lt-tensor 0.0.1a14__py3-none-any.whl → 0.0.1a16__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,618 +0,0 @@
1
- __all__ = ["AudioSettings", "AudioDecoderTrainer", "AudioGeneratorOnlyTrainer"]
2
- import gc
3
- import itertools
4
- from lt_utils.common import *
5
- import torch.nn.functional as F
6
- from lt_tensor.torch_commons import *
7
- from lt_tensor.model_base import Model
8
- from lt_utils.misc_utils import log_traceback
9
- from lt_tensor.processors import AudioProcessor
10
- from lt_tensor.misc_utils import set_seed, clear_cache
11
- from lt_utils.type_utils import is_dir, is_pathlike
12
- from lt_tensor.config_templates import ModelConfig
13
- from lt_tensor.model_zoo.istft.generator import iSTFTGenerator
14
- from lt_tensor.model_zoo.discriminator import (
15
- MultiPeriodDiscriminator,
16
- MultiScaleDiscriminator,
17
- )
18
-
19
-
20
- def feature_loss(fmap_r, fmap_g):
21
- loss = 0
22
- for dr, dg in zip(fmap_r, fmap_g):
23
- for rl, gl in zip(dr, dg):
24
- loss += torch.mean(torch.abs(rl - gl))
25
- return loss * 2
26
-
27
-
28
- def generator_adv_loss(disc_outputs):
29
- loss = 0
30
- for dg in disc_outputs:
31
- l = torch.mean((1 - dg) ** 2)
32
- loss += l
33
- return loss
34
-
35
-
36
- def discriminator_loss(disc_real_outputs, disc_generated_outputs):
37
- loss = 0
38
-
39
- for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
40
- r_loss = torch.mean((1 - dr) ** 2)
41
- g_loss = torch.mean(dg**2)
42
- loss += r_loss + g_loss
43
- return loss
44
-
45
-
46
- class AudioSettings(ModelConfig):
47
- def __init__(
48
- self,
49
- n_mels: int = 80,
50
- upsample_rates: List[Union[int, List[int]]] = [8, 8],
51
- upsample_kernel_sizes: List[Union[int, List[int]]] = [16, 16],
52
- upsample_initial_channel: int = 512,
53
- resblock_kernel_sizes: List[Union[int, List[int]]] = [3, 7, 11],
54
- resblock_dilation_sizes: List[Union[int, List[int]]] = [
55
- [1, 3, 5],
56
- [1, 3, 5],
57
- [1, 3, 5],
58
- ],
59
- n_fft: int = 16,
60
- activation: nn.Module = nn.LeakyReLU(0.1),
61
- msd_layers: int = 3,
62
- mpd_periods: List[int] = [2, 3, 5, 7, 11],
63
- seed: Optional[int] = None,
64
- lr: float = 1e-5,
65
- adamw_betas: List[float] = [0.75, 0.98],
66
- scheduler_template: Callable[
67
- [optim.Optimizer], optim.lr_scheduler.LRScheduler
68
- ] = lambda optimizer: optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.998),
69
- ):
70
- self.in_channels = n_mels
71
- self.upsample_rates = upsample_rates
72
- self.upsample_kernel_sizes = upsample_kernel_sizes
73
- self.upsample_initial_channel = upsample_initial_channel
74
- self.resblock_kernel_sizes = resblock_kernel_sizes
75
- self.resblock_dilation_sizes = resblock_dilation_sizes
76
- self.n_fft = n_fft
77
- self.activation = activation
78
- self.mpd_periods = mpd_periods
79
- self.msd_layers = msd_layers
80
- self.seed = seed
81
- self.lr = lr
82
- self.adamw_betas = adamw_betas
83
- self.scheduler_template = scheduler_template
84
-
85
-
86
- class AudioDecoderTrainer(Model):
87
- def __init__(
88
- self,
89
- audio_processor: AudioProcessor,
90
- settings: Optional[AudioSettings] = None,
91
- generator: Optional[Union[Model, "iSTFTGenerator"]] = None, # non initialized!
