llama-cloud 0.1.6__py3-none-any.whl → 0.1.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

Files changed (173) hide show
  1. llama_cloud/__init__.py +140 -6
  2. llama_cloud/client.py +15 -0
  3. llama_cloud/environment.py +1 -1
  4. llama_cloud/resources/__init__.py +15 -0
  5. llama_cloud/{types/token.py → resources/chat_apps/__init__.py} +0 -3
  6. llama_cloud/resources/chat_apps/client.py +630 -0
  7. llama_cloud/resources/data_sinks/client.py +12 -12
  8. llama_cloud/resources/data_sources/client.py +14 -14
  9. llama_cloud/resources/embedding_model_configs/client.py +20 -76
  10. llama_cloud/resources/evals/client.py +26 -36
  11. llama_cloud/resources/extraction/client.py +32 -32
  12. llama_cloud/resources/files/client.py +40 -44
  13. llama_cloud/resources/jobs/__init__.py +2 -0
  14. llama_cloud/resources/jobs/client.py +148 -0
  15. llama_cloud/resources/llama_extract/__init__.py +5 -0
  16. llama_cloud/resources/llama_extract/client.py +1038 -0
  17. llama_cloud/resources/llama_extract/types/__init__.py +6 -0
  18. llama_cloud/resources/llama_extract/types/extract_agent_create_data_schema_value.py +7 -0
  19. llama_cloud/resources/llama_extract/types/extract_agent_update_data_schema_value.py +7 -0
  20. llama_cloud/resources/organizations/client.py +66 -70
  21. llama_cloud/resources/parsing/client.py +448 -428
  22. llama_cloud/resources/pipelines/client.py +256 -344
  23. llama_cloud/resources/projects/client.py +34 -60
  24. llama_cloud/resources/reports/__init__.py +5 -0
  25. llama_cloud/resources/reports/client.py +1198 -0
  26. llama_cloud/resources/reports/types/__init__.py +7 -0
  27. llama_cloud/resources/reports/types/update_report_plan_api_v_1_reports_report_id_plan_patch_request_action.py +25 -0
  28. llama_cloud/resources/retrievers/__init__.py +2 -0
  29. llama_cloud/resources/retrievers/client.py +654 -0
  30. llama_cloud/types/__init__.py +128 -6
  31. llama_cloud/types/{chat_message.py → app_schema_chat_chat_message.py} +3 -3
  32. llama_cloud/types/azure_open_ai_embedding.py +6 -12
  33. llama_cloud/types/base_prompt_template.py +2 -6
  34. llama_cloud/types/bedrock_embedding.py +6 -12
  35. llama_cloud/types/character_splitter.py +2 -4
  36. llama_cloud/types/chat_app.py +44 -0
  37. llama_cloud/types/chat_app_response.py +41 -0
  38. llama_cloud/types/cloud_az_storage_blob_data_source.py +7 -15
  39. llama_cloud/types/cloud_box_data_source.py +6 -12
  40. llama_cloud/types/cloud_confluence_data_source.py +6 -6
  41. llama_cloud/types/cloud_document.py +1 -3
  42. llama_cloud/types/cloud_document_create.py +1 -3
  43. llama_cloud/types/cloud_jira_data_source.py +4 -6
  44. llama_cloud/types/cloud_notion_page_data_source.py +2 -2
  45. llama_cloud/types/cloud_one_drive_data_source.py +3 -5
  46. llama_cloud/types/cloud_postgres_vector_store.py +1 -0
  47. llama_cloud/types/cloud_s_3_data_source.py +4 -8
  48. llama_cloud/types/cloud_sharepoint_data_source.py +6 -8
  49. llama_cloud/types/cloud_slack_data_source.py +6 -6
  50. llama_cloud/types/code_splitter.py +1 -1
  51. llama_cloud/types/cohere_embedding.py +3 -7
  52. llama_cloud/types/composite_retrieval_mode.py +21 -0
  53. llama_cloud/types/composite_retrieval_result.py +38 -0
  54. llama_cloud/types/composite_retrieved_text_node.py +42 -0
  55. llama_cloud/types/data_sink.py +4 -4
  56. llama_cloud/types/data_sink_component.py +20 -0
  57. llama_cloud/types/data_source.py +5 -7
  58. llama_cloud/types/data_source_component.py +28 -0
  59. llama_cloud/types/data_source_create.py +1 -3
  60. llama_cloud/types/edit_suggestion.py +39 -0
  61. llama_cloud/types/embedding_model_config.py +2 -2
  62. llama_cloud/types/embedding_model_config_update.py +2 -4
  63. llama_cloud/types/eval_dataset.py +2 -2
  64. llama_cloud/types/eval_dataset_job_record.py +8 -13
  65. llama_cloud/types/eval_execution_params_override.py +2 -6
  66. llama_cloud/types/eval_question.py +2 -2
  67. llama_cloud/types/extract_agent.py +45 -0
  68. llama_cloud/types/extract_agent_data_schema_value.py +5 -0
  69. llama_cloud/types/extract_config.py +40 -0
  70. llama_cloud/types/extract_job.py +35 -0
  71. llama_cloud/types/extract_job_create.py +40 -0
  72. llama_cloud/types/extract_job_create_data_schema_override_value.py +7 -0
  73. llama_cloud/types/extract_mode.py +17 -0
  74. llama_cloud/types/extract_resultset.py +46 -0
  75. llama_cloud/types/extract_resultset_data.py +11 -0
  76. llama_cloud/types/extract_resultset_data_item_value.py +7 -0
  77. llama_cloud/types/extract_resultset_data_zero_value.py +7 -0
  78. llama_cloud/types/extract_resultset_extraction_metadata_value.py +7 -0
  79. llama_cloud/types/extraction_result.py +2 -2
  80. llama_cloud/types/extraction_schema.py +3 -5
  81. llama_cloud/types/file.py +9 -14
  82. llama_cloud/types/filter_condition.py +9 -1
  83. llama_cloud/types/filter_operator.py +6 -2
  84. llama_cloud/types/gemini_embedding.py +6 -10
