|
1494
|
+
)
|
1495
|
+
for idx, decoder_layer in enumerate(self.layers):
|
1496
|
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1497
|
+
if output_hidden_states:
|
1498
|
+
all_hidden_states += (hidden_states,)
|
1499
|
+
if self.training:
|
1500
|
+
dropout_probability = torch.rand([])
|
1501
|
+
if dropout_probability < self.layerdrop:
|
1502
|
+
continue
|
1503
|
+
|
1504
|
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1505
|
+
|
1506
|
+
if self.gradient_checkpointing and self.training:
|
1507
|
+
layer_outputs = self._gradient_checkpointing_func(
|
1508
|
+
decoder_layer.__call__,
|
1509
|
+
hidden_states,
|
1510
|
+
attention_mask,
|
1511
|
+
encoder_hidden_states,
|
1512
|
+
encoder_attention_mask,
|
1513
|
+
head_mask[idx] if head_mask is not None else None,
|
1514
|
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
1515
|
+
None,
|
1516
|
+
output_attentions,
|
1517
|
+
use_cache,
|
1518
|
+
)
|
1519
|
+
else:
|
1520
|
+
layer_outputs = decoder_layer(
|
1521
|
+
hidden_states,
|
1522
|
+
attention_mask=attention_mask,
|
1523
|
+
encoder_hidden_states=encoder_hidden_states,
|
1524
|
+
encoder_attention_mask=encoder_attention_mask,
|
1525
|
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
1526
|
+
cross_attn_layer_head_mask=(
|
1527
|
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
|
1528
|
+
),
|
1529
|
+
past_key_value=past_key_value,
|
1530
|
+
output_attentions=output_attentions,
|
1531
|
+
use_cache=use_cache,
|
1532
|
+
)
|
1533
|
+
hidden_states = layer_outputs[0]
|
1534
|
+
|
1535
|
+
if use_cache:
|
1536
|
+
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
|
1537
|
+
|
1538
|
+
if output_attentions:
|
1539
|
+
all_self_attns += (layer_outputs[1],)
|
1540
|
+
|
1541
|
+
if encoder_hidden_states is not None:
|
1542
|
+
all_cross_attentions += (layer_outputs[2],)
|
1543
|
+
|
1544
|
+
hidden_states = self.layer_norm(hidden_states)
|
1545
|
+
|
1546
|
+
# add hidden states from the last decoder layer
|
1547
|
+
if output_hidden_states:
|
1548
|
+
all_hidden_states += (hidden_states,)
|
1549
|
+
|
1550
|
+
next_cache = next_decoder_cache if use_cache else None
|
1551
|
+
if not return_dict:
|
1552
|
+
return tuple(
|
1553
|
+
v
|
1554
|
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
|
1555
|
+
if v is not None
|
1556
|
+
)
|
1557
|
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1558
|
+
last_hidden_state=hidden_states,
|
1559
|
+
past_key_values=next_cache,
|
1560
|
+
hidden_states=all_hidden_states,
|
1561
|
+
attentions=all_self_attns,
|
1562
|
+
cross_attentions=all_cross_attentions,
|
1563
|
+
)
|
1564
|
+
|
1565
|
+
|
1566
|
+
@add_start_docstrings(
|
1567
|
+
"The bare MBART Model outputting raw hidden-states without any specific head on top.",
|
1568
|
+
MBART_START_DOCSTRING,
|
1569
|
+
)
|
1570
|
+
class UnimerMBartModel(UnimerMBartPreTrainedModel):
|
1571
|
+
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
|
1572
|
+
|
1573
|
+
def __init__(self, config: UnimerMBartConfig):
|
1574
|
+
super().__init__(config)
|
1575
|
+
|
1576
|
+
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
|
1577
|
+
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
|
1578
|
+
|
1579
|
+
self.encoder = UnimerMBartEncoder(config, self.shared)
|
1580
|
+
self.decoder = UnimerMBartDecoder(config, self.shared)
|
1581
|
+
|
1582
|
+
# Initialize weights and apply final processing
|
1583
|
+
self.post_init()
|
1584
|
+
|
1585
|
+
def get_input_embeddings(self):
|
1586
|
+
return self.shared
|
1587
|
+
|
1588
|
+
def set_input_embeddings(self, value):
|
1589
|
+
self.shared = value
|
1590
|
+
self.encoder.embed_tokens = self.shared
|
1591
|
+
self.decoder.embed_tokens = self.shared
|
1592
|
+
|
1593
|
+
def get_encoder(self):
|
1594
|
+
return self.encoder
|
1595
|
+
|
1596
|
+
def get_decoder(self):
|
1597
|
+
return self.decoder
|
1598
|
+
|
1599
|
+
def _tie_weights(self):
|
1600
|
+
if self.config.tie_word_embeddings:
|
1601
|
+
self._tie_or_clone_weights(self.encoder.embed_tokens, self.get_input_embeddings())
|
1602
|
+
self._tie_or_clone_weights(self.decoder.embed_tokens, self.get_input_embeddings())
|
1603
|
+
|
1604
|
+
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
|
1605
|
+
@add_code_sample_docstrings(
|
1606
|
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1607
|
+
output_type=Seq2SeqModelOutput,
|
1608
|
+
config_class=_CONFIG_FOR_DOC,
|
1609
|
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
1610
|
+
)
|
1611
|
+
def forward(
|
1612
|
+
self,
|
1613
|
+
input_ids: torch.LongTensor = None,
|
1614
|
+
attention_mask: Optional[torch.Tensor] = None,
|
1615
|
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1616
|
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1617
|
+
head_mask: Optional[torch.Tensor] = None,
|
1618
|