92
- ):
93
- super().__init__()
94
- if settings is None:
95
- self.settings = AudioSettings()
96
- elif isinstance(settings, dict):
97
- self.settings = AudioSettings(**settings)
98
- elif isinstance(settings, AudioSettings):
99
- self.settings = settings
100
- else:
101
- raise ValueError(
102
- "Cannot initialize the waveDecoder with the given settings. "
103
- "Use either a dictionary, or the class WaveSettings to setup the settings. "
104
- "Alternatively, leave it None to use the default values."
105
- )
106
- if self.settings.seed is not None:
107
- set_seed(self.settings.seed)
108
- if generator is None:
109
- generator = iSTFTGenerator
110
- self.generator: iSTFTGenerator = generator(
111
- in_channels=self.settings.in_channels,
112
- upsample_rates=self.settings.upsample_rates,
113
- upsample_kernel_sizes=self.settings.upsample_kernel_sizes,
114
- upsample_initial_channel=self.settings.upsample_initial_channel,
115
- resblock_kernel_sizes=self.settings.resblock_kernel_sizes,
116
- resblock_dilation_sizes=self.settings.resblock_dilation_sizes,
117
- n_fft=self.settings.n_fft,
118
- activation=self.settings.activation,
119
- )
120
- self.generator.eval()
121
- self.g_optim = None
122
- self.d_optim = None
123
- self.gan_training = False
124
- self.audio_processor = audio_processor
125
- self.register_buffer("msd", None, persistent=False)
126
- self.register_buffer("mpd", None, persistent=False)
127
-
128
- def setup_training_mode(self, load_weights_from: Optional[PathLike] = None):
129
- """The location must be path not a file!"""
130
- self.finish_training_setup()
131
- if self.msd is None:
132
- self.msd = MultiScaleDiscriminator(self.settings.msd_layers)
133
- if self.mpd is None:
134
- self.mpd = MultiPeriodDiscriminator(self.settings.mpd_periods)
135
- if load_weights_from is not None:
136
- if is_dir(path=load_weights_from, validate=False):
137
- try:
138
- self.msd.load_weights(Path(load_weights_from, "msd.pt"))
139
- except Exception as e:
140
- log_traceback(e, "MSD Loading")
141
- try:
142
- self.mpd.load_weights(Path(load_weights_from, "mpd.pt"))
143
- except Exception as e:
144
- log_traceback(e, "MPD Loading")
145
-
146
- self.update_schedulers_and_optimizer()
147
- self.msd.to(device=self.device)
148
- self.mpd.to(device=self.device)
149
-
150
- self.gan_training = True
151
- return True
152
-
153
- def update_schedulers_and_optimizer(self):
154
- self.g_optim = optim.AdamW(
155
- self.generator.parameters(),
156
- lr=self.settings.lr,
157
- betas=self.settings.adamw_betas,
158
- )
159
- self.g_scheduler = self.settings.scheduler_template(self.g_optim)
160
- if any([self.mpd is None, self.msd is None]):
161
- return
162
- self.d_optim = optim.AdamW(
163
- itertools.chain(self.mpd.parameters(), self.msd.parameters()),
164
- lr=self.settings.lr,
165
- betas=self.settings.adamw_betas,
166
- )
167
- self.d_scheduler = self.settings.scheduler_template(self.d_optim)
168
-
169
- def set_lr(self, new_lr: float = 1e-4):
170
- if self.g_optim is not None:
171
- for groups in self.g_optim.param_groups:
172
- groups["lr"] = new_lr
173
-
174
- if self.d_optim is not None:
175
- for groups in self.d_optim.param_groups:
176
- groups["lr"] = new_lr
177
- return self.get_lr()
178
-
179
- def get_lr(self) -> Tuple[float, float]:
180
- g = float("nan")
181
- d = float("nan")
182
- if self.g_optim is not None:
183
- g = self.g_optim.param_groups[0]["lr"]