  85. llama_cloud/types/hugging_face_inference_api_embedding.py +11 -27
  86. llama_cloud/types/hugging_face_inference_api_embedding_token.py +5 -0
  87. llama_cloud/types/image_block.py +35 -0
  88. llama_cloud/types/input_message.py +2 -4
  89. llama_cloud/types/job_names.py +89 -0
  90. llama_cloud/types/job_record.py +57 -0
  91. llama_cloud/types/job_record_with_usage_metrics.py +36 -0
  92. llama_cloud/types/llama_index_core_base_llms_types_chat_message.py +39 -0
  93. llama_cloud/types/llama_index_core_base_llms_types_chat_message_blocks_item.py +33 -0
  94. llama_cloud/types/llama_parse_parameters.py +4 -0
  95. llama_cloud/types/llm.py +3 -4
  96. llama_cloud/types/llm_model_data.py +1 -0
  97. llama_cloud/types/llm_parameters.py +3 -5
  98. llama_cloud/types/local_eval.py +8 -10
  99. llama_cloud/types/local_eval_results.py +1 -1
  100. llama_cloud/types/managed_ingestion_status.py +4 -0
  101. llama_cloud/types/managed_ingestion_status_response.py +4 -5
  102. llama_cloud/types/markdown_element_node_parser.py +3 -5
  103. llama_cloud/types/markdown_node_parser.py +1 -1
  104. llama_cloud/types/metadata_filter.py +2 -2
  105. llama_cloud/types/metadata_filter_value.py +5 -0
  106. llama_cloud/types/metric_result.py +3 -3
  107. llama_cloud/types/node_parser.py +1 -1
  108. llama_cloud/types/object_type.py +4 -0
  109. llama_cloud/types/open_ai_embedding.py +6 -12
  110. llama_cloud/types/organization.py +7 -2
  111. llama_cloud/types/page_splitter_node_parser.py +2 -2
  112. llama_cloud/types/paginated_jobs_history_with_metrics.py +35 -0
  113. llama_cloud/types/paginated_report_response.py +35 -0
  114. llama_cloud/types/parse_plan_level.py +21 -0
  115. llama_cloud/types/permission.py +3 -3
  116. llama_cloud/types/pipeline.py +7 -17
  117. llama_cloud/types/pipeline_configuration_hashes.py +3 -3
  118. llama_cloud/types/pipeline_create.py +8 -16
  119. llama_cloud/types/pipeline_data_source.py +7 -13
  120. llama_cloud/types/pipeline_data_source_component.py +28 -0
  121. llama_cloud/types/pipeline_data_source_create.py +1 -3
  122. llama_cloud/types/pipeline_deployment.py +4 -4
  123. llama_cloud/types/pipeline_file.py +13 -24
  124. llama_cloud/types/pipeline_file_create.py +1 -3
  125. llama_cloud/types/playground_session.py +4 -4
  126. llama_cloud/types/preset_retrieval_params.py +8 -14
  127. llama_cloud/types/presigned_url.py +1 -3
  128. llama_cloud/types/progress_event.py +44 -0
  129. llama_cloud/types/progress_event_status.py +33 -0
  130. llama_cloud/types/project.py +2 -2
  131. llama_cloud/types/prompt_mixin_prompts.py +1 -1
  132. llama_cloud/types/prompt_spec.py +3 -5
  133. llama_cloud/types/related_node_info.py +2 -2
  134. llama_cloud/types/related_node_info_node_type.py +7 -0
  135. llama_cloud/types/report.py +33 -0
  136. llama_cloud/types/report_block.py +34 -0
  137. llama_cloud/types/report_block_dependency.py +29 -0
  138. llama_cloud/types/report_create_response.py +31 -0
  139. llama_cloud/types/report_event_item.py +40 -0
  140. llama_cloud/types/report_event_item_event_data.py +45 -0
  141. llama_cloud/types/report_event_type.py +37 -0
  142. llama_cloud/types/report_metadata.py +43 -0
  143. llama_cloud/types/report_plan.py +36 -0
  144. llama_cloud/types/report_plan_block.py +36 -0
  145. llama_cloud/types/report_query.py +33 -0
  146. llama_cloud/types/report_response.py +41 -0
  147. llama_cloud/types/report_state.py +37 -0
  148. llama_cloud/types/report_state_event.py +38 -0
  149. llama_cloud/types/report_update_event.py +38 -0
  150. llama_cloud/types/retrieve_results.py +1 -1
  151. llama_cloud/types/retriever.py +45 -0
  152. llama_cloud/types/retriever_create.py +37 -0
  153. llama_cloud/types/retriever_pipeline.py +37 -0
  154. llama_cloud/types/role.py +3 -3
  155. llama_cloud/types/sentence_splitter.py +2 -4
  156. llama_cloud/types/status_enum.py +4 -0
  157. llama_cloud/types/supported_llm_model_names.py +4 -0
  158. llama_cloud/types/text_block.py +31 -0
  159. llama_cloud/types/text_node.py +15 -8
  160. llama_cloud/types/token_text_splitter.py +1 -1
  161. llama_cloud/types/usage_metric_response.py +34 -0
  162. llama_cloud/types/user_job_record.py +32 -0
  163. llama_cloud/types/user_organization.py +5 -9
  164. llama_cloud/types/user_organization_create.py +4 -4
  165. llama_cloud/types/user_organization_delete.py +2 -2
  166. llama_cloud/types/user_organization_role.py +2 -2
  167. llama_cloud/types/vertex_text_embedding.py +5 -9
  168. {llama_cloud-0.1.6.dist-info → llama_cloud-0.1.7.dist-info}/METADATA +2 -1
  169. llama_cloud-0.1.7.dist-info/RECORD +310 -0
  170. llama_cloud/types/value.py +0 -5
  171. llama_cloud-0.1.6.dist-info/RECORD +0 -241
  172. {llama_cloud-0.1.6.dist-info → llama_cloud-0.1.7.dist-info}/LICENSE +0 -0
  173. {llama_cloud-0.1.6.dist-info → llama_cloud-0.1.7.dist-info}/WHEEL +0 -0
@@ -80,12 +80,15 @@ class PipelinesClient:
80
80
 