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
1619
|
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1620
|
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1621
|
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1622
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1623
|
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1624
|
+
use_cache: Optional[bool] = None,
|
1625
|
+
output_attentions: Optional[bool] = None,
|
1626
|
+
output_hidden_states: Optional[bool] = None,
|
1627
|
+
return_dict: Optional[bool] = None,
|
1628
|
+
) -> Union[Seq2SeqModelOutput, Tuple[torch.FloatTensor]]:
|
1629
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1630
|
+
output_hidden_states = (
|
1631
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1632
|
+
)
|
1633
|
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1634
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1635
|
+
|
1636
|
+
# different to other models, MBart automatically creates decoder_input_ids from
|
1637
|
+
# input_ids if no decoder_input_ids are provided
|
1638
|
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1639
|
+
decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id)
|
1640
|
+
|
1641
|
+
if encoder_outputs is None:
|
1642
|
+
encoder_outputs = self.encoder(
|
1643
|
+
input_ids=input_ids,
|
1644
|
+
attention_mask=attention_mask,
|
1645
|
+
head_mask=head_mask,
|
1646
|
+
inputs_embeds=inputs_embeds,
|
1647
|
+
output_attentions=output_attentions,
|
1648
|
+
output_hidden_states=output_hidden_states,
|
1649
|
+
return_dict=return_dict,
|
1650
|
+
)
|
1651
|
+
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
|
1652
|
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1653
|
+
encoder_outputs = BaseModelOutput(
|
1654
|
+
last_hidden_state=encoder_outputs[0],
|
1655
|
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1656
|
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1657
|
+
)
|
1658
|
+
|
1659
|
+
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
1660
|
+
decoder_outputs = self.decoder(
|
1661
|
+
input_ids=decoder_input_ids,
|
1662
|
+
attention_mask=decoder_attention_mask,
|
1663
|
+
encoder_hidden_states=encoder_outputs[0],
|
1664
|
+
encoder_attention_mask=attention_mask,
|
1665
|
+
head_mask=decoder_head_mask,
|
1666
|
+
cross_attn_head_mask=cross_attn_head_mask,
|
1667
|
+
past_key_values=past_key_values,
|
1668
|
+
inputs_embeds=decoder_inputs_embeds,
|
1669
|
+
use_cache=use_cache,
|
1670
|
+
output_attentions=output_attentions,
|
1671
|
+
output_hidden_states=output_hidden_states,
|
1672
|
+
return_dict=return_dict,
|
1673
|
+
)
|
1674
|
+
|
1675
|
+
if not return_dict:
|
1676
|
+
return decoder_outputs + encoder_outputs
|
1677
|
+
|
1678
|
+
return Seq2SeqModelOutput(
|
1679
|
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1680
|
+
past_key_values=decoder_outputs.past_key_values,
|
1681
|
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1682
|
+
decoder_attentions=decoder_outputs.attentions,
|
1683
|
+
cross_attentions=decoder_outputs.cross_attentions,
|
1684
|
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1685
|
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1686
|
+
encoder_attentions=encoder_outputs.attentions,
|
1687
|
+
)
|
1688
|
+
|
1689
|
+
|
1690
|
+
@add_start_docstrings(
|
1691
|
+
"The MBART Model with a language modeling head. Can be used for summarization, after fine-tuning the pretrained models.",
|
1692
|
+
MBART_START_DOCSTRING,
|
1693
|
+
)
|
1694
|
+
class UnimerMBartForConditionalGeneration(UnimerMBartPreTrainedModel, GenerationMixin):
|
1695
|
+
base_model_prefix = "model"
|
1696
|
+
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
|
1697
|
+
_tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight"]
|
1698
|
+
|
1699
|
+
def __init__(self, config: UnimerMBartConfig):
|
1700
|
+
super().__init__(config)
|
1701
|
+
self.model = UnimerMBartModel(config)
|
1702
|
+
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
|
1703
|
+
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
|
1704
|
+
|
1705
|
+
# Initialize weights and apply final processing
|
1706
|
+
self.post_init()
|
1707
|
+
|
1708
|
+
def get_encoder(self):
|
1709
|
+
return self.model.get_encoder()
|
1710
|
+
|
1711
|
+
def get_decoder(self):
|
1712
|
+
return self.model.get_decoder()
|
1713
|
+
|
1714
|
+
def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
|
1715
|
+
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
1716
|
+
self._resize_final_logits_bias(new_embeddings.weight.shape[0])
|
1717
|
+
return new_embeddings
|
1718
|
+
|
1719
|
+
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
|
1720
|
+
old_num_tokens = self.final_logits_bias.shape[-1]
|
1721
|
+
if new_num_tokens <= old_num_tokens:
|
1722
|
+
new_bias = self.final_logits_bias[:, :new_num_tokens]