184
- if self.d_optim is not None:
185
- d = self.d_optim.param_groups[0]["lr"]
186
- return g, d
187
-
188
- def save_weights(self, path, replace=True):
189
- is_pathlike(path, check_if_empty=True, validate=True)
190
- if str(path).endswith(".pt"):
191
- path = Path(path).parent
192
- else:
193
- path = Path(path)
194
- self.generator.save_weights(Path(path, "generator.pt"), replace)
195
- if self.msd is not None:
196
- self.msd.save_weights(Path(path, "msp.pt"), replace)
197
- if self.mpd is not None:
198
- self.mpd.save_weights(Path(path, "mpd.pt"), replace)
199
-
200
- def load_weights(
201
- self,
202
- path,
203
- raise_if_not_exists=False,
204
- strict=True,
205
- assign=False,
206
- weights_only=False,
207
- mmap=None,
208
- **torch_loader_kwargs
209
- ):
210
- is_pathlike(path, check_if_empty=True, validate=True)
211
- if str(path).endswith(".pt"):
212
- path = Path(path)
213
- else:
214
- path = Path(path, "generator.pt")
215
-
216
- self.generator.load_weights(
217
- path,
218
- raise_if_not_exists,
219
- strict,
220
- assign,
221
- weights_only,
222
- mmap,
223
- **torch_loader_kwargs,
224
- )
225
-
226
- def finish_training_setup(self):
227
- gc.collect()
228
- self.mpd = None
229
- clear_cache()
230
- gc.collect()
231
- self.msd = None
232
- clear_cache()
233
- self.gan_training = False
234
-
235
- def forward(self, mel_spec: Tensor) -> Tuple[Tensor, Tensor]:
236
- """Returns the generated spec and phase"""
237
- return self.generator.forward(mel_spec)
238
-
239
- def inference(
240
- self,
241
- mel_spec: Tensor,
242
- return_dict: bool = False,
243
- ) -> Union[Dict[str, Tensor], Tensor]:
244
- spec, phase = super().inference(mel_spec)
245
- wave = self.audio_processor.inverse_transform(
246
- spec,
247
- phase,
248
- self.settings.n_fft,
249
- hop_length=4,
250
- win_length=self.settings.n_fft,
251
- )
252
- if not return_dict:
253
- return wave[:, : wave.shape[-1] - 256]
254
- return {
255
- "wave": wave[:, : wave.shape[-1] - 256],
256
- "spec": spec,
257
- "phase": phase,
258
- }
259
-
260
- def set_device(self, device: str):
261
- self.to(device=device)
262
- self.generator.to(device=device)
263
- self.audio_processor.to(device=device)
264
- self.msd.to(device=device)
265
- self.mpd.to(device=device)
266
-
267
- def train_step(
268
- self,
269
- mels: Tensor,
270
- real_audio: Tensor,
271
- stft_scale: float = 1.0,
272
- mel_scale: float = 1.0,
273
- adv_scale: float = 1.0,
274
- fm_scale: float = 1.0,
275
- fm_add: float = 0.0,
276
- is_discriminator_frozen: bool = False,
277
- is_generator_frozen: bool = False,
278
- ):
279
- if not self.gan_training:
280
- self.setup_training_mode()
281
- spec, phase = super().train_step(mels)
282
- real_audio = real_audio.squeeze(1)
283
- fake_audio = self.audio_processor.inverse_transform(
284
- spec,
285
- phase,
286
- self.settings.n_fft,
287
- hop_length=4,
288
- win_length=self.settings.n_fft,
289
- # length=real_audio.shape[-1]
290
- )[:, : real_audio.shape[-1]]
291
-
292
- disc_kwargs = dict(
293
- real_audio=real_audio,
294
- fake_audio=fake_audio.detach(),
295
- am_i_frozen=is_discriminator_frozen,
296
- )
297
- if is_discriminator_frozen:
298
- with torch.no_grad():
299
- disc_out = self._discriminator_step(**disc_kwargs)
300
- else:
301
- disc_out = self._discriminator_step(**disc_kwargs)
302
-
303
- generator_kwargs = dict(
304
- mels=mels,
305
- real_audio=real_audio,
306
- fake_audio=fake_audio,
307
- **disc_out,
308
- stft_scale=stft_scale,
309
- mel_scale=mel_scale,
310
- adv_scale=adv_scale,
311
- fm_add=fm_add,
312
- fm_scale=fm_scale,
313
- am_i_frozen=is_generator_frozen,
314
- )
315
-
316
- if is_generator_frozen:
317
- with torch.no_grad():
318
- return self._generator_step(**generator_kwargs)
319
- return self._generator_step(**generator_kwargs)
320
-
321
- def _discriminator_step(
322
- self,
323
- real_audio: Tensor,
324
- fake_audio: Tensor,
325
- am_i_frozen: bool = False,
326
- ):
327
- # ========== Discriminator Forward Pass ==========
328
- if not am_i_frozen:
329
- self.d_optim.zero_grad()
330
- # MPD
331
- real_mpd_preds, _ = self.mpd(real_audio)
332
- fake_mpd_preds, _ = self.mpd(fake_audio)
333
- # MSD
334
- real_msd_preds, _ = self.msd(real_audio)
335
- fake_msd_preds, _ = self.msd(fake_audio)
336
-
337
- loss_d_mpd = discriminator_loss(real_mpd_preds, fake_mpd_preds)
338
- loss_d_msd = discriminator_loss(real_msd_preds, fake_msd_preds)
339
- loss_d = loss_d_mpd + loss_d_msd
340
-
341
- if not am_i_frozen:
342
- loss_d.backward()
343
- self.d_optim.step()
344
-
345
- return {
346
- "loss_d": loss_d.item(),
347
- }
348
-
349
- def _generator_step(
350
- self,
351
- mels: Tensor,
352
- real_audio: Tensor,
353
- fake_audio: Tensor,
354
- loss_d: float,
355
- stft_scale: float = 1.0,
356
- mel_scale: float = 1.0,
357
- adv_scale: float = 1.0,
358
- fm_scale: float = 1.0,
359
- fm_add: float = 0.0,
360
- am_i_frozen: bool = False,
361
- ):
362
- # ========== Generator Loss ==========
363
- if not am_i_frozen:
364
- self.g_optim.zero_grad()
365
- real_mpd_feats = self.mpd(real_audio)[1]
366
- real_msd_feats = self.msd(real_audio)[1]
367
-
368
- fake_mpd_preds, fake_mpd_feats = self.mpd(fake_audio)
369
- fake_msd_preds, fake_msd_feats = self.msd(fake_audio)
370
-
371
- loss_adv_mpd = generator_adv_loss(fake_mpd_preds)
372
- loss_adv_msd = generator_adv_loss(fake_msd_preds)
373
- loss_fm_mpd = feature_loss(real_mpd_feats, fake_mpd_feats)
374
- loss_fm_msd = feature_loss(real_msd_feats, fake_msd_feats)
375
-
376
- loss_stft = self.audio_processor.stft_loss(fake_audio, real_audio) * stft_scale
377
- loss_mel = (
378
- F.huber_loss(self.audio_processor.compute_mel(fake_audio), mels) * mel_scale
379
- )
380
- loss_fm = ((loss_fm_mpd + loss_fm_msd) * fm_scale) + fm_add
381
-
382
- loss_adv = (loss_adv_mpd + loss_adv_msd) * adv_scale
383
-
384
- loss_g = loss_adv + loss_fm + loss_stft + loss_mel
385
- if not am_i_frozen:
386
- loss_g.backward()
387
- self.g_optim.step()
388
-
389
- lr_g, lr_d = self.get_lr()
390
- return {
391
- "loss_g": loss_g.item(),
392
- "loss_d": loss_d,
393
- "loss_adv": loss_adv.item(),
394
- "loss_fm": loss_fm.item(),
395
- "loss_stft": loss_stft.item(),
396
- "loss_mel": loss_mel.item(),
397
- "lr_g": lr_g,
398
- "lr_d": lr_d,
399
- }
400
-
401
- def step_scheduler(
402
- self, is_disc_frozen: bool = False, is_generator_frozen: bool = False
403
- ):
404
- if self.d_scheduler is not None and not is_disc_frozen:
405
- self.d_scheduler.step()
406
- if self.g_scheduler is not None and not is_generator_frozen:
407
- self.g_scheduler.step()
408
-
409
- def reset_schedulers(self, lr: Optional[float] = None):
410
- """
411
- In case you have adopted another strategy, with this function,
412
- it is possible restart the scheduler and set the lr to another value.
413
- """
414
- if lr is not None:
415
- self.set_lr(lr)
416
- if self.d_optim is not None:
417
- self.d_scheduler = None
418
- self.d_scheduler = self.settings.scheduler_template(self.d_optim)
419
- if self.g_optim is not None:
420
- self.g_scheduler = None
421
- self.g_scheduler = self.settings.scheduler_template(self.g_optim)
422
-
423
-
424
- class AudioGeneratorOnlyTrainer(Model):
425
- def __init__(
426
- self,
427
- audio_processor: AudioProcessor,
428
- settings: Optional[AudioSettings] = None,
429
- generator: Optional[Union[Model, "iSTFTGenerator"]] = None, # non initialized!
430
- ):
431
- super().__init__()
432
- if settings is None:
433
- self.settings = AudioSettings()
434
- elif isinstance(settings, dict):
435
- self.settings = AudioSettings(**settings)
436
- elif isinstance(settings, AudioSettings):
437
- self.settings = settings
438
- else:
439
- raise ValueError(
440
- "Cannot initialize the waveDecoder with the given settings. "
441
- "Use either a dictionary, or the class WaveSettings to setup the settings. "
442
- "Alternatively, leave it None to use the default values."
443
- )
444
- if self.settings.seed is not None:
445
- set_seed(self.settings.seed)
446
- if generator is None:
447
- generator = iSTFTGenerator
448
- self.generator: iSTFTGenerator = generator(
449
- in_channels=self.settings.in_channels,
450
- upsample_rates=self.settings.upsample_rates,
451
- upsample_kernel_sizes=self.settings.upsample_kernel_sizes,
452
- upsample_initial_channel=self.settings.upsample_initial_channel,
453
- resblock_kernel_sizes=self.settings.resblock_kernel_sizes,
454
- resblock_dilation_sizes=self.settings.resblock_dilation_sizes,
455
- n_fft=self.settings.n_fft,
456
- activation=self.settings.activation,
457
- )
458
- self.generator.eval()
459
- self.gen_training = False
460
- self.audio_processor = audio_processor
461
-
462
- def setup_training_mode(self, *args, **kwargs):
463
- self.finish_training_setup()
464
- self.update_schedulers_and_optimizer()
465
- self.gen_training = True
466
- return True
467
-
468
- def update_schedulers_and_optimizer(self):
469
- self.g_optim = optim.AdamW(
470
- self.generator.parameters(),
471
- lr=self.settings.lr,
472
- betas=self.settings.adamw_betas,
473
- )
474
- self.g_scheduler = self.settings.scheduler_template(self.g_optim)
475
-
476
- def set_lr(self, new_lr: float = 1e-4):
477
- if self.g_optim is not None:
478
- for groups in self.g_optim.param_groups:
479
- groups["lr"] = new_lr
480
- return self.get_lr()
481
-
482
- def get_lr(self) -> Tuple[float, float]:
483
- if self.g_optim is not None:
484
- return self.g_optim.param_groups[0]["lr"]
485
- return float("nan")
486
-
487
- def save_weights(self, path, replace=True):
488
- is_pathlike(path, check_if_empty=True, validate=True)
489
- if str(path).endswith(".pt"):
490
- path = Path(path).parent
491
- else:
492
- path = Path(path)
493
- self.generator.save_weights(Path(path, "generator.pt"), replace)
494
-
495
- def load_weights(
496
- self,
497
- path,
498
- raise_if_not_exists=False,
499
- strict=True,
500
- assign=False,
501
- weights_only=False,
502
- mmap=None,
503
- **torch_loader_kwargs
504
- ):
505
- is_pathlike(path, check_if_empty=True, validate=True)
506
- if str(path).endswith(".pt"):
507
- path = Path(path)
508
- else:
509
- path = Path(path, "generator.pt")
510
-
511
- self.generator.load_weights(
512
- path,
513
- raise_if_not_exists,
514
- strict,
515
- assign,
516
- weights_only,
517
- mmap,
518
- **torch_loader_kwargs,
519
- )
520
-
521
- def finish_training_setup(self):
522
- gc.collect()
523
- clear_cache()
524
- self.eval()
525
- self.gen_training = False
526
-
527
- def forward(self, mel_spec: Tensor) -> Tuple[Tensor, Tensor]:
528
- """Returns the generated spec and phase"""
529
- return self.generator.forward(mel_spec)
530
-
531
- def inference(
532
- self,
533
- mel_spec: Tensor,
534
- return_dict: bool = False,
535
- ) -> Union[Dict[str, Tensor], Tensor]:
536
- spec, phase = super().inference(mel_spec)
537
- wave = self.audio_processor.inverse_transform(
538
- spec,
539
- phase,
540
- self.settings.n_fft,
541
- hop_length=4,
542
- win_length=self.settings.n_fft,
543
- )
544
- if not return_dict:
545
- return wave[:, : wave.shape[-1] - 256]
546
- return {
547
- "wave": wave[:, : wave.shape[-1] - 256],
548
- "spec": spec,
549
- "phase": phase,
550
- }
551
-
552
- def set_device(self, device: str):
553
- self.to(device=device)
554
- self.generator.to(device=device)
555
- self.audio_processor.to(device=device)
556
- self.msd.to(device=device)
557
- self.mpd.to(device=device)
558
-
559
- def train_step(
560
- self,
561
- mels: Tensor,
562
- real_audio: Tensor,
563
- stft_scale: float = 1.0,
564
- mel_scale: float = 1.0,
565
- ext_loss: Optional[Callable[[Tensor, Tensor], Tensor]] = None,
566
- ):
567
- if not self.gen_training:
568
- self.setup_training_mode()
569
-
570
- self.g_optim.zero_grad()
571
- spec, phase = self.generator.train_step(mels)
572
-
573
- real_audio = real_audio.squeeze(1)
574
- with torch.no_grad():
575
- fake_audio = self.audio_processor.inverse_transform(
576
- spec,
577
- phase,
578
- self.settings.n_fft,
579
- hop_length=4,
580
- win_length=self.settings.n_fft,
581
- )[:, : real_audio.shape[-1]]
582
- loss_stft = self.audio_processor.stft_loss(fake_audio, real_audio) * stft_scale
583
- loss_mel = (
584
- F.huber_loss(self.audio_processor.compute_mel(fake_audio), mels) * mel_scale
585
- )
586
- loss_g.backward()
587
- loss_g = loss_stft + loss_mel
588
- loss_ext = 0
589
-
590
- if ext_loss is not None:
591
- l_ext = ext_loss(fake_audio, real_audio)
592
- loss_g = loss_g + l_ext
593
- loss_ext = l_ext.item()
594
-
595
- self.g_optim.step()
596
- return {
597
- "loss": loss_g.item(),
598
- "loss_stft": loss_stft.item(),
599
- "loss_mel": loss_mel.item(),
600
- "loss_ext": loss_ext,
601
- "lr": self.get_lr(),
602
- }
603
-
604
- def step_scheduler(self):
605
-
606
- if self.g_scheduler is not None:
607
- self.g_scheduler.step()
608
-
609
- def reset_schedulers(self, lr: Optional[float] = None):
610
- """
611
- In case you have adopted another strategy, with this function,
612
- it is possible restart the scheduler and set the lr to another value.
613
- """
614
- if lr is not None:
615
- self.set_lr(lr)
616
- if self.g_optim is not None:
617
- self.g_scheduler = None
618
- self.g_scheduler = self.settings.scheduler_template(self.g_optim)