lt-tensor 0.0.1a14__py3-none-any.whl → 0.0.1a16__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,409 @@
1
+ __all__ = ["iSTFTGenerator"]
2
+ from lt_utils.common import *
3
+ from lt_tensor.torch_commons import *
4
+ from lt_tensor.model_zoo.residual import ConvNets
5
+ from torch.nn import functional as F
6
+
7
+
8
+ def get_padding(ks, d):
9
+ return int((ks * d - d) / 2)
10
+
11
+
12
+ class ResBlock1(ConvNets):
13
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
14
+ super().__init__()
15
+ self.h = h
16
+ self.convs1 = nn.ModuleList(
17
+ [
18
+ weight_norm(
19
+ nn.Conv1d(
20
+ channels,
21
+ channels,
22
+ kernel_size,
23
+ 1,
24
+ dilation=dilation[0],
25
+ padding=get_padding(kernel_size, dilation[0]),
26
+ )
27
+ ),
28
+ weight_norm(
29
+ nn.Conv1d(
30
+ channels,
31
+ channels,
32
+ kernel_size,
33
+ 1,
34
+ dilation=dilation[1],
35
+ padding=get_padding(kernel_size, dilation[1]),
36
+ )
37
+ ),
38
+ weight_norm(
39
+ nn.Conv1d(
40
+ channels,
41
+ channels,
42
+ kernel_size,
43
+ 1,
44
+ dilation=dilation[2],
45
+ padding=get_padding(kernel_size, dilation[2]),
46
+ )
47
+ ),
48
+ ]
49
+ )
50
+ self.convs1.apply(self.init_weights)
51
+
52
+ self.convs2 = nn.ModuleList(
53
+ [
54
+ weight_norm(
55
+ nn.Conv1d(
56
+ channels,
57
+ channels,
58
+ kernel_size,
59
+ 1,
60
+ dilation=1,
61
+ padding=get_padding(kernel_size, 1),
62
+ )
63
+ ),
64
+ weight_norm(
65
+ nn.Conv1d(
66
+ channels,
67
+ channels,
68
+ kernel_size,
69
+ 1,
70
+ dilation=1,
71
+ padding=get_padding(kernel_size, 1),
72
+ )
73
+ ),
74
+ weight_norm(
75
+ nn.Conv1d(
76
+ channels,
77
+ channels,
78
+ kernel_size,
79
+ 1,
80
+ dilation=1,
81
+ padding=get_padding(kernel_size, 1),
82
+ )
83
+ ),
84
+ ]
85
+ )
86
+ self.activation = nn.LeakyReLU(0.1)
87
+ self.convs2.apply(self.init_weights)
88
+
89
+ def forward(self, x):
90
+ for c1, c2 in zip(self.convs1, self.convs2):
91
+ xt = self.activation(x)
92
+ xt = c1(xt)
93
+ xt = self.activation(xt)
94
+ xt = c2(xt)
95
+ x = xt + x
96
+ return x
97
+
98
+ class ResBlock2(ConvNets):
99
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
100
+ super().__init__()
101
+ self.h = h
102
+ self.convs = nn.ModuleList(
103
+ [
104
+ weight_norm(
105
+ nn.Conv1d(
106
+ channels,
107
+ channels,
108
+ kernel_size,
109
+ 1,
110
+ dilation=dilation[0],
111
+ padding=get_padding(kernel_size, dilation[0]),
112
+ )
113
+ ),
114
+ weight_norm(
115
+ nn.Conv1d(
116
+ channels,
117
+ channels,
118
+ kernel_size,
119
+ 1,
120
+ dilation=dilation[1],
121
+ padding=get_padding(kernel_size, dilation[1]),
122
+ )
123
+ ),
124
+ ]
125
+ )
126
+ self.activation = nn.LeakyReLU(0.1)
127
+ self.convs.apply(self.init_weights)
128
+
129
+ def forward(self, x):
130
+ for c in self.convs:
131
+ xt = self.activation(x)
132
+ xt = c(xt)
133
+ x = xt + x
134
+ return x
135
+
136
+
137
+ class iSTFTGenerator(ConvNets):
138
+ def __init__(self, h):
139
+ super().__init__()
140
+ self.h = h
141
+ self.num_kernels = len(h.resblock_kernel_sizes)
142
+ self.num_upsamples = len(h.upsample_rates)
143
+ self.conv_pre = weight_norm(
144
+ nn.Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3)
145
+ )
146
+ resblock = ResBlock1 if h.resblock == "1" else ResBlock2
147
+
148
+ self.ups = nn.ModuleList()
149
+ for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
150
+ if h.sampling_rate % 16000:
151
+ self.ups.append(
152
+ weight_norm(
153
+ nn.ConvTranspose1d(
154
+ h.upsample_initial_channel // (2**i),
155
+ h.upsample_initial_channel // (2 ** (i + 1)),
156
+ k,
157
+ u,
158
+ padding=(k - u) // 2,
159
+ )
160
+ )
161
+ )
162
+ else:
163
+ self.ups.append(
164
+ weight_norm(
165
+ nn.ConvTranspose1d(
166
+ h.upsample_initial_channel // (2**i),
167
+ h.upsample_initial_channel // (2 ** (i + 1)),
168
+ k,
169
+ u,
170
+ padding=(u // 2 + u % 2),
171
+ output_padding=u % 2,
172
+ )
173
+ )
174
+ )
175
+
176
+ self.resblocks = nn.ModuleList()
177
+ for i in range(len(self.ups)):
178
+ ch = h.upsample_initial_channel // (2 ** (i + 1))
179
+ for j, (k, d) in enumerate(
180
+ zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
181
+ ):
182
+ self.resblocks.append(resblock(h, ch, k, d))
183
+
184
+ self.post_n_fft = h.gen_istft_n_fft
185
+ self.conv_post = weight_norm(
186
+ nn.Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3)
187
+ )
188
+ self.ups.apply(self.init_weights)
189
+ self.conv_post.apply(self.init_weights)
190
+ self.activation = nn.LeakyReLU(0.1)
191
+ self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
192
+
193
+ def forward(self, x):
194
+ x = self.conv_pre(x)
195
+ for i in range(self.num_upsamples):
196
+ x = self.activation(x)
197
+ x = self.ups[i](x)
198
+ xs = None
199
+ for j in range(self.num_kernels):
200
+ if xs is None:
201
+ xs = self.resblocks[i * self.num_kernels + j](x)
202
+ else:
203
+ xs += self.resblocks[i * self.num_kernels + j](x)
204
+ x = xs / self.num_kernels
205
+ x = self.activation(x)
206
+ x = self.reflection_pad(x)
207
+ x = self.conv_post(x)
208
+ spec = torch.exp(x[:, : self.post_n_fft // 2 + 1, :])
209
+ phase = torch.sin(x[:, self.post_n_fft // 2 + 1 :, :])
210
+
211
+ return spec, phase
212
+
213
+
214
+ class DiscriminatorP(ConvNets):
215
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
216
+ super().__init__()
217
+ self.period = period
218
+ self.activation = nn.LeakyReLU(0.1)
219
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
220
+ self.convs = nn.ModuleList(
221
+ [
222
+ norm_f(
223
+ nn.Conv2d(
224
+ 1,
225
+ 32,
226
+ (kernel_size, 1),
227
+ (stride, 1),
228
+ padding=(get_padding(5, 1), 0),
229
+ )
230
+ ),
231
+ norm_f(
232
+ nn.Conv2d(
233
+ 32,
234
+ 128,
235
+ (kernel_size, 1),
236
+ (stride, 1),
237
+ padding=(get_padding(5, 1), 0),
238
+ )
239
+ ),
240
+ norm_f(
241
+ nn.Conv2d(
242
+ 128,
243
+ 512,
244
+ (kernel_size, 1),
245
+ (stride, 1),
246
+ padding=(get_padding(5, 1), 0),
247
+ )
248
+ ),
249
+ norm_f(
250
+ nn.Conv2d(
251
+ 512,
252
+ 1024,
253
+ (kernel_size, 1),
254
+ (stride, 1),
255
+ padding=(get_padding(5, 1), 0),
256
+ )
257
+ ),
258
+ norm_f(nn.Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
259
+ ]
260
+ )
261
+ self.conv_post = norm_f(nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
262
+
263
+ def forward(self, x):
264
+ fmap = []
265
+
266
+ # 1d to 2d
267
+ b, c, t = x.shape
268
+ if t % self.period != 0: # pad first
269
+ n_pad = self.period - (t % self.period)
270
+ x = F.pad(x, (0, n_pad), "reflect")
271
+ t = t + n_pad
272
+ x = x.view(b, c, t // self.period, self.period)
273
+
274
+ for l in self.convs:
275
+ x = l(x)
276
+ x = self.activation(x)
277
+ fmap.append(x)
278
+ x = self.conv_post(x)
279
+ fmap.append(x)
280
+ x = torch.flatten(x, 1, -1)
281
+
282
+ return x, fmap
283
+
284
+
285
+ class MultiPeriodDiscriminator(ConvNets):
286
+ def __init__(self):
287
+ super().__init__()
288
+ self.discriminators = nn.ModuleList(
289
+ [
290
+ DiscriminatorP(2),
291
+ DiscriminatorP(3),
292
+ DiscriminatorP(5),
293
+ DiscriminatorP(7),
294
+ DiscriminatorP(11),
295
+ ]
296
+ )
297
+
298
+ def forward(self, y, y_hat):
299
+ y_d_rs = []
300
+ y_d_gs = []
301
+ fmap_rs = []
302
+ fmap_gs = []
303
+ for i, d in enumerate(self.discriminators):
304
+ y_d_r, fmap_r = d(y)
305
+ y_d_g, fmap_g = d(y_hat)
306
+ y_d_rs.append(y_d_r)
307
+ fmap_rs.append(fmap_r)
308
+ y_d_gs.append(y_d_g)
309
+ fmap_gs.append(fmap_g)
310
+
311
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
312
+
313
+
314
+ class DiscriminatorS(ConvNets):
315
+ def __init__(self, use_spectral_norm=False):
316
+ super().__init__()
317
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
318
+ self.convs = nn.ModuleList(
319
+ [
320
+ norm_f(nn.Conv1d(1, 128, 15, 1, padding=7)),
321
+ norm_f(nn.Conv1d(128, 128, 41, 2, groups=4, padding=20)),
322
+ norm_f(nn.Conv1d(128, 256, 41, 2, groups=16, padding=20)),
323
+ norm_f(nn.Conv1d(256, 512, 41, 4, groups=16, padding=20)),
324
+ norm_f(nn.Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
325
+ norm_f(nn.Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
326
+ norm_f(nn.Conv1d(1024, 1024, 5, 1, padding=2)),
327
+ ]
328
+ )
329
+ self.activation = nn.LeakyReLU(0.1)
330
+ self.conv_post = norm_f(nn.Conv1d(1024, 1, 3, 1, padding=1))
331
+
332
+ def forward(self, x):
333
+ fmap = []
334
+ for l in self.convs:
335
+ x = self.activation(l(x))
336
+
337
+ fmap.append(x)
338
+ x = self.conv_post(x)
339
+ fmap.append(x)
340
+ x = torch.flatten(x, 1, -1)
341
+
342
+ return x, fmap
343
+
344
+
345
+ class MultiScaleDiscriminator(ConvNets):
346
+ def __init__(self):
347
+ super().__init__()
348
+ self.discriminators = nn.ModuleList(
349
+ [
350
+ DiscriminatorS(use_spectral_norm=True),
351
+ DiscriminatorS(),
352
+ DiscriminatorS(),
353
+ ]
354
+ )
355
+ self.meanpools = nn.ModuleList(
356
+ [nn.AvgPool1d(4, 2, padding=2), nn.AvgPool1d(4, 2, padding=2)]
357
+ )
358
+
359
+ def forward(self, y, y_hat):
360
+ y_d_rs = []
361
+ y_d_gs = []
362
+ fmap_rs = []
363
+ fmap_gs = []
364
+ for i, d in enumerate(self.discriminators):
365
+ if i != 0:
366
+ y = self.meanpools[i - 1](y)
367
+ y_hat = self.meanpools[i - 1](y_hat)
368
+ y_d_r, fmap_r = d(y)
369
+ y_d_g, fmap_g = d(y_hat)
370
+ y_d_rs.append(y_d_r)
371
+ fmap_rs.append(fmap_r)
372
+ y_d_gs.append(y_d_g)
373
+ fmap_gs.append(fmap_g)
374
+
375
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
376
+
377
+
378
+ def feature_loss(fmap_r, fmap_g):
379
+ loss = 0
380
+ for dr, dg in zip(fmap_r, fmap_g):
381
+ for rl, gl in zip(dr, dg):
382
+ loss += torch.mean(torch.abs(rl - gl))
383
+
384
+ return loss * 2
385
+
386
+
387
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
388
+ loss = 0
389
+ r_losses = []
390
+ g_losses = []
391
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
392
+ r_loss = torch.mean((1 - dr) ** 2)
393
+ g_loss = torch.mean(dg**2)
394
+ loss += r_loss + g_loss
395
+ r_losses.append(r_loss.item())
396
+ g_losses.append(g_loss.item())
397
+
398
+ return loss, r_losses, g_losses
399
+
400
+
401
+ def generator_loss(disc_outputs):
402
+ loss = 0
403
+ gen_losses = []
404
+ for dg in disc_outputs:
405
+ l = torch.mean((1 - dg) ** 2)
406
+ gen_losses.append(l)
407
+ loss += l
408
+
409
+ return loss, gen_losses
@@ -16,6 +16,7 @@ from lt_tensor.model_base import Model
16
16
  from lt_tensor.transform import get_sinusoidal_embedding
17
17
  from lt_utils.common import *
18
18
  import math
19
+ from einops import repeat
19
20
 
20
21
 
21
22
  class FeedForward(Model):
@@ -346,3 +347,141 @@ class LoRAConv2DLayer(nn.Module):
346
347
  down_hidden_states = self.down(inputs.to(self._down_dt))
347
348
  up_hidden_states = self.up(down_hidden_states) * self.ah
348
349
  return up_hidden_states.to(orig_dtype)
350
+
351
+
352
+ class SineGen(nn.Module):
353
+ def __init__(
354
+ self,
355
+ samp_rate,
356
+ upsample_scale,
357
+ harmonic_num=0,
358
+ sine_amp=0.1,
359
+ noise_std=0.003,
360
+ voiced_threshold=0,
361
+ flag_for_pulse=False,
362
+ ):
363
+ super().__init__()
364
+ self.sampling_rate = samp_rate
365
+ self.upsample_scale = upsample_scale
366
+ self.harmonic_num = harmonic_num
367
+ self.sine_amp = sine_amp
368
+ self.noise_std = noise_std
369
+ self.voiced_threshold = voiced_threshold
370
+ self.flag_for_pulse = flag_for_pulse
371
+ self.dim = self.harmonic_num + 1 # fundamental + harmonics
372
+
373
+ def _f02uv_b(self, f0):
374
+ return (f0 > self.voiced_threshold).float() # [B, T]
375
+
376
+ def _f02uv(self, f0):
377
+ return (f0 > self.voiced_threshold).float().unsqueeze(-1) # -> (B, T, 1)
378
+
379
+ @torch.no_grad()
380
+ def _f02sine(self, f0_values):
381
+ """
382
+ f0_values: (B, T, 1)
383
+ Output: sine waves (B, T * upsample, dim)
384
+ """
385
+ B, T, _ = f0_values.size()
386
+ f0_upsampled = repeat(
387
+ f0_values, "b t d -> b (t r) d", r=self.upsample_scale
388
+ ) # (B, T_up, 1)
389
+
390
+ # Create harmonics
391
+ harmonics = (
392
+ torch.arange(1, self.dim + 1, device=f0_values.device)
393
+ .float()
394
+ .view(1, 1, -1)
395
+ )
396
+ f0_harm = f0_upsampled * harmonics # (B, T_up, dim)
397
+
398
+ # Convert Hz to radians (2πf/sr), then integrate to get phase
399
+ rad_values = f0_harm / self.sampling_rate # normalized freq
400
+ rad_values = rad_values % 1.0 # remove multiples of 2π
401
+
402
+ # Random initial phase for each harmonic (except 0th if pulse mode)
403
+ if self.flag_for_pulse:
404
+ rand_ini = torch.zeros((B, 1, self.dim), device=f0_values.device)
405
+ else:
406
+ rand_ini = torch.rand((B, 1, self.dim), device=f0_values.device)
407
+
408
+ rand_ini = rand_ini * 2 * math.pi
409
+
410
+ # Compute cumulative phase
411
+ rad_values = rad_values * 2 * math.pi
412
+ phase = torch.cumsum(rad_values, dim=1) + rand_ini # (B, T_up, dim)
413
+
414
+ sine_waves = torch.sin(phase) # (B, T_up, dim)
415
+ return sine_waves
416
+
417
+ def _forward(self, f0):
418
+ """
419
+ f0: (B, T, 1)
420
+ returns: sine signal with harmonics and noise added
421
+ """
422
+ sine_waves = self._f02sine(f0) # (B, T_up, dim)
423
+ uv = self._f02uv_b(f0) # (B, T, 1)
424
+ uv = repeat(uv, "b t d -> b (t r) d", r=self.upsample_scale) # (B, T_up, 1)
425
+
426
+ # voiced sine + unvoiced noise
427
+ sine_signal = self.sine_amp * sine_waves * uv # (B, T_up, dim)
428
+ noise = torch.randn_like(sine_signal) * self.noise_std
429
+ output = sine_signal + noise * (1.0 - uv) # noise added only on unvoiced
430
+
431
+ return output # (B, T_up, dim)
432
+
433
+ def forward(self, f0):
434
+ """
435
+ Args:
436
+ f0: (B, T) in Hz (before upsampling)
437
+ Returns:
438
+ sine_waves: (B, T_up, dim)
439
+ uv: (B, T_up, 1)
440
+ noise: (B, T_up, 1)
441
+ """
442
+ B, T = f0.shape
443
+ device = f0.device
444
+
445
+ # Get uv mask (before upsampling)
446
+ uv = self._f02uv(f0) # (B, T, 1)
447
+
448
+ # Expand f0 to include harmonics: (B, T, dim)
449
+ f0 = f0.unsqueeze(-1) # (B, T, 1)
450
+ harmonics = (
451
+ torch.arange(1, self.dim + 1, device=device).float().view(1, 1, -1)
452
+ ) # (1, 1, dim)
453
+ f0_harm = f0 * harmonics # (B, T, dim)
454
+
455
+ # Upsample
456
+ f0_harm_up = repeat(
457
+ f0_harm, "b t d -> b (t r) d", r=self.upsample_scale
458
+ ) # (B, T_up, dim)
459
+ uv_up = repeat(uv, "b t d -> b (t r) d", r=self.upsample_scale) # (B, T_up, 1)
460
+
461
+ # Convert to radians
462
+ rad_per_sample = f0_harm_up / self.sampling_rate # Hz → cycles/sample
463
+ rad_per_sample = rad_per_sample * 2 * math.pi # cycles → radians/sample
464
+
465
+ # Random phase init for each sample
466
+ B, T_up, D = rad_per_sample.shape
467
+ rand_phase = torch.rand(B, D, device=device) * 2 * math.pi # (B, D)
468
+
469
+ # Compute cumulative phase
470
+ phase = torch.cumsum(rad_per_sample, dim=1) + rand_phase.unsqueeze(
471
+ 1
472
+ ) # (B, T_up, D)
473
+
474
+ # Apply sine
475
+ sine_waves = torch.sin(phase) * self.sine_amp # (B, T_up, D)
476
+
477
+ # Handle unvoiced: create noise only for fundamental
478
+ noise = torch.randn(B, T_up, 1, device=device) * self.noise_std
479
+ if self.flag_for_pulse:
480
+ # If pulse mode is on, align phase at start of voiced segments
481
+ # Optional and tricky to implement — may require segmenting uv
482
+ pass
483
+
484
+ # Replace sine by noise for unvoiced (only on fundamental)
485
+ sine_waves[:, :, 0:1] = sine_waves[:, :, 0:1] * uv_up + noise * (1 - uv_up)
486
+
487
+ return sine_waves, uv_up, noise