|
1723
|
+
else:
|
1724
|
+
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
|
1725
|
+
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
|
1726
|
+
self.register_buffer("final_logits_bias", new_bias)
|
1727
|
+
|
1728
|
+
def get_output_embeddings(self):
|
1729
|
+
return self.lm_head
|
1730
|
+
|
1731
|
+
def set_output_embeddings(self, new_embeddings):
|
1732
|
+
self.lm_head = new_embeddings
|
1733
|
+
|
1734
|
+
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
|
1735
|
+
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
1736
|
+
@add_end_docstrings(MBART_GENERATION_EXAMPLE)
|
1737
|
+
def forward(
|
1738
|
+
self,
|
1739
|
+
input_ids: torch.LongTensor = None,
|
1740
|
+
attention_mask: Optional[torch.Tensor] = None,
|
1741
|
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1742
|
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1743
|
+
head_mask: Optional[torch.Tensor] = None,
|
1744
|
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
1745
|
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1746
|
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1747
|
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1748
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1749
|
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1750
|
+
labels: Optional[torch.LongTensor] = None,
|
1751
|
+
use_cache: Optional[bool] = None,
|
1752
|
+
output_attentions: Optional[bool] = None,
|
1753
|
+
output_hidden_states: Optional[bool] = None,
|
1754
|
+
return_dict: Optional[bool] = None,
|
1755
|
+
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
|
1756
|
+
r"""
|
1757
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1758
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1759
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1760
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1761
|
+
|
1762
|
+
Returns:
|
1763
|
+
|
1764
|
+
"""
|
1765
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1766
|
+
|
1767
|
+
if labels is not None:
|
1768
|
+
if use_cache:
|
1769
|
+
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
|
1770
|
+
use_cache = False
|
1771
|
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1772
|
+
decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id)
|
1773
|
+
|
1774
|
+
outputs = self.model(
|
1775
|
+
input_ids,
|
1776
|
+
attention_mask=attention_mask,
|
1777
|
+
decoder_input_ids=decoder_input_ids,
|
1778
|
+
encoder_outputs=encoder_outputs,
|
1779
|
+
decoder_attention_mask=decoder_attention_mask,
|
1780
|
+
head_mask=head_mask,
|
1781
|
+
decoder_head_mask=decoder_head_mask,
|
1782
|
+
cross_attn_head_mask=cross_attn_head_mask,
|
1783
|
+
past_key_values=past_key_values,
|
1784
|
+
inputs_embeds=inputs_embeds,
|
1785
|
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1786
|
+
use_cache=use_cache,
|
1787
|
+
output_attentions=output_attentions,
|
1788
|
+
output_hidden_states=output_hidden_states,
|
1789
|
+
return_dict=return_dict,
|
1790
|
+
)
|
1791
|
+
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
|
1792
|
+
|
1793
|
+
masked_lm_loss = None
|
1794
|
+
if labels is not None:
|
1795
|
+
loss_fct = CrossEntropyLoss()
|
1796
|
+
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
|
1797
|
+
|
1798
|
+
if not return_dict:
|
1799
|
+
output = (lm_logits,) + outputs[1:]
|
1800
|
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1801
|
+
|
1802
|
+
return Seq2SeqLMOutput(
|
1803
|
+
loss=masked_lm_loss,
|
1804
|
+
logits=lm_logits,
|
1805
|
+
past_key_values=outputs.past_key_values,
|
1806
|
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1807
|
+
decoder_attentions=outputs.decoder_attentions,
|
1808
|
+
cross_attentions=outputs.cross_attentions,
|
1809
|
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1810
|
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1811
|
+
encoder_attentions=outputs.encoder_attentions,
|
1812
|
+
)
|
1813
|
+
|
1814
|
+
def prepare_inputs_for_generation(
|
1815
|
+
self,
|
1816
|
+
decoder_input_ids,
|
1817
|
+
past_key_values=None,
|
1818
|
+
attention_mask=None,
|
1819
|
+
head_mask=None,
|
1820
|
+
decoder_head_mask=None,
|
1821
|
+
cross_attn_head_mask=None,
|
1822
|
+
use_cache=None,
|
1823
|
+
encoder_outputs=None,
|
1824
|
+
**kwargs,
|
1825
|
+
):
|
1826
|
+
# cut decoder_input_ids if past is used
|
1827
|
+
if past_key_values is not None:
|
1828
|
+
past_length = past_key_values[0][0].shape[2]
|
1829
|
+
|
1830
|
+
# Some generation methods already pass only the last input ID
|
1831
|
+
if decoder_input_ids.shape[1] > past_length:
|
1832
|
+
remove_prefix_length = past_length
|
1833
|
+
else:
|
1834
|
+
# Default to old behavior: keep only final ID
|
1835
|
+
remove_prefix_length = decoder_input_ids.shape[1] - 1
|
1836
|
+
|
1837
|
+
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