81
81
  - organization_id: typing.Optional[str].
82
82
  ---
83
+ from llama_cloud import PipelineType
83
84
  from llama_cloud.client import LlamaCloud
84
85
 
85
86
  client = LlamaCloud(
86
87
  token="YOUR_TOKEN",
87
88
  )
88
- client.pipelines.search_pipelines()
89
+ client.pipelines.search_pipelines(
90
+ pipeline_type=PipelineType.PLAYGROUND,
91
+ )
89
92
  """
90
93
  _response = self._client_wrapper.httpx_client.request(
91
94
  "GET",
@@ -128,18 +131,6 @@ class PipelinesClient:
128
131
  - organization_id: typing.Optional[str].
129
132
 
130
133
  - request: PipelineCreate.
131
- ---
132
- from llama_cloud import PipelineCreate
133
- from llama_cloud.client import LlamaCloud
134
-
135
- client = LlamaCloud(
136
- token="YOUR_TOKEN",
137
- )
138
- client.pipelines.create_pipeline(
139
- request=PipelineCreate(
140
- name="name",
141
- ),
142
- )
143
134
  """
144
135
  _response = self._client_wrapper.httpx_client.request(
145
136
  "POST",
@@ -176,18 +167,6 @@ class PipelinesClient:
176
167
  - organization_id: typing.Optional[str].
177
168
 
178
169
  - request: PipelineCreate.
179
- ---
180
- from llama_cloud import PipelineCreate
181
- from llama_cloud.client import LlamaCloud
182
-
183
- client = LlamaCloud(
184
- token="YOUR_TOKEN",
185
- )
186
- client.pipelines.upsert_pipeline(
187
- request=PipelineCreate(
188
- name="name",
189
- ),
190
- )
191
170
  """
192
171
  _response = self._client_wrapper.httpx_client.request(
193
172
  "PUT",
@@ -213,15 +192,6 @@ class PipelinesClient:
213
192
 
214
193
  Parameters:
215
194
  - pipeline_id: str.
216
- ---
217
- from llama_cloud.client import LlamaCloud
218
-
219
- client = LlamaCloud(
220
- token="YOUR_TOKEN",
221
- )
222
- client.pipelines.get_pipeline(
223
- pipeline_id="pipeline_id",
224
- )
225
195
  """
226
196
  _response = self._client_wrapper.httpx_client.request(
227
197
  "GET",
@@ -265,32 +235,23 @@ class PipelinesClient:
265
235
 
266
236
  - transform_config: typing.Optional[PipelineUpdateTransformConfig]. Configuration for the transformation.
267
237
 
268
- - configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]]. Deprecated, use embedding_config or transform_config instead. configured transformations for the pipeline.
238
+ - configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]].
269
239
 
270
- - data_sink_id: typing.Optional[str]. Data sink ID. When provided instead of data_sink, the data sink will be looked up by ID.
240
+ - data_sink_id: typing.Optional[str].
271
241
 
272
- - embedding_model_config_id: typing.Optional[str]. Embedding model config ID. When provided instead of embedding_config, the embedding model config will be looked up by ID.
242
+ - embedding_model_config_id: typing.Optional[str].
273
243
 
274
- - data_sink: typing.Optional[DataSinkCreate]. Data sink. When provided instead of data_sink_id, the data sink will be created.
244
+ - data_sink: typing.Optional[DataSinkCreate].
275
245
 
276
- - preset_retrieval_parameters: typing.Optional[PresetRetrievalParams]. Preset retrieval parameters for the pipeline.
246
+ - preset_retrieval_parameters: typing.Optional[PresetRetrievalParams].
277
247
 
278
- - eval_parameters: typing.Optional[EvalExecutionParams]. Eval parameters for the pipeline.
248
+ - eval_parameters: typing.Optional[EvalExecutionParams].
279
249
 
280
- - llama_parse_parameters: typing.Optional[LlamaParseParameters]. Settings that can be configured for how to use LlamaParse to parse files within a LlamaCloud pipeline.
250
+ - llama_parse_parameters: typing.Optional[LlamaParseParameters].
281
251
 
282
252
  - name: typing.Optional[str].
283
253
 
284
- - managed_pipeline_id: typing.Optional[str]. The ID of the ManagedPipeline this playground pipeline is linked to.
285
- ---
286
- from llama_cloud.client import LlamaCloud
287
-
288
- client = LlamaCloud(
289
- token="YOUR_TOKEN",
290
- )
291
- client.pipelines.update_existing_pipeline(
292
- pipeline_id="pipeline_id",
293
- )
254
+ - managed_pipeline_id: typing.Optional[str].
294
255
  """
295
256
  _request: typing.Dict[str, typing.Any] = {}
296
257
  if embedding_config is not OMIT:
@@ -345,7 +306,7 @@ class PipelinesClient:
345
306
  token="YOUR_TOKEN",
346
307
  )
347
308
  client.pipelines.delete_pipeline(
348
- pipeline_id="pipeline_id",
309
+ pipeline_id="string",
349
310
  )
350
311
  """
351
312
  _response = self._client_wrapper.httpx_client.request(
@@ -377,7 +338,7 @@ class PipelinesClient:
377
338
  token="YOUR_TOKEN",
378
339
  )
379
340
  client.pipelines.get_pipeline_status(
380
- pipeline_id="pipeline_id",
341
+ pipeline_id="string",
381
342
  )
382
343
  """
383
344
  _response = self._client_wrapper.httpx_client.request(
@@ -402,15 +363,6 @@ class PipelinesClient:
402
363
 
403
364
  Parameters:
404
365
  - pipeline_id: str.
405
- ---
406
- from llama_cloud.client import LlamaCloud
407
-
408
- client = LlamaCloud(
409
- token="YOUR_TOKEN",
410
- )
411
- client.pipelines.sync_pipeline(
412
- pipeline_id="pipeline_id",
413
- )
414
366
  """
415
367
  _response = self._client_wrapper.httpx_client.request(
416
368
  "POST",
@@ -428,21 +380,35 @@ class PipelinesClient:
428
380
  raise ApiError(status_code=_response.status_code, body=_response.text)
429
381
  raise ApiError(status_code=_response.status_code, body=_response_json)
430
382
 
383
+ def cancel_pipeline_sync(self, pipeline_id: str) -> Pipeline:
384
+ """
385
+ Parameters:
386
+ - pipeline_id: str.
387
+ """
388
+ _response = self._client_wrapper.httpx_client.request(
389
+ "POST",
390
+ urllib.parse.urljoin(
391
+ f"{self._client_wrapper.get_base_url()}/", f"api/v1/pipelines/{pipeline_id}/sync/cancel"
392
+ ),
393
+ headers=self._client_wrapper.get_headers(),
394
+ timeout=60,
395
+ )
396
+ if 200 <= _response.status_code < 300:
397
+ return pydantic.parse_obj_as(Pipeline, _response.json()) # type: ignore
398
+ if _response.status_code == 422:
399
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
400
+ try:
401
+ _response_json = _response.json()
402
+ except JSONDecodeError:
403
+ raise ApiError(status_code=_response.status_code, body=_response.text)
404
+ raise ApiError(status_code=_response.status_code, body=_response_json)
405
+
431
406
  def copy_pipeline(self, pipeline_id: str) -> Pipeline:
432
407
  """
433
408
  Copy a pipeline by ID.
434
409
 
435
410
  Parameters:
436
411
  - pipeline_id: str.
437
- ---
438
- from llama_cloud.client import LlamaCloud
439
-
440
- client = LlamaCloud(
441
- token="YOUR_TOKEN",
442
- )
443
- client.pipelines.copy_pipeline(
444
- pipeline_id="pipeline_id",
445
- )
446
412
  """
447
413
  _response = self._client_wrapper.httpx_client.request(
448
414
  "POST",
@@ -475,8 +441,8 @@ class PipelinesClient:
475
441
  token="YOUR_TOKEN",
476
442
  )
477
443
  client.pipelines.get_eval_dataset_executions(
478
- eval_dataset_id="eval_dataset_id",
479
- pipeline_id="pipeline_id",
444
+ eval_dataset_id="string",
445
+ pipeline_id="string",
480
446
  )
481
447
  """
482
448
  _response = self._client_wrapper.httpx_client.request(
@@ -518,15 +484,19 @@ class PipelinesClient:
518
484
 
519
485
  - params: typing.Optional[EvalExecutionParamsOverride]. The parameters for the eval execution that will override the ones set in the pipeline.
520
486
  ---
487
+ from llama_cloud import EvalExecutionParamsOverride, SupportedLlmModelNames
521
488
  from llama_cloud.client import LlamaCloud
522
489
 
523
490
  client = LlamaCloud(
524
491
  token="YOUR_TOKEN",
525
492
  )
526
493
  client.pipelines.execute_eval_dataset(
527
- eval_dataset_id="eval_dataset_id",
528
- pipeline_id="pipeline_id",
529
- eval_question_ids=["eval_question_ids"],
494
+ eval_dataset_id="string",
495
+ pipeline_id="string",
496
+ eval_question_ids=[],
497
+ params=EvalExecutionParamsOverride(
498
+ llm_model=SupportedLlmModelNames.GPT_3_5_TURBO,
499
+ ),
530
500
  )
531
501
  """
532
502
  _request: typing.Dict[str, typing.Any] = {"eval_question_ids": eval_question_ids}
@@ -572,8 +542,8 @@ class PipelinesClient:
572
542
  token="YOUR_TOKEN",
573
543
  )
574
544
  client.pipelines.get_eval_dataset_execution_result(
575
- eval_dataset_id="eval_dataset_id",
576
- pipeline_id="pipeline_id",
545
+ eval_dataset_id="string",
546
+ pipeline_id="string",
577
547
  )
578
548
  """
579
549
  _response = self._client_wrapper.httpx_client.request(
@@ -614,9 +584,9 @@ class PipelinesClient:
614
584
  token="YOUR_TOKEN",
615
585
  )
616
586
  client.pipelines.get_eval_dataset_execution(
617
- eval_dataset_id="eval_dataset_id",
618
- eval_dataset_execution_id="eval_dataset_execution_id",
619
- pipeline_id="pipeline_id",
587
+ eval_dataset_id="string",
588
+ eval_dataset_execution_id="string",
589
+ pipeline_id="string",
620
590
  )
621
591
  """
622
592
  _response = self._client_wrapper.httpx_client.request(
@@ -661,7 +631,7 @@ class PipelinesClient:
661
631
  token="YOUR_TOKEN",
662
632
  )
663
633
  client.pipelines.list_pipeline_files(
664
- pipeline_id="pipeline_id",
634
+ pipeline_id="string",
665
635
  )
666
636
  """
667
637
  _response = self._client_wrapper.httpx_client.request(
@@ -694,19 +664,14 @@ class PipelinesClient:
694
664
 
695
665
  - request: typing.List[PipelineFileCreate].
696
666
  ---
697
- from llama_cloud import PipelineFileCreate
698
667
  from llama_cloud.client import LlamaCloud
699
668
 
700
669
  client = LlamaCloud(
701
670
  token="YOUR_TOKEN",
702
671
  )
703
672
  client.pipelines.add_files_to_pipeline(
704
- pipeline_id="pipeline_id",
705
- request=[
706
- PipelineFileCreate(
707
- file_id="file_id",
708
- )
709
- ],
673
+ pipeline_id="string",
674
+ request=[],
710
675
  )
711
676
  """
712
677
  _response = self._client_wrapper.httpx_client.request(
@@ -755,7 +720,7 @@ class PipelinesClient:
755
720
  token="YOUR_TOKEN",
756
721
  )
757
722
  client.pipelines.list_pipeline_files_2(
758
- pipeline_id="pipeline_id",
723
+ pipeline_id="string",
759
724
  )
760
725
  """
761
726
  _response = self._client_wrapper.httpx_client.request(
@@ -797,8 +762,8 @@ class PipelinesClient:
797
762
  token="YOUR_TOKEN",
798
763
  )
799
764
  client.pipelines.get_pipeline_file_status(
800
- file_id="file_id",
801
- pipeline_id="pipeline_id",
765
+ file_id="string",
766
+ pipeline_id="string",
802
767
  )
803
768
  """
804
769
  _response = self._client_wrapper.httpx_client.request(
@@ -836,7 +801,7 @@ class PipelinesClient:
836
801
 
837
802
  - pipeline_id: str.
838
803
 
839
- - custom_metadata: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileUpdateCustomMetadataValue]]]. Custom metadata for the file
804
+ - custom_metadata: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileUpdateCustomMetadataValue]]].
840
805
  ---
841
806
  from llama_cloud.client import LlamaCloud
842
807
 
@@ -844,8 +809,8 @@ class PipelinesClient:
844
809
  token="YOUR_TOKEN",
845
810
  )
846
811
  client.pipelines.update_pipeline_file(
847
- file_id="file_id",
848
- pipeline_id="pipeline_id",
812
+ file_id="string",
813
+ pipeline_id="string",
849
814
  )
850
815
  """
851
816
  _request: typing.Dict[str, typing.Any] = {}
@@ -885,8 +850,8 @@ class PipelinesClient:
885
850
  token="YOUR_TOKEN",
886
851
  )
887
852
  client.pipelines.delete_pipeline_file(
888
- file_id="file_id",
889
- pipeline_id="pipeline_id",
853
+ file_id="string",
854
+ pipeline_id="string",
890
855
  )
891
856
  """
892
857
  _response = self._client_wrapper.httpx_client.request(
@@ -915,15 +880,6 @@ class PipelinesClient:
915
880
  - pipeline_id: str.
916
881
 
917
882
  - upload_file: typing.IO.
918
- ---
919
- from llama_cloud.client import LlamaCloud
920
-
921
- client = LlamaCloud(
922
- token="YOUR_TOKEN",
923
- )
924
- client.pipelines.import_pipeline_metadata(
925
- pipeline_id="pipeline_id",
926
- )
927
883
  """
928
884
  _response = self._client_wrapper.httpx_client.request(
929
885
  "PUT",
@@ -956,7 +912,7 @@ class PipelinesClient:
956
912
  token="YOUR_TOKEN",
957
913
  )
958
914
  client.pipelines.delete_pipeline_files_metadata(
959
- pipeline_id="pipeline_id",
915
+ pipeline_id="string",
960
916
  )
961
917
  """
962
918
  _response = self._client_wrapper.httpx_client.request(
@@ -988,7 +944,7 @@ class PipelinesClient:
988
944
  token="YOUR_TOKEN",
989
945
  )
990
946
  client.pipelines.list_pipeline_data_sources(
991
- pipeline_id="pipeline_id",
947
+ pipeline_id="string",
992
948
  )
993
949
  """
994
950
  _response = self._client_wrapper.httpx_client.request(
@@ -1020,19 +976,14 @@ class PipelinesClient:
1020
976
 
1021
977
  - request: typing.List[PipelineDataSourceCreate].
1022
978
  ---
1023
- from llama_cloud import PipelineDataSourceCreate
1024
979
  from llama_cloud.client import LlamaCloud
1025
980
 
1026
981
  client = LlamaCloud(
1027
982
  token="YOUR_TOKEN",
1028
983
  )
1029
984
  client.pipelines.add_data_sources_to_pipeline(
1030
- pipeline_id="pipeline_id",
1031
- request=[
1032
- PipelineDataSourceCreate(
1033
- data_source_id="data_source_id",
1034
- )
1035
- ],
985
+ pipeline_id="string",
986
+ request=[],
1036
987
  )
1037
988
  """
1038
989
  _response = self._client_wrapper.httpx_client.request(
@@ -1065,7 +1016,7 @@ class PipelinesClient:
1065
1016
 
1066
1017
  - pipeline_id: str.
1067
1018
 
1068
- - sync_interval: typing.Optional[float]. The interval at which the data source should be synced.
1019
+ - sync_interval: typing.Optional[float].
1069
1020
  ---
1070
1021
  from llama_cloud.client import LlamaCloud
1071
1022
 
@@ -1073,8 +1024,8 @@ class PipelinesClient:
1073
1024
  token="YOUR_TOKEN",
1074
1025
  )
1075
1026
  client.pipelines.update_pipeline_data_source(
1076
- data_source_id="data_source_id",
1077
- pipeline_id="pipeline_id",
1027
+ data_source_id="string",
1028
+ pipeline_id="string",
1078
1029
  )
1079
1030
  """
1080
1031
  _request: typing.Dict[str, typing.Any] = {}
@@ -1115,8 +1066,8 @@ class PipelinesClient:
1115
1066
  token="YOUR_TOKEN",
1116
1067
  )
1117
1068
  client.pipelines.delete_pipeline_data_source(
1118
- data_source_id="data_source_id",
1119
- pipeline_id="pipeline_id",
1069
+ data_source_id="string",
1070
+ pipeline_id="string",
1120
1071
  )
1121
1072
  """
1122
1073
  _response = self._client_wrapper.httpx_client.request(
@@ -1146,16 +1097,6 @@ class PipelinesClient:
1146
1097
  - data_source_id: str.
1147
1098
 
1148
1099
  - pipeline_id: str.
1149
- ---
1150
- from llama_cloud.client import LlamaCloud
1151
-
1152
- client = LlamaCloud(
1153
- token="YOUR_TOKEN",
1154
- )
1155
- client.pipelines.sync_pipeline_data_source(
1156
- data_source_id="data_source_id",
1157
- pipeline_id="pipeline_id",
1158
- )
1159
1100
  """
1160
1101
  _response = self._client_wrapper.httpx_client.request(
1161
1102
  "POST",
@@ -1191,8 +1132,8 @@ class PipelinesClient:
1191
1132
  token="YOUR_TOKEN",
1192
1133
  )
1193
1134
  client.pipelines.get_pipeline_data_source_status(
1194
- data_source_id="data_source_id",
1195
- pipeline_id="pipeline_id",
1135
+ data_source_id="string",
1136
+ pipeline_id="string",
1196
1137
  )
1197
1138
  """
1198
1139
  _response = self._client_wrapper.httpx_client.request(
@@ -1237,21 +1178,21 @@ class PipelinesClient:
1237
1178
  Parameters:
1238
1179
  - pipeline_id: str.
1239
1180
 
1240
- - dense_similarity_top_k: typing.Optional[int]. Number of nodes for dense retrieval.
1181
+ - dense_similarity_top_k: typing.Optional[int].
1241
1182
 
1242
- - dense_similarity_cutoff: typing.Optional[float]. Minimum similarity score wrt query for retrieval
1183
+ - dense_similarity_cutoff: typing.Optional[float].
1243
1184
 
1244
- - sparse_similarity_top_k: typing.Optional[int]. Number of nodes for sparse retrieval.
1185
+ - sparse_similarity_top_k: typing.Optional[int].
1245
1186
 
1246
- - enable_reranking: typing.Optional[bool]. Enable reranking for retrieval
1187
+ - enable_reranking: typing.Optional[bool].
1247
1188
 
1248
- - rerank_top_n: typing.Optional[int]. Number of reranked nodes for returning.
1189
+ - rerank_top_n: typing.Optional[int].
1249
1190
 
1250
- - alpha: typing.Optional[float]. Alpha value for hybrid retrieval to determine the weights between dense and sparse retrieval. 0 is sparse retrieval and 1 is dense retrieval.
1191
+ - alpha: typing.Optional[float].
1251
1192
 
1252
- - search_filters: typing.Optional[MetadataFilters]. Search filters for retrieval.
1193
+ - search_filters: typing.Optional[MetadataFilters].
1253
1194
 
1254
- - files_top_k: typing.Optional[int]. Number of files to retrieve (only for retrieval mode files_via_metadata and files_via_content).
1195
+ - files_top_k: typing.Optional[int].
1255
1196
 
1256
1197
  - retrieval_mode: typing.Optional[RetrievalMode]. The retrieval mode for the query.
1257
1198
 
@@ -1261,14 +1202,20 @@ class PipelinesClient:
1261
1202
 
1262
1203
  - class_name: typing.Optional[str].
1263
1204
  ---
1205
+ from llama_cloud import FilterCondition, MetadataFilters, RetrievalMode
1264
1206
  from llama_cloud.client import LlamaCloud
1265
1207
 
1266
1208
  client = LlamaCloud(
1267
1209
  token="YOUR_TOKEN",
1268
1210
  )
1269
1211
  client.pipelines.run_search(
1270
- pipeline_id="pipeline_id",
1271
- query="query",
1212
+ pipeline_id="string",
1213
+ search_filters=MetadataFilters(
1214
+ filters=[],
1215
+ condition=FilterCondition.AND,
1216
+ ),
1217
+ retrieval_mode=RetrievalMode.CHUNKS,
1218
+ query="string",
1272
1219
  )
1273
1220
  """
1274
1221
  _request: typing.Dict[str, typing.Any] = {"query": query}
@@ -1324,7 +1271,7 @@ class PipelinesClient:
1324
1271
  token="YOUR_TOKEN",
1325
1272
  )
1326
1273
  client.pipelines.list_pipeline_jobs(
1327
- pipeline_id="pipeline_id",
1274
+ pipeline_id="string",
1328
1275
  )
1329
1276
  """
1330
1277
  _response = self._client_wrapper.httpx_client.request(
@@ -1358,8 +1305,8 @@ class PipelinesClient:
1358
1305
  token="YOUR_TOKEN",
1359
1306
  )
1360
1307
  client.pipelines.get_pipeline_job(
1361
- job_id="job_id",
1362
- pipeline_id="pipeline_id",
1308
+ job_id="string",
1309
+ pipeline_id="string",
1363
1310
  )
1364
1311
  """
1365
1312
  _response = self._client_wrapper.httpx_client.request(
@@ -1393,7 +1340,7 @@ class PipelinesClient:
1393
1340
  token="YOUR_TOKEN",
1394
1341
  )
1395
1342
  client.pipelines.get_playground_session(
1396
- pipeline_id="pipeline_id",
1343
+ pipeline_id="string",
1397
1344
  )
1398
1345
  """
1399
1346
  _response = self._client_wrapper.httpx_client.request(
@@ -1434,13 +1381,34 @@ class PipelinesClient:
1434
1381
 
1435
1382
  - class_name: typing.Optional[str].
1436
1383
  ---
1384
+ from llama_cloud import (
1385
+ ChatData,
1386
+ FilterCondition,
1387
+ LlmParameters,
1388
+ MetadataFilters,
1389
+ PresetRetrievalParams,
1390
+ RetrievalMode,
1391
+ SupportedLlmModelNames,
1392
+ )
1437
1393
  from llama_cloud.client import LlamaCloud
1438
1394
 
1439
1395
  client = LlamaCloud(
1440
1396
  token="YOUR_TOKEN",
1441
1397
  )
1442
1398
  client.pipelines.chat(
1443
- pipeline_id="pipeline_id",
1399
+ pipeline_id="string",
1400
+ data=ChatData(
1401
+ retrieval_parameters=PresetRetrievalParams(
1402
+ search_filters=MetadataFilters(
1403
+ filters=[],
1404
+ condition=FilterCondition.AND,
1405
+ ),
1406
+ retrieval_mode=RetrievalMode.CHUNKS,
1407
+ ),
1408
+ llm_parameters=LlmParameters(
1409
+ model_name=SupportedLlmModelNames.GPT_3_5_TURBO,
1410
+ ),
1411
+ ),
1444
1412
  )
1445
1413
  """
1446
1414
  _request: typing.Dict[str, typing.Any] = {}
@@ -1496,7 +1464,7 @@ class PipelinesClient:
1496
1464
  token="YOUR_TOKEN",
1497
1465
  )
1498
1466
  client.pipelines.list_pipeline_documents(
1499
- pipeline_id="pipeline_id",
1467
+ pipeline_id="string",
1500
1468
  )
1501
1469
  """
1502
1470
  _response = self._client_wrapper.httpx_client.request(
@@ -1531,20 +1499,14 @@ class PipelinesClient:
1531
1499
 
1532
1500
  - request: typing.List[CloudDocumentCreate].
1533
1501
  ---
1534
- from llama_cloud import CloudDocumentCreate
1535
1502
  from llama_cloud.client import LlamaCloud
1536
1503
 
1537
1504
  client = LlamaCloud(
1538
1505
  token="YOUR_TOKEN",
1539
1506
  )
1540
1507
  client.pipelines.create_batch_pipeline_documents(
1541
- pipeline_id="pipeline_id",
1542
- request=[
1543
- CloudDocumentCreate(
1544
- text="text",
1545
- metadata={"key": "value"},
1546
- )
1547
- ],
1508
+ pipeline_id="string",
1509
+ request=[],
1548
1510
  )
1549
1511
  """
1550
1512
  _response = self._client_wrapper.httpx_client.request(
@@ -1577,20 +1539,14 @@ class PipelinesClient:
1577
1539
 
1578
1540
  - request: typing.List[CloudDocumentCreate].
1579
1541
  ---
1580
- from llama_cloud import CloudDocumentCreate
1581
1542
  from llama_cloud.client import LlamaCloud
1582
1543
 
1583
1544
  client = LlamaCloud(
1584
1545
  token="YOUR_TOKEN",
1585
1546
  )
1586
1547
  client.pipelines.upsert_batch_pipeline_documents(
1587
- pipeline_id="pipeline_id",
1588
- request=[
1589
- CloudDocumentCreate(
1590
- text="text",
1591
- metadata={"key": "value"},
1592
- )
1593
- ],
1548
+ pipeline_id="string",
1549
+ request=[],
1594
1550
  )
1595
1551
  """
1596
1552
  _response = self._client_wrapper.httpx_client.request(
@@ -1627,8 +1583,8 @@ class PipelinesClient:
1627
1583
  token="YOUR_TOKEN",
1628
1584
  )
1629
1585
  client.pipelines.get_pipeline_document(
1630
- document_id="document_id",
1631
- pipeline_id="pipeline_id",
1586
+ document_id="string",
1587
+ pipeline_id="string",
1632
1588
  )
1633
1589
  """
1634
1590
  _response = self._client_wrapper.httpx_client.request(
@@ -1664,8 +1620,8 @@ class PipelinesClient:
1664
1620
  token="YOUR_TOKEN",
1665
1621
  )
1666
1622
  client.pipelines.delete_pipeline_document(
1667
- document_id="document_id",
1668
- pipeline_id="pipeline_id",
1623
+ document_id="string",
1624
+ pipeline_id="string",
1669
1625
  )
1670
1626
  """
1671
1627
  _response = self._client_wrapper.httpx_client.request(
@@ -1701,8 +1657,8 @@ class PipelinesClient:
1701
1657
  token="YOUR_TOKEN",
1702
1658
  )
1703
1659
  client.pipelines.get_pipeline_document_status(
1704
- document_id="document_id",
1705
- pipeline_id="pipeline_id",
1660
+ document_id="string",
1661
+ pipeline_id="string",
1706
1662
  )
1707
1663
  """
1708
1664
  _response = self._client_wrapper.httpx_client.request(
@@ -1739,8 +1695,8 @@ class PipelinesClient:
1739
1695
  token="YOUR_TOKEN",
1740
1696
  )
1741
1697
  client.pipelines.list_pipeline_document_chunks(
1742
- document_id="document_id",
1743
- pipeline_id="pipeline_id",
1698
+ document_id="string",
1699
+ pipeline_id="string",
1744
1700
  )
1745
1701
  """
1746
1702
  _response = self._client_wrapper.httpx_client.request(
@@ -1790,12 +1746,15 @@ class AsyncPipelinesClient:
1790
1746
 
1791
1747
  - organization_id: typing.Optional[str].
1792
1748
  ---
1749
+ from llama_cloud import PipelineType
1793
1750
  from llama_cloud.client import AsyncLlamaCloud
1794
1751
 
1795
1752
  client = AsyncLlamaCloud(
1796
1753
  token="YOUR_TOKEN",
1797
1754
  )
1798
- await client.pipelines.search_pipelines()
1755
+ await client.pipelines.search_pipelines(
1756
+ pipeline_type=PipelineType.PLAYGROUND,
1757
+ )
1799
1758
  """
1800
1759
  _response = await self._client_wrapper.httpx_client.request(
1801
1760
  "GET",
@@ -1838,18 +1797,6 @@ class AsyncPipelinