magic-pdf 1.2.2__py3-none-any.whl → 1.3.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- magic_pdf/data/batch_build_dataset.py +156 -0
- magic_pdf/data/dataset.py +56 -25
- magic_pdf/data/utils.py +108 -9
- magic_pdf/dict2md/ocr_mkcontent.py +4 -3
- magic_pdf/libs/pdf_image_tools.py +11 -6
- magic_pdf/libs/performance_stats.py +12 -1
- magic_pdf/libs/version.py +1 -1
- magic_pdf/model/batch_analyze.py +175 -201
- magic_pdf/model/doc_analyze_by_custom_model.py +142 -92
- magic_pdf/model/pdf_extract_kit.py +5 -38
- magic_pdf/model/sub_modules/language_detection/utils.py +2 -4
- magic_pdf/model/sub_modules/language_detection/yolov11/YOLOv11.py +24 -19
- magic_pdf/model/sub_modules/layout/doclayout_yolo/DocLayoutYOLO.py +3 -1
- magic_pdf/model/sub_modules/mfd/yolov8/YOLOv8.py +3 -1
- magic_pdf/model/sub_modules/mfr/unimernet/Unimernet.py +31 -102
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/__init__.py +13 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/modeling_unimernet.py +189 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_mbart/__init__.py +8 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_mbart/configuration_unimer_mbart.py +163 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_mbart/modeling_unimer_mbart.py +2351 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_swin/__init__.py +9 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_swin/configuration_unimer_swin.py +132 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_swin/image_processing_unimer_swin.py +132 -0
- magic_pdf/model/sub_modules/mfr/unimernet/unimernet_hf/unimer_swin/modeling_unimer_swin.py +1084 -0
- magic_pdf/model/sub_modules/model_init.py +50 -37
- magic_pdf/model/sub_modules/model_utils.py +18 -12
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/__init__.py +1 -0
- magic_pdf/model/sub_modules/ocr/{paddleocr → paddleocr2pytorch}/ocr_utils.py +102 -97
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorch_paddle.py +193 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/base_ocr_v20.py +39 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/data/__init__.py +8 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/data/imaug/__init__.py +48 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/data/imaug/operators.py +418 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/architectures/__init__.py +25 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/architectures/base_model.py +105 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/__init__.py +62 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/det_mobilenet_v3.py +269 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_hgnet.py +290 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_lcnetv3.py +516 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_mobilenet_v3.py +136 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_mv1_enhance.py +234 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_svtrnet.py +638 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/common.py +76 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/heads/__init__.py +43 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/heads/cls_head.py +23 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/heads/det_db_head.py +109 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/heads/rec_ctc_head.py +54 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/heads/rec_multi_head.py +58 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/necks/__init__.py +29 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/necks/db_fpn.py +456 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/necks/intracl.py +117 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/necks/rnn.py +228 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/postprocess/__init__.py +33 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/postprocess/cls_postprocess.py +20 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/postprocess/db_postprocess.py +179 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/postprocess/rec_postprocess.py +690 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/__init__.py +0 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/arch_config.yaml +383 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/arabic_dict.txt +162 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/chinese_cht_dict.txt +8421 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/cyrillic_dict.txt +163 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/devanagari_dict.txt +167 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/en_dict.txt +95 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/japan_dict.txt +4399 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/ka_dict.txt +153 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/korean_dict.txt +3688 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/latin_dict.txt +185 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/ppocr_keys_v1.txt +6623 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/ta_dict.txt +128 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/dict/te_dict.txt +151 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/utils/resources/models_config.yml +49 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/__init__.py +1 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/__init__.py +1 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/predict_cls.py +106 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/predict_det.py +217 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/predict_rec.py +440 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/predict_system.py +104 -0
- magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/tools/infer/pytorchocr_utility.py +227 -0
- magic_pdf/model/sub_modules/table/rapidtable/rapid_table.py +15 -19
- magic_pdf/pdf_parse_union_core_v2.py +112 -74
- magic_pdf/pre_proc/ocr_dict_merge.py +9 -1
- magic_pdf/pre_proc/ocr_span_list_modify.py +51 -0
- magic_pdf/resources/model_config/model_configs.yaml +1 -1
- magic_pdf/resources/slanet_plus/slanet-plus.onnx +0 -0
- magic_pdf/tools/cli.py +30 -12
- magic_pdf/tools/common.py +90 -12
- {magic_pdf-1.2.2.dist-info → magic_pdf-1.3.1.dist-info}/METADATA +92 -59
- magic_pdf-1.3.1.dist-info/RECORD +203 -0
- {magic_pdf-1.2.2.dist-info → magic_pdf-1.3.1.dist-info}/WHEEL +1 -1
- magic_pdf/model/sub_modules/ocr/paddleocr/ppocr_273_mod.py +0 -204
- magic_pdf/model/sub_modules/ocr/paddleocr/ppocr_291_mod.py +0 -213
- magic_pdf/model/sub_modules/table/structeqtable/struct_eqtable.py +0 -37
- magic_pdf/model/sub_modules/table/tablemaster/tablemaster_paddle.py +0 -71
- magic_pdf/resources/model_config/UniMERNet/demo.yaml +0 -46
- magic_pdf/resources/model_config/layoutlmv3/layoutlmv3_base_inference.yaml +0 -351
- magic_pdf-1.2.2.dist-info/RECORD +0 -147
- /magic_pdf/model/sub_modules/{ocr/paddleocr/__init__.py → mfr/unimernet/unimernet_hf/unimer_mbart/tokenization_unimer_mbart.py} +0 -0
- /magic_pdf/model/sub_modules/{table/structeqtable → ocr/paddleocr2pytorch/pytorchocr}/__init__.py +0 -0
- /magic_pdf/model/sub_modules/{table/tablemaster → ocr/paddleocr2pytorch/pytorchocr/modeling}/__init__.py +0 -0
- {magic_pdf-1.2.2.dist-info → magic_pdf-1.3.1.dist-info}/LICENSE.md +0 -0
- {magic_pdf-1.2.2.dist-info → magic_pdf-1.3.1.dist-info}/entry_points.txt +0 -0
- {magic_pdf-1.2.2.dist-info → magic_pdf-1.3.1.dist-info}/top_level.txt +0 -0
magic_pdf/model/sub_modules/ocr/paddleocr2pytorch/pytorchocr/modeling/backbones/rec_svtrnet.py
ADDED
@@ -0,0 +1,638 @@
|
|
1
|
+
import numpy as np
|
2
|
+
import torch
|
3
|
+
from torch import nn
|
4
|
+
|
5
|
+
from ..common import Activation
|
6
|
+
|
7
|
+
|
8
|
+
def drop_path(x, drop_prob=0.0, training=False):
|
9
|
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
10
|
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
11
|
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
|
12
|
+
"""
|
13
|
+
if drop_prob == 0.0 or not training:
|
14
|
+
return x
|
15
|
+
keep_prob = torch.as_tensor(1 - drop_prob)
|
16
|
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
17
|
+
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype)
|
18
|
+
random_tensor = torch.floor(random_tensor) # binarize
|
19
|
+
output = x.divide(keep_prob) * random_tensor
|
20
|
+
return output
|
21
|
+
|
22
|
+
|
23
|
+
class ConvBNLayer(nn.Module):
|
24
|
+
def __init__(
|
25
|
+
self,
|
26
|
+
in_channels,
|
27
|
+
out_channels,
|
28
|
+
kernel_size=3,
|
29
|
+
stride=1,
|
30
|
+
padding=0,
|
31
|
+
bias_attr=False,
|
32
|
+
groups=1,
|
33
|
+
act="gelu",
|
34
|
+
):
|
35
|
+
super().__init__()
|
36
|
+
self.conv = nn.Conv2d(
|
37
|
+
in_channels=in_channels,
|
38
|
+
out_channels=out_channels,
|
39
|
+
kernel_size=kernel_size,
|
40
|
+
stride=stride,
|
41
|
+
padding=padding,
|
42
|
+
groups=groups,
|
43
|
+
bias=bias_attr,
|
44
|
+
)
|
45
|
+
self.norm = nn.BatchNorm2d(out_channels)
|
46
|
+
self.act = Activation(act_type=act, inplace=True)
|
47
|
+
|
48
|
+
def forward(self, inputs):
|
49
|
+
out = self.conv(inputs)
|
50
|
+
out = self.norm(out)
|
51
|
+
out = self.act(out)
|
52
|
+
return out
|
53
|
+
|
54
|
+
|
55
|
+
class DropPath(nn.Module):
|
56
|
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
57
|
+
|
58
|
+
def __init__(self, drop_prob=None):
|
59
|
+
super(DropPath, self).__init__()
|
60
|
+
self.drop_prob = drop_prob
|
61
|
+
|
62
|
+
def forward(self, x):
|
63
|
+
return drop_path(x, self.drop_prob, self.training)
|
64
|
+
|
65
|
+
|
66
|
+
class Identity(nn.Module):
|
67
|
+
def __init__(self):
|
68
|
+
super(Identity, self).__init__()
|
69
|
+
|
70
|
+
def forward(self, input):
|
71
|
+
return input
|
72
|
+
|
73
|
+
|
74
|
+
class Mlp(nn.Module):
|
75
|
+
def __init__(
|
76
|
+
self,
|
77
|
+
in_features,
|
78
|
+
hidden_features=None,
|
79
|
+
out_features=None,
|
80
|
+
act_layer="gelu",
|
81
|
+
drop=0.0,
|
82
|
+
):
|
83
|
+
super().__init__()
|
84
|
+
out_features = out_features or in_features
|
85
|
+
hidden_features = hidden_features or in_features
|
86
|
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
87
|
+
self.act = Activation(act_type=act_layer, inplace=True)
|
88
|
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
89
|
+
self.drop = nn.Dropout(drop)
|
90
|
+
|
91
|
+
def forward(self, x):
|
92
|
+
x = self.fc1(x)
|
93
|
+
x = self.act(x)
|
94
|
+
x = self.drop(x)
|
95
|
+
x = self.fc2(x)
|
96
|
+
x = self.drop(x)
|
97
|
+
return x
|
98
|
+
|
99
|
+
|
100
|
+
class ConvMixer(nn.Module):
|
101
|
+
def __init__(
|
102
|
+
self,
|
103
|
+
dim,
|
104
|
+
num_heads=8,
|
105
|
+
HW=[8, 25],
|
106
|
+
local_k=[3, 3],
|
107
|
+
):
|
108
|
+
super().__init__()
|
109
|
+
self.HW = HW
|
110
|
+
self.dim = dim
|
111
|
+
self.local_mixer = nn.Conv2d(
|
112
|
+
dim,
|
113
|
+
dim,
|
114
|
+
local_k,
|
115
|
+
1,
|
116
|
+
[local_k[0] // 2, local_k[1] // 2],
|
117
|
+
groups=num_heads,
|
118
|
+
)
|
119
|
+
|
120
|
+
def forward(self, x):
|
121
|
+
h = self.HW[0]
|
122
|
+
w = self.HW[1]
|
123
|
+
x = x.transpose([0, 2, 1]).reshape([0, self.dim, h, w])
|
124
|
+
x = self.local_mixer(x)
|
125
|
+
x = x.flatten(2).permute(0, 2, 1)
|
126
|
+
return x
|
127
|
+
|
128
|
+
|
129
|
+
class Attention(nn.Module):
|
130
|
+
def __init__(
|
131
|
+
self,
|
132
|
+
dim,
|
133
|
+
num_heads=8,
|
134
|
+
mixer="Global",
|
135
|
+
HW=[8, 25],
|
136
|
+
local_k=[7, 11],
|
137
|
+
qkv_bias=False,
|
138
|
+
qk_scale=None,
|
139
|
+
attn_drop=0.0,
|
140
|
+
proj_drop=0.0,
|
141
|
+
):
|
142
|
+
super().__init__()
|
143
|
+
self.num_heads = num_heads
|
144
|
+
head_dim = dim // num_heads
|
145
|
+
self.scale = qk_scale or head_dim**-0.5
|
146
|
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
147
|
+
self.attn_drop = nn.Dropout(attn_drop)
|
148
|
+
self.proj = nn.Linear(dim, dim)
|
149
|
+
self.proj_drop = nn.Dropout(proj_drop)
|
150
|
+
self.HW = HW
|
151
|
+
if HW is not None:
|
152
|
+
H = HW[0]
|
153
|
+
W = HW[1]
|
154
|
+
self.N = H * W
|
155
|
+
self.C = dim
|
156
|
+
if mixer == "Local" and HW is not None:
|
157
|
+
hk = local_k[0]
|
158
|
+
wk = local_k[1]
|
159
|
+
mask = torch.ones(H * W, H + hk - 1, W + wk - 1, dtype=torch.float32)
|
160
|
+
for h in range(0, H):
|
161
|
+
for w in range(0, W):
|
162
|
+
mask[h * W + w, h : h + hk, w : w + wk] = 0.0
|
163
|
+
mask_paddle = mask[:, hk // 2 : H + hk // 2, wk // 2 : W + wk // 2].flatten(
|
164
|
+
1
|
165
|
+
)
|
166
|
+
mask_inf = torch.full(
|
167
|
+
[H * W, H * W], fill_value=float("-Inf"), dtype=torch.float32
|
168
|
+
)
|
169
|
+
mask = torch.where(mask_paddle < 1, mask_paddle, mask_inf)
|
170
|
+
self.mask = mask.unsqueeze(0).unsqueeze(1)
|
171
|
+
# self.mask = mask[None, None, :]
|
172
|
+
self.mixer = mixer
|
173
|
+
|
174
|
+
def forward(self, x):
|
175
|
+
if self.HW is not None:
|
176
|
+
N = self.N
|
177
|
+
C = self.C
|
178
|
+
else:
|
179
|
+
_, N, C = x.shape
|
180
|
+
qkv = self.qkv(x)
|
181
|
+
qkv = qkv.reshape((-1, N, 3, self.num_heads, C // self.num_heads)).permute(
|
182
|
+
2, 0, 3, 1, 4
|
183
|
+
)
|
184
|
+
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
|
185
|
+
|
186
|
+
attn = q.matmul(k.permute(0, 1, 3, 2))
|
187
|
+
if self.mixer == "Local":
|
188
|
+
attn += self.mask
|
189
|
+
attn = nn.functional.softmax(attn, dim=-1)
|
190
|
+
attn = self.attn_drop(attn)
|
191
|
+
|
192
|
+
x = (attn.matmul(v)).permute(0, 2, 1, 3).reshape((-1, N, C))
|
193
|
+
x = self.proj(x)
|
194
|
+
x = self.proj_drop(x)
|
195
|
+
return x
|
196
|
+
|
197
|
+
|
198
|
+
class Block(nn.Module):
|
199
|
+
def __init__(
|
200
|
+
self,
|
201
|
+
dim,
|
202
|
+
num_heads,
|
203
|
+
mixer="Global",
|
204
|
+
local_mixer=[7, 11],
|
205
|
+
HW=None,
|
206
|
+
mlp_ratio=4.0,
|
207
|
+
qkv_bias=False,
|
208
|
+
qk_scale=None,
|
209
|
+
drop=0.0,
|
210
|
+
attn_drop=0.0,
|
211
|
+
drop_path=0.0,
|
212
|
+
act_layer="gelu",
|
213
|
+
norm_layer="nn.LayerNorm",
|
214
|
+
epsilon=1e-6,
|
215
|
+
prenorm=True,
|
216
|
+
):
|
217
|
+
super().__init__()
|
218
|
+
if isinstance(norm_layer, str):
|
219
|
+
self.norm1 = eval(norm_layer)(dim, eps=epsilon)
|
220
|
+
else:
|
221
|
+
self.norm1 = norm_layer(dim)
|
222
|
+
if mixer == "Global" or mixer == "Local":
|
223
|
+
self.mixer = Attention(
|
224
|
+
dim,
|
225
|
+
num_heads=num_heads,
|
226
|
+
mixer=mixer,
|
227
|
+
HW=HW,
|
228
|
+
local_k=local_mixer,
|
229
|
+
qkv_bias=qkv_bias,
|
230
|
+
qk_scale=qk_scale,
|
231
|
+
attn_drop=attn_drop,
|
232
|
+
proj_drop=drop,
|
233
|
+
)
|
234
|
+
elif mixer == "Conv":
|
235
|
+
self.mixer = ConvMixer(dim, num_heads=num_heads, HW=HW, local_k=local_mixer)
|
236
|
+
else:
|
237
|
+
raise TypeError("The mixer must be one of [Global, Local, Conv]")
|
238
|
+
|
239
|
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
|
240
|
+
if isinstance(norm_layer, str):
|
241
|
+
self.norm2 = eval(norm_layer)(dim, eps=epsilon)
|
242
|
+
else:
|
243
|
+
self.norm2 = norm_layer(dim)
|
244
|
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
245
|
+
self.mlp_ratio = mlp_ratio
|
246
|
+
self.mlp = Mlp(
|
247
|
+
in_features=dim,
|
248
|
+
hidden_features=mlp_hidden_dim,
|
249
|
+
act_layer=act_layer,
|
250
|
+
drop=drop,
|
251
|
+
)
|
252
|
+
self.prenorm = prenorm
|
253
|
+
|
254
|
+
def forward(self, x):
|
255
|
+
if self.prenorm:
|
256
|
+
x = self.norm1(x + self.drop_path(self.mixer(x)))
|
257
|
+
x = self.norm2(x + self.drop_path(self.mlp(x)))
|
258
|
+
else:
|
259
|
+
x = x + self.drop_path(self.mixer(self.norm1(x)))
|
260
|
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
261
|
+
return x
|
262
|
+
|
263
|
+
|
264
|
+
class PatchEmbed(nn.Module):
|
265
|
+
"""Image to Patch Embedding"""
|
266
|
+
|
267
|
+
def __init__(
|
268
|
+
self,
|
269
|
+
img_size=[32, 100],
|
270
|
+
in_channels=3,
|
271
|
+
embed_dim=768,
|
272
|
+
sub_num=2,
|
273
|
+
patch_size=[4, 4],
|
274
|
+
mode="pope",
|
275
|
+
):
|
276
|
+
super().__init__()
|
277
|
+
num_patches = (img_size[1] // (2**sub_num)) * (img_size[0] // (2**sub_num))
|
278
|
+
self.img_size = img_size
|
279
|
+
self.num_patches = num_patches
|
280
|
+
self.embed_dim = embed_dim
|
281
|
+
self.norm = None
|
282
|
+
if mode == "pope":
|
283
|
+
if sub_num == 2:
|
284
|
+
self.proj = nn.Sequential(
|
285
|
+
ConvBNLayer(
|
286
|
+
in_channels=in_channels,
|
287
|
+
out_channels=embed_dim // 2,
|
288
|
+
kernel_size=3,
|
289
|
+
stride=2,
|
290
|
+
padding=1,
|
291
|
+
act="gelu",
|
292
|
+
bias_attr=True,
|
293
|
+
),
|
294
|
+
ConvBNLayer(
|
295
|
+
in_channels=embed_dim // 2,
|
296
|
+
out_channels=embed_dim,
|
297
|
+
kernel_size=3,
|
298
|
+
stride=2,
|
299
|
+
padding=1,
|
300
|
+
act="gelu",
|
301
|
+
bias_attr=True,
|
302
|
+
),
|
303
|
+
)
|
304
|
+
if sub_num == 3:
|
305
|
+
self.proj = nn.Sequential(
|
306
|
+
ConvBNLayer(
|
307
|
+
in_channels=in_channels,
|
308
|
+
out_channels=embed_dim // 4,
|
309
|
+
kernel_size=3,
|
310
|
+
stride=2,
|
311
|
+
padding=1,
|
312
|
+
act="gelu",
|
313
|
+
bias_attr=True,
|
314
|
+
),
|
315
|
+
ConvBNLayer(
|
316
|
+
in_channels=embed_dim // 4,
|
317
|
+
out_channels=embed_dim // 2,
|
318
|
+
kernel_size=3,
|
319
|
+
stride=2,
|
320
|
+
padding=1,
|
321
|
+
act="gelu",
|
322
|
+
bias_attr=True,
|
323
|
+
),
|
324
|
+
ConvBNLayer(
|
325
|
+
in_channels=embed_dim // 2,
|
326
|
+
out_channels=embed_dim,
|
327
|
+
kernel_size=3,
|
328
|
+
stride=2,
|
329
|
+
padding=1,
|
330
|
+
act="gelu",
|
331
|
+
bias_attr=True,
|
332
|
+
),
|
333
|
+
)
|
334
|
+
elif mode == "linear":
|
335
|
+
self.proj = nn.Conv2d(
|
336
|
+
1, embed_dim, kernel_size=patch_size, stride=patch_size
|
337
|
+
)
|
338
|
+
self.num_patches = (
|
339
|
+
img_size[0] // patch_size[0] * img_size[1] // patch_size[1]
|
340
|
+
)
|
341
|
+
|
342
|
+
def forward(self, x):
|
343
|
+
B, C, H, W = x.shape
|
344
|
+
assert (
|
345
|
+
H == self.img_size[0] and W == self.img_size[1]
|
346
|
+
), "Input image size ({}*{}) doesn't match model ({}*{}).".format(
|
347
|
+
H, W, self.img_size[0], self.img_size[1]
|
348
|
+
)
|
349
|
+
x = self.proj(x).flatten(2).permute(0, 2, 1)
|
350
|
+
return x
|
351
|
+
|
352
|
+
|
353
|
+
class SubSample(nn.Module):
|
354
|
+
def __init__(
|
355
|
+
self,
|
356
|
+
in_channels,
|
357
|
+
out_channels,
|
358
|
+
types="Pool",
|
359
|
+
stride=[2, 1],
|
360
|
+
sub_norm="nn.LayerNorm",
|
361
|
+
act=None,
|
362
|
+
):
|
363
|
+
super().__init__()
|
364
|
+
self.types = types
|
365
|
+
if types == "Pool":
|
366
|
+
self.avgpool = nn.AvgPool2d(
|
367
|
+
kernel_size=[3, 5], stride=stride, padding=[1, 2]
|
368
|
+
)
|
369
|
+
self.maxpool = nn.MaxPool2d(
|
370
|
+
kernel_size=[3, 5], stride=stride, padding=[1, 2]
|
371
|
+
)
|
372
|
+
self.proj = nn.Linear(in_channels, out_channels)
|
373
|
+
else:
|
374
|
+
self.conv = nn.Conv2d(
|
375
|
+
in_channels,
|
376
|
+
out_channels,
|
377
|
+
kernel_size=3,
|
378
|
+
stride=stride,
|
379
|
+
padding=1,
|
380
|
+
)
|
381
|
+
self.norm = eval(sub_norm)(out_channels)
|
382
|
+
if act is not None:
|
383
|
+
self.act = act()
|
384
|
+
else:
|
385
|
+
self.act = None
|
386
|
+
|
387
|
+
def forward(self, x):
|
388
|
+
if self.types == "Pool":
|
389
|
+
x1 = self.avgpool(x)
|
390
|
+
x2 = self.maxpool(x)
|
391
|
+
x = (x1 + x2) * 0.5
|
392
|
+
out = self.proj(x.flatten(2).permute(0, 2, 1))
|
393
|
+
else:
|
394
|
+
x = self.conv(x)
|
395
|
+
out = x.flatten(2).permute(0, 2, 1)
|
396
|
+
out = self.norm(out)
|
397
|
+
if self.act is not None:
|
398
|
+
out = self.act(out)
|
399
|
+
|
400
|
+
return out
|
401
|
+
|
402
|
+
|
403
|
+
class SVTRNet(nn.Module):
|
404
|
+
def __init__(
|
405
|
+
self,
|
406
|
+
img_size=[32, 100],
|
407
|
+
in_channels=3,
|
408
|
+
embed_dim=[64, 128, 256],
|
409
|
+
depth=[3, 6, 3],
|
410
|
+
num_heads=[2, 4, 8],
|
411
|
+
mixer=["Local"] * 6 + ["Global"] * 6, # Local atten, Global atten, Conv
|
412
|
+
local_mixer=[[7, 11], [7, 11], [7, 11]],
|
413
|
+
patch_merging="Conv", # Conv, Pool, None
|
414
|
+
mlp_ratio=4,
|
415
|
+
qkv_bias=True,
|
416
|
+
qk_scale=None,
|
417
|
+
drop_rate=0.0,
|
418
|
+
last_drop=0.0,
|
419
|
+
attn_drop_rate=0.0,
|
420
|
+
drop_path_rate=0.1,
|
421
|
+
norm_layer="nn.LayerNorm",
|
422
|
+
sub_norm="nn.LayerNorm",
|
423
|
+
epsilon=1e-6,
|
424
|
+
out_channels=192,
|
425
|
+
out_char_num=25,
|
426
|
+
block_unit="Block",
|
427
|
+
act="gelu",
|
428
|
+
last_stage=True,
|
429
|
+
sub_num=2,
|
430
|
+
prenorm=True,
|
431
|
+
use_lenhead=False,
|
432
|
+
**kwargs
|
433
|
+
):
|
434
|
+
super().__init__()
|
435
|
+
self.img_size = img_size
|
436
|
+
self.embed_dim = embed_dim
|
437
|
+
self.out_channels = out_channels
|
438
|
+
self.prenorm = prenorm
|
439
|
+
patch_merging = (
|
440
|
+
None
|
441
|
+
if patch_merging != "Conv" and patch_merging != "Pool"
|
442
|
+
else patch_merging
|
443
|
+
)
|
444
|
+
self.patch_embed = PatchEmbed(
|
445
|
+
img_size=img_size,
|
446
|
+
in_channels=in_channels,
|
447
|
+
embed_dim=embed_dim[0],
|
448
|
+
sub_num=sub_num,
|
449
|
+
)
|
450
|
+
num_patches = self.patch_embed.num_patches
|
451
|
+
self.HW = [img_size[0] // (2**sub_num), img_size[1] // (2**sub_num)]
|
452
|
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim[0]))
|
453
|
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
454
|
+
Block_unit = eval(block_unit)
|
455
|
+
|
456
|
+
dpr = np.linspace(0, drop_path_rate, sum(depth))
|
457
|
+
self.blocks1 = nn.ModuleList(
|
458
|
+
[
|
459
|
+
Block_unit(
|
460
|
+
dim=embed_dim[0],
|
461
|
+
num_heads=num_heads[0],
|
462
|
+
mixer=mixer[0 : depth[0]][i],
|
463
|
+
HW=self.HW,
|
464
|
+
local_mixer=local_mixer[0],
|
465
|
+
mlp_ratio=mlp_ratio,
|
466
|
+
qkv_bias=qkv_bias,
|
467
|
+
qk_scale=qk_scale,
|
468
|
+
drop=drop_rate,
|
469
|
+
act_layer=act,
|
470
|
+
attn_drop=attn_drop_rate,
|
471
|
+
drop_path=dpr[0 : depth[0]][i],
|
472
|
+
norm_layer=norm_layer,
|
473
|
+
epsilon=epsilon,
|
474
|
+
prenorm=prenorm,
|
475
|
+
)
|
476
|
+
for i in range(depth[0])
|
477
|
+
]
|
478
|
+
)
|
479
|
+
if patch_merging is not None:
|
480
|
+
self.sub_sample1 = SubSample(
|
481
|
+
embed_dim[0],
|
482
|
+
embed_dim[1],
|
483
|
+
sub_norm=sub_norm,
|
484
|
+
stride=[2, 1],
|
485
|
+
types=patch_merging,
|
486
|
+
)
|
487
|
+
HW = [self.HW[0] // 2, self.HW[1]]
|
488
|
+
else:
|
489
|
+
HW = self.HW
|
490
|
+
self.patch_merging = patch_merging
|
491
|
+
self.blocks2 = nn.ModuleList(
|
492
|
+
[
|
493
|
+
Block_unit(
|
494
|
+
dim=embed_dim[1],
|
495
|
+
num_heads=num_heads[1],
|
496
|
+
mixer=mixer[depth[0] : depth[0] + depth[1]][i],
|
497
|
+
HW=HW,
|
498
|
+
local_mixer=local_mixer[1],
|
499
|
+
mlp_ratio=mlp_ratio,
|
500
|
+
qkv_bias=qkv_bias,
|
501
|
+
qk_scale=qk_scale,
|
502
|
+
drop=drop_rate,
|
503
|
+
act_layer=act,
|
504
|
+
attn_drop=attn_drop_rate,
|
505
|
+
drop_path=dpr[depth[0] : depth[0] + depth[1]][i],
|
506
|
+
norm_layer=norm_layer,
|
507
|
+
epsilon=epsilon,
|
508
|
+
prenorm=prenorm,
|
509
|
+
)
|
510
|
+
for i in range(depth[1])
|
511
|
+
]
|
512
|
+
)
|
513
|
+
if patch_merging is not None:
|
514
|
+
self.sub_sample2 = SubSample(
|
515
|
+
embed_dim[1],
|
516
|
+
embed_dim[2],
|
517
|
+
sub_norm=sub_norm,
|
518
|
+
stride=[2, 1],
|
519
|
+
types=patch_merging,
|
520
|
+
)
|
521
|
+
HW = [self.HW[0] // 4, self.HW[1]]
|
522
|
+
else:
|
523
|
+
HW = self.HW
|
524
|
+
self.blocks3 = nn.ModuleList(
|
525
|
+
[
|
526
|
+
Block_unit(
|
527
|
+
dim=embed_dim[2],
|
528
|
+
num_heads=num_heads[2],
|
529
|
+
mixer=mixer[depth[0] + depth[1] :][i],
|
530
|
+
HW=HW,
|
531
|
+
local_mixer=local_mixer[2],
|
532
|
+
mlp_ratio=mlp_ratio,
|
533
|
+
qkv_bias=qkv_bias,
|
534
|
+
qk_scale=qk_scale,
|
535
|
+
drop=drop_rate,
|
536
|
+
act_layer=act,
|
537
|
+
attn_drop=attn_drop_rate,
|
538
|
+
drop_path=dpr[depth[0] + depth[1] :][i],
|
539
|
+
norm_layer=norm_layer,
|
540
|
+
epsilon=epsilon,
|
541
|
+
prenorm=prenorm,
|
542
|
+
)
|
543
|
+
for i in range(depth[2])
|
544
|
+
]
|
545
|
+
)
|
546
|
+
self.last_stage = last_stage
|
547
|
+
if last_stage:
|
548
|
+
self.avg_pool = nn.AdaptiveAvgPool2d([1, out_char_num])
|
549
|
+
self.last_conv = nn.Conv2d(
|
550
|
+
in_channels=embed_dim[2],
|
551
|
+
out_channels=self.out_channels,
|
552
|
+
kernel_size=1,
|
553
|
+
stride=1,
|
554
|
+
padding=0,
|
555
|
+
bias=False,
|
556
|
+
)
|
557
|
+
self.hardswish = Activation("hard_swish", inplace=True) # nn.Hardswish()
|
558
|
+
# self.dropout = nn.Dropout(p=last_drop, mode="downscale_in_infer")
|
559
|
+
self.dropout = nn.Dropout(p=last_drop)
|
560
|
+
if not prenorm:
|
561
|
+
self.norm = eval(norm_layer)(embed_dim[-1], eps=epsilon)
|
562
|
+
self.use_lenhead = use_lenhead
|
563
|
+
if use_lenhead:
|
564
|
+
self.len_conv = nn.Linear(embed_dim[2], self.out_channels)
|
565
|
+
self.hardswish_len = Activation(
|
566
|
+
"hard_swish", inplace=True
|
567
|
+
) # nn.Hardswish()
|
568
|
+
self.dropout_len = nn.Dropout(p=last_drop)
|
569
|
+
|
570
|
+
torch.nn.init.xavier_normal_(self.pos_embed)
|
571
|
+
self.apply(self._init_weights)
|
572
|
+
|
573
|
+
def _init_weights(self, m):
|
574
|
+
# weight initialization
|
575
|
+
if isinstance(m, nn.Conv2d):
|
576
|
+
nn.init.kaiming_normal_(m.weight, mode="fan_out")
|
577
|
+
if m.bias is not None:
|
578
|
+
nn.init.zeros_(m.bias)
|
579
|
+
elif isinstance(m, nn.BatchNorm2d):
|
580
|
+
nn.init.ones_(m.weight)
|
581
|
+
nn.init.zeros_(m.bias)
|
582
|
+
elif isinstance(m, nn.Linear):
|
583
|
+
nn.init.normal_(m.weight, 0, 0.01)
|
584
|
+
if m.bias is not None:
|
585
|
+
nn.init.zeros_(m.bias)
|
586
|
+
elif isinstance(m, nn.ConvTranspose2d):
|
587
|
+
nn.init.kaiming_normal_(m.weight, mode="fan_out")
|
588
|
+
if m.bias is not None:
|
589
|
+
nn.init.zeros_(m.bias)
|
590
|
+
elif isinstance(m, nn.LayerNorm):
|
591
|
+
nn.init.ones_(m.weight)
|
592
|
+
nn.init.zeros_(m.bias)
|
593
|
+
|
594
|
+
def forward_features(self, x):
|
595
|
+
x = self.patch_embed(x)
|
596
|
+
x = x + self.pos_embed
|
597
|
+
x = self.pos_drop(x)
|
598
|
+
for blk in self.blocks1:
|
599
|
+
x = blk(x)
|
600
|
+
if self.patch_merging is not None:
|
601
|
+
x = self.sub_sample1(
|
602
|
+
x.permute(0, 2, 1).reshape(
|
603
|
+
[-1, self.embed_dim[0], self.HW[0], self.HW[1]]
|
604
|
+
)
|
605
|
+
)
|
606
|
+
for blk in self.blocks2:
|
607
|
+
x = blk(x)
|
608
|
+
if self.patch_merging is not None:
|
609
|
+
x = self.sub_sample2(
|
610
|
+
x.permute(0, 2, 1).reshape(
|
611
|
+
[-1, self.embed_dim[1], self.HW[0] // 2, self.HW[1]]
|
612
|
+
)
|
613
|
+
)
|
614
|
+
for blk in self.blocks3:
|
615
|
+
x = blk(x)
|
616
|
+
if not self.prenorm:
|
617
|
+
x = self.norm(x)
|
618
|
+
return x
|
619
|
+
|
620
|
+
def forward(self, x):
|
621
|
+
x = self.forward_features(x)
|
622
|
+
if self.use_lenhead:
|
623
|
+
len_x = self.len_conv(x.mean(1))
|
624
|
+
len_x = self.dropout_len(self.hardswish_len(len_x))
|
625
|
+
if self.last_stage:
|
626
|
+
if self.patch_merging is not None:
|
627
|
+
h = self.HW[0] // 4
|
628
|
+
else:
|
629
|
+
h = self.HW[0]
|
630
|
+
x = self.avg_pool(
|
631
|
+
x.permute(0, 2, 1).reshape([-1, self.embed_dim[2], h, self.HW[1]])
|
632
|
+
)
|
633
|
+
x = self.last_conv(x)
|
634
|
+
x = self.hardswish(x)
|
635
|
+
x = self.dropout(x)
|
636
|
+
if self.use_lenhead:
|
637
|
+
return x, len_x
|
638
|
+
return x
|
@@ -0,0 +1,76 @@
|
|
1
|
+
import torch
|
2
|
+
import torch.nn.functional as F
|
3
|
+
from torch import nn
|
4
|
+
|
5
|
+
|
6
|
+
class Hswish(nn.Module):
|
7
|
+
def __init__(self, inplace=True):
|
8
|
+
super(Hswish, self).__init__()
|
9
|
+
self.inplace = inplace
|
10
|
+
|
11
|
+
def forward(self, x):
|
12
|
+
return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0
|
13
|
+
|
14
|
+
|
15
|
+
# out = max(0, min(1, slop*x+offset))
|
16
|
+
# paddle.fluid.layers.hard_sigmoid(x, slope=0.2, offset=0.5, name=None)
|
17
|
+
class Hsigmoid(nn.Module):
|
18
|
+
def __init__(self, inplace=True):
|
19
|
+
super(Hsigmoid, self).__init__()
|
20
|
+
self.inplace = inplace
|
21
|
+
|
22
|
+
def forward(self, x):
|
23
|
+
# torch: F.relu6(x + 3., inplace=self.inplace) / 6.
|
24
|
+
# paddle: F.relu6(1.2 * x + 3., inplace=self.inplace) / 6.
|
25
|
+
return F.relu6(1.2 * x + 3.0, inplace=self.inplace) / 6.0
|
26
|
+
|
27
|
+
|
28
|
+
class GELU(nn.Module):
|
29
|
+
def __init__(self, inplace=True):
|
30
|
+
super(GELU, self).__init__()
|
31
|
+
self.inplace = inplace
|
32
|
+
|
33
|
+
def forward(self, x):
|
34
|
+
return torch.nn.functional.gelu(x)
|
35
|
+
|
36
|
+
|
37
|
+
class Swish(nn.Module):
|
38
|
+
def __init__(self, inplace=True):
|
39
|
+
super(Swish, self).__init__()
|
40
|
+
self.inplace = inplace
|
41
|
+
|
42
|
+
def forward(self, x):
|
43
|
+
if self.inplace:
|
44
|
+
x.mul_(torch.sigmoid(x))
|
45
|
+
return x
|
46
|
+
else:
|
47
|
+
return x * torch.sigmoid(x)
|
48
|
+
|
49
|
+
|
50
|
+
class Activation(nn.Module):
|
51
|
+
def __init__(self, act_type, inplace=True):
|
52
|
+
super(Activation, self).__init__()
|
53
|
+
act_type = act_type.lower()
|
54
|
+
if act_type == "relu":
|
55
|
+
self.act = nn.ReLU(inplace=inplace)
|
56
|
+
elif act_type == "relu6":
|
57
|
+
self.act = nn.ReLU6(inplace=inplace)
|
58
|
+
elif act_type == "sigmoid":
|
59
|
+
raise NotImplementedError
|
60
|
+
elif act_type == "hard_sigmoid":
|
61
|
+
self.act = Hsigmoid(
|
62
|
+
inplace
|
63
|
+
) # nn.Hardsigmoid(inplace=inplace)#Hsigmoid(inplace)#
|
64
|
+
elif act_type == "hard_swish" or act_type == "hswish":
|
65
|
+
self.act = Hswish(inplace=inplace)
|
66
|
+
elif act_type == "leakyrelu":
|
67
|
+
self.act = nn.LeakyReLU(inplace=inplace)
|
68
|
+
elif act_type == "gelu":
|
69
|
+
self.act = GELU(inplace=inplace)
|
70
|
+
elif act_type == "swish":
|
71
|
+
self.act = Swish(inplace=inplace)
|
72
|
+
else:
|
73
|
+
raise NotImplementedError
|
74
|
+
|
75
|
+
def forward(self, inputs):
|
76
|
+
return self.act(inputs)
|