|
1838
|
+
|
1839
|
+
return {
|
1840
|
+
"input_ids": None, # encoder_outputs is defined. input_ids not needed
|
1841
|
+
"encoder_outputs": encoder_outputs,
|
1842
|
+
"past_key_values": past_key_values,
|
1843
|
+
"decoder_input_ids": decoder_input_ids,
|
1844
|
+
"attention_mask": attention_mask,
|
1845
|
+
"head_mask": head_mask,
|
1846
|
+
"decoder_head_mask": decoder_head_mask,
|
1847
|
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1848
|
+
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
1849
|
+
}
|
1850
|
+
|
1851
|
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
1852
|
+
return shift_tokens_right(labels, self.config.pad_token_id)
|
1853
|
+
|
1854
|
+
@staticmethod
|
1855
|
+
def _reorder_cache(past_key_values, beam_idx):
|
1856
|
+
reordered_past = ()
|
1857
|
+
for layer_past in past_key_values:
|
1858
|
+
# cached cross_attention states don't have to be reordered -> they are always the same
|
1859
|
+
reordered_past += (
|
1860
|
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
|
1861
|
+
+ layer_past[2:],
|
1862
|
+
)
|
1863
|
+
return reordered_past
|
1864
|
+
|
1865
|
+
|
1866
|
+
@add_start_docstrings(
|
1867
|
+
"""
|
1868
|
+
MBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
|
1869
|
+
tasks.
|
1870
|
+
""",
|
1871
|
+
MBART_START_DOCSTRING,
|
1872
|
+
)
|
1873
|
+
class UnimerMBartForSequenceClassification(UnimerMBartPreTrainedModel):
|
1874
|
+
_tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight"]
|
1875
|
+
|
1876
|
+
def __init__(self, config: UnimerMBartConfig, **kwargs):
|
1877
|
+
super().__init__(config, **kwargs)
|
1878
|
+
self.model = UnimerMBartModel(config)
|
1879
|
+
self.classification_head = UnimerMBartClassificationHead(
|
1880
|
+
config.d_model,
|
1881
|
+
config.d_model,
|
1882
|
+
config.num_labels,
|
1883
|
+
config.classifier_dropout,
|
1884
|
+
)
|
1885
|
+
|
1886
|
+
# Initialize weights and apply final processing
|
1887
|
+
self.post_init()
|
1888
|
+
|
1889
|
+
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
|
1890
|
+
@add_code_sample_docstrings(
|
1891
|
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1892
|
+
output_type=Seq2SeqSequenceClassifierOutput,
|
1893
|
+
config_class=_CONFIG_FOR_DOC,
|
1894
|
+
)
|
1895
|
+
# Copied from transformers.models.bart.modeling_bart.BartForSequenceClassification.forward
|
1896
|
+
def forward(
|
1897
|
+
self,
|
1898
|
+
input_ids: torch.LongTensor = None,
|
1899
|
+
attention_mask: Optional[torch.Tensor] = None,
|
1900
|
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1901
|
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1902
|
+
head_mask: Optional[torch.Tensor] = None,
|
1903
|
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
1904
|
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1905
|
+
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
|
1906
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1907
|
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1908
|
+
labels: Optional[torch.LongTensor] = None,
|
1909
|
+
use_cache: Optional[bool] = None,
|
1910
|
+
output_attentions: Optional[bool] = None,
|
1911
|
+
output_hidden_states: Optional[bool] = None,
|
1912
|
+
return_dict: Optional[bool] = None,
|
1913
|
+
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
|
1914
|
+
r"""
|
1915
|
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1916
|
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1917
|
+
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1918
|
+
"""
|
1919
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1920
|
+
if labels is not None:
|
1921
|
+
use_cache = False
|
1922
|
+
|
1923
|
+
if input_ids is None and inputs_embeds is not None:
|
1924
|
+
raise NotImplementedError(
|
1925
|
+
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
|
1926
|
+
)
|
1927
|
+
|
1928
|
+
outputs = self.model(
|
1929
|
+
input_ids,
|
1930
|
+
attention_mask=attention_mask,
|
1931
|
+
decoder_input_ids=decoder_input_ids,
|
1932
|
+
decoder_attention_mask=decoder_attention_mask,
|
1933
|
+
head_mask=head_mask,
|
1934
|
+
decoder_head_mask=decoder_head_mask,
|
1935
|
+
cross_attn_head_mask=cross_attn_head_mask,
|
1936
|
+
encoder_outputs=encoder_outputs,
|
1937
|
+
inputs_embeds=inputs_embeds,
|
1938
|
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1939
|
+
use_cache=use_cache,
|
1940
|
+
output_attentions=output_attentions,
|
1941
|
+
output_hidden_states=output_hidden_states,
|
1942
|
+
return_dict=return_dict,
|
1943
|
+
)
|
1944
|
+
hidden_states = outputs[0] # last hidden state
|
1945
|
+
|
1946
|
+
eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
|
1947
|
+
|
1948
|
+
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
|
1949
|
+
raise ValueError("All examples must have the same number of <eos> tokens.")
|
1950
|
+
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
|
1951
|
+
:, -1, :
|
1952
|
+
]
|
1953
|
+
logits = self.classification_head(sentence_representation)
|
1954
|
+
|
1955
|
+
loss = None
|
1956
|
+
if labels is not None:
|
1957
|
+
labels = labels.to(logits.device)
|
1958
|
+
if self.config.problem_type is None:
|
1959
|
+
if self.config.num_labels == 1:
|
1960
|
+
self.config.problem_type = "regression"
|
1961
|
+
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1962
|
+
self.config.problem_type = "single_label_classification"
|
1963
|
+
else:
|
1964
|
+
self.config.problem_type = "multi_label_classification"
|
1965
|
+
|
1966
|
+
if self.config.problem_type == "regression":
|
1967
|
+
loss_fct = MSELoss()
|
1968
|
+
if self.config.num_labels == 1:
|
1969
|
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1970
|
+
else:
|
1971
|
+
loss = loss_fct(logits, labels)
|
1972
|
+
elif self.config.problem_type == "single_label_classification":
|
1973
|
+
loss_fct = CrossEntropyLoss()
|
1974
|
+
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
|
1975
|
+
elif self.config.problem_type == "multi_label_classification":
|
1976
|
+
loss_fct = BCEWithLogitsLoss()
|
1977
|
+
loss = loss_fct(logits, labels)
|
1978
|
+
if not return_dict:
|
1979
|
+
output = (logits,) + outputs[1:]
|
1980
|
+
return ((loss,) + output) if loss is not None else output
|
1981
|
+
|
1982
|
+
return Seq2SeqSequenceClassifierOutput(
|
1983
|
+
loss=loss,
|
1984
|
+
logits=logits,
|
1985
|
+
past_key_values=outputs.past_key_values,
|
1986
|
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1987
|
+
decoder_attentions=outputs.decoder_attentions,
|
1988
|
+
cross_attentions=outputs.cross_attentions,
|
1989
|
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1990
|
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1991
|
+
encoder_attentions=outputs.encoder_attentions,
|
1992
|
+
)
|
1993
|
+
|
1994
|
+
|
1995
|
+
@add_start_docstrings(
|
1996
|
+
"""
|
1997
|
+
MBART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1998
|
+
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1999
|
+
""",
|
2000
|
+
MBART_START_DOCSTRING,
|
2001
|
+
)
|
2002
|
+
class UnimerMBartForQuestionAnswering(UnimerMBartPreTrainedModel):
|
2003
|
+
_tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight"]
|
2004
|
+
|
2005
|
+
def __init__(self, config):
|
2006
|
+
super().__init__(config)
|
2007
|
+
|
2008
|
+
config.num_labels = 2
|
2009
|
+
self.num_labels = config.num_labels
|
2010
|
+
|
2011
|
+
self.model = UnimerMBartModel(config)
|
2012
|
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
2013
|
+
|
2014
|
+
# Initialize weights and apply final processing
|
2015
|
+
self.post_init()
|
2016
|
+
|
2017
|
+
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
|
2018
|
+
@add_code_sample_docstrings(
|
2019
|
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
2020
|
+
output_type=Seq2SeqQuestionAnsweringModelOutput,
|
2021
|
+
config_class=_CONFIG_FOR_DOC,
|
2022
|
+
)
|
2023
|
+
# Copied from transformers.models.bart.modeling_bart.BartForQuestionAnswering.forward
|
2024
|
+
def forward(
|
2025
|
+
self,
|
2026
|
+
input_ids: torch.Tensor = None,
|
2027
|
+
attention_mask: Optional[torch.Tensor] = None,
|
2028
|
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
2029
|
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
2030
|
+
head_mask: Optional[torch.Tensor] = None,
|
2031
|
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
2032
|
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
2033
|
+
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
|
2034
|
+
start_positions: Optional[torch.LongTensor] = None,
|
2035
|
+
end_positions: Optional[torch.LongTensor] = None,
|
2036
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
2037
|
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
2038
|
+
use_cache: Optional[bool] = None,
|
2039
|
+
output_attentions: Optional[bool] = None,
|
2040
|
+
output_hidden_states: Optional[bool] = None,
|
2041
|
+
return_dict: Optional[bool] = None,
|
2042
|
+
) -> Union[Tuple, Seq2SeqQuestionAnsweringModelOutput]:
|
2043
|
+
r"""
|
2044
|
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
2045
|
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
2046
|
+
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
|
2047
|
+
are not taken into account for computing the loss.
|
2048
|
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
2049
|
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
2050
|
+
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
|
2051
|
+
are not taken into account for computing the loss.
|
2052
|
+
"""
|
2053
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
2054
|
+
if start_positions is not None and end_positions is not None:
|
2055
|
+
use_cache = False
|
2056
|
+
|
2057
|
+
outputs = self.model(
|
2058
|
+
input_ids,
|
2059
|
+
attention_mask=attention_mask,
|
2060
|
+
decoder_input_ids=decoder_input_ids,
|
2061
|
+
decoder_attention_mask=decoder_attention_mask,
|
2062
|
+
head_mask=head_mask,
|
2063
|
+
decoder_head_mask=decoder_head_mask,
|
2064
|
+
cross_attn_head_mask=cross_attn_head_mask,
|
2065
|
+
encoder_outputs=encoder_outputs,
|
2066
|
+
inputs_embeds=inputs_embeds,
|
2067
|
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
2068
|
+
use_cache=use_cache,
|
2069
|
+
output_attentions=output_attentions,
|
2070
|
+
output_hidden_states=output_hidden_states,
|
2071
|
+
return_dict=return_dict,
|
2072
|
+
)
|
2073
|
+
|
2074
|
+
sequence_output = outputs[0]
|
2075
|
+
|
2076
|
+
logits = self.qa_outputs(sequence_output)
|
2077
|
+
start_logits, end_logits = logits.split(1, dim=-1)
|
2078
|
+
start_logits = start_logits.squeeze(-1).contiguous()
|
2079
|
+
end_logits = end_logits.squeeze(-1).contiguous()
|
2080
|
+
|
2081
|
+
total_loss = None
|
2082
|
+
if start_positions is not None and end_positions is not None:
|
2083
|
+
# If we are on multi-GPU, split add a dimension
|
2084
|
+
if len(start_positions.size()) > 1:
|
2085
|
+
start_positions = start_positions.squeeze(-1)
|
2086
|
+
if len(end_positions.size()) > 1:
|
2087
|
+
end_positions = end_positions.squeeze(-1)
|
2088
|
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
2089
|
+
ignored_index = start_logits.size(1)
|
2090
|
+
start_positions = start_positions.clamp(0, ignored_index)
|
2091
|
+
end_positions = end_positions.clamp(0, ignored_index)
|
2092
|
+
|
2093
|
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
2094
|
+
start_loss = loss_fct(start_logits, start_positions)
|
2095
|
+
end_loss = loss_fct(end_logits, end_positions)
|
2096
|
+
total_loss = (start_loss + end_loss) / 2
|
2097
|
+
|
2098
|
+
if not return_dict:
|
2099
|
+
output = (
|
2100
|
+
start_logits,
|
2101
|
+
end_logits,
|
2102
|
+
) + outputs[1:]
|
2103
|
+
return ((total_loss,) + output) if total_loss is not None else output
|
2104
|
+
|
2105
|
+
return Seq2SeqQuestionAnsweringModelOutput(
|
2106
|
+
loss=total_loss,
|
2107
|
+
start_logits=start_logits,
|
2108
|
+
end_logits=end_logits,
|
2109
|
+
past_key_values=outputs.past_key_values,
|
2110
|
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
2111
|
+
decoder_attentions=outputs.decoder_attentions,
|
2112
|
+
cross_attentions=outputs.cross_attentions,
|
2113
|
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
2114
|
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
2115
|
+
encoder_attentions=outputs.encoder_attentions,
|
2116
|
+
)
|
2117
|
+
|
2118
|
+
|
2119
|
+
# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->MBart
|
2120
|
+
class UnimerMBartDecoderWrapper(UnimerMBartPreTrainedModel):
|
2121
|
+
"""
|
2122
|
+
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
|
2123
|
+
used in combination with the [`EncoderDecoderModel`] framework.
|
2124
|
+
"""
|
2125
|
+
|
2126
|
+
def __init__(self, config):
|
2127
|
+
super().__init__(config)
|
2128
|
+
self.decoder = UnimerMBartDecoder(config)
|
2129
|
+
|
2130
|
+
def forward(self, *args, **kwargs):
|
2131
|
+
return self.decoder(*args, **kwargs)
|
2132
|
+
|
2133
|
+
|
2134
|
+
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->MBart, facebook/bart-base->facebook/mbart-large-cc25
|
2135
|
+
class UnimerMBartForCausalLM(UnimerMBartPreTrainedModel, GenerationMixin):
|
2136
|
+
_tied_weights_keys = ["lm_head.weight"]
|
2137
|
+
|
2138
|
+
def __init__(self, config):
|
2139
|
+
config = copy.deepcopy(config)
|
2140
|
+
config.is_decoder = True
|
2141
|
+
config.is_encoder_decoder = False
|
2142
|
+
super().__init__(config)
|
2143
|
+
self.model = UnimerMBartDecoderWrapper(config)
|
2144
|
+
|
2145
|
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
2146
|
+
|
2147
|
+
# Initialize weights and apply final processing
|
2148
|
+
self.post_init()
|
2149
|
+
|
2150
|
+
def get_input_embeddings(self):
|
2151
|
+
return self.model.decoder.embed_tokens
|
2152
|
+
|
2153
|
+
def set_input_embeddings(self, value):
|
2154
|
+
self.model.decoder.embed_tokens = value
|
2155
|
+
|
2156
|
+
def get_output_embeddings(self):
|
2157
|
+
return self.lm_head
|
2158
|
+
|
2159
|
+
def set_output_embeddings(self, new_embeddings):
|
2160
|
+
self.lm_head = new_embeddings
|
2161
|
+
|
2162
|
+
def set_decoder(self, decoder):
|
2163
|
+
self.model.decoder = decoder
|
2164
|
+
|
2165
|
+
def get_decoder(self):
|
2166
|
+
return self.model.decoder
|
2167
|
+
|
2168
|
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentionsAndCounting, config_class=_CONFIG_FOR_DOC)
|
2169
|
+
def forward(
|
2170
|
+
self,
|
2171
|
+
input_ids: torch.LongTensor = None,
|
2172
|
+
attention_mask: Optional[torch.Tensor] = None,
|
2173
|
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
2174
|
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
2175
|
+
head_mask: Optional[torch.Tensor] = None,
|
2176
|
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
2177
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
2178
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
2179
|
+
labels: Optional[torch.LongTensor] = None,
|
2180
|
+
use_cache: Optional[bool] = None,
|
2181
|
+
output_attentions: Optional[bool] = None,
|
2182
|
+
output_hidden_states: Optional[bool] = None,
|
2183
|
+
return_dict: Optional[bool] = None,
|
2184
|
+
count_gt: Optional[torch.LongTensor] = None,
|
2185
|
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
2186
|
+
r"""
|
2187
|
+
Args:
|
2188
|
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
2189
|
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
2190
|
+
provide it.
|
2191
|
+
|
2192
|
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
2193
|
+
[`PreTrainedTokenizer.__call__`] for details.
|
2194
|
+
|
2195
|
+
[What are input IDs?](../glossary#input-ids)
|
2196
|
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
2197
|
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
2198
|
+
|
2199
|
+
- 1 for tokens that are **not masked**,
|
2200
|
+
- 0 for tokens that are **masked**.
|
2201
|
+
|
2202
|
+
[What are attention masks?](../glossary#attention-mask)
|
2203
|
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
2204
|
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
2205
|
+
if the model is configured as a decoder.
|
2206
|
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
2207
|
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
|
2208
|
+
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
2209
|
+
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
2210
|
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
2211
|
+
|
2212
|
+
- 1 indicates the head is **not masked**,
|
2213
|
+
- 0 indicates the head is **masked**.
|
2214
|
+
|
2215
|
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
2216
|
+
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
2217
|
+
|
2218
|
+
- 1 indicates the head is **not masked**,
|
2219
|
+
- 0 indicates the head is **masked**.
|
2220
|
+
|
2221
|
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
2222
|
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
2223
|
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
2224
|
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
|
2225
|
+
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
|
2226
|
+
|
2227
|
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
2228
|
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
2229
|
+
|
2230
|
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
2231
|
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
2232
|
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
2233
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
2234
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
2235
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
2236
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
2237
|
+
use_cache (`bool`, *optional*):
|
2238
|
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
2239
|
+
(see `past_key_values`).
|
2240
|
+
|
2241
|
+
- 1 for tokens that are **not masked**,
|
2242
|
+
- 0 for tokens that are **masked**.
|
2243
|
+
output_attentions (`bool`, *optional*):
|
2244
|
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
2245
|
+
returned tensors for more detail.
|
2246
|
+
output_hidden_states (`bool`, *optional*):
|
2247
|
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
2248
|
+
for more detail.
|
2249
|
+
return_dict (`bool`, *optional*):
|
2250
|
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
2251
|
+
|
2252
|
+
Returns:
|
2253
|
+
|
2254
|
+
Example:
|
2255
|
+
|
2256
|
+
```python
|
2257
|
+
>>> from transformers import AutoTokenizer, MBartForCausalLM
|
2258
|
+
|
2259
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
|
2260
|
+
>>> model = MBartForCausalLM.from_pretrained("facebook/mbart-large-cc25", add_cross_attention=False)
|
2261
|
+
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
|
2262
|
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
2263
|
+
>>> outputs = model(**inputs)
|
2264
|
+
|
2265
|
+
>>> logits = outputs.logits
|
2266
|
+
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
|
2267
|
+
>>> list(logits.shape) == expected_shape
|
2268
|
+
True
|
2269
|
+
```"""
|
2270
|
+
|
2271
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
2272
|
+
output_hidden_states = (
|
2273
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
2274
|
+
)
|
2275
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
2276
|
+
|
2277
|
+
count_pred = None
|
2278
|
+
|
2279
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
2280
|
+
outputs = self.model.decoder(
|
2281
|
+
input_ids=input_ids,
|
2282
|
+
attention_mask=attention_mask,
|
2283
|
+
count_pred=count_pred,
|
2284
|
+
encoder_hidden_states=encoder_hidden_states,
|
2285
|
+
encoder_attention_mask=encoder_attention_mask,
|
2286
|
+
head_mask=head_mask,
|
2287
|
+
cross_attn_head_mask=cross_attn_head_mask,
|
2288
|
+
past_key_values=past_key_values,
|
2289
|
+
inputs_embeds=inputs_embeds,
|
2290
|
+
use_cache=use_cache,
|
2291
|
+
output_attentions=output_attentions,
|
2292
|
+
output_hidden_states=output_hidden_states,
|
2293
|
+
return_dict=return_dict,
|
2294
|
+
)
|
2295
|
+
|
2296
|
+
logits = self.lm_head(outputs[0])
|
2297
|
+
|
2298
|
+
loss = None
|
2299
|
+
if labels is not None:
|
2300
|
+
labels = labels.to(logits.device)
|
2301
|
+
loss_fct = CrossEntropyLoss()
|
2302
|
+
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
2303
|
+
|
2304
|
+
if not return_dict:
|
2305
|
+
output = (logits,) + outputs[1:]
|
2306
|
+
return (loss,) + output if loss is not None else output
|
2307
|
+
|
2308
|
+
return CausalLMOutputWithCrossAttentionsAndCounting(
|
2309
|
+
loss=loss,
|
2310
|
+
logits=logits,
|
2311
|
+
past_key_values=outputs.past_key_values,
|
2312
|
+
hidden_states=outputs.hidden_states,
|
2313
|
+
attentions=outputs.attentions,
|
2314
|
+
cross_attentions=outputs.cross_attentions,
|
2315
|
+
counting=count_pred,
|
2316
|
+
)
|
2317
|
+
|
2318
|
+
def prepare_inputs_for_generation(
|
2319
|
+
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
|
2320
|
+
):
|
2321
|
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
2322
|
+
if attention_mask is None:
|
2323
|
+
attention_mask = input_ids.new_ones(input_ids.shape)
|
2324
|
+
|
2325
|
+
if past_key_values:
|
2326
|
+
past_length = past_key_values[0][0].shape[2]
|
2327
|
+
|
2328
|
+
# Some generation methods already pass only the last input ID
|
2329
|
+
if input_ids.shape[1] > past_length:
|
2330
|
+
remove_prefix_length = past_length
|
2331
|
+
else:
|
2332
|
+
# Default to old behavior: keep only final ID
|
2333
|
+
remove_prefix_length = input_ids.shape[1] - 1
|
2334
|
+
|
2335
|
+
input_ids = input_ids[:, remove_prefix_length:]
|
2336
|
+
# first step, decoder_cached_states are empty
|
2337
|
+
return {
|
2338
|
+
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
|
2339
|
+
"attention_mask": attention_mask,
|
2340
|
+
"past_key_values": past_key_values,
|
2341
|
+
"use_cache": use_cache,
|
2342
|
+
}
|
2343
|
+
|
2344
|
+
@staticmethod
|
2345
|
+
def _reorder_cache(past_key_values, beam_idx):
|
2346
|
+
reordered_past = ()
|
2347
|
+
for layer_past in past_key_values:
|
2348
|
+
reordered_past += (
|
2349
|
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
2350
|
+
)
|
2351
|
+
return reordered_past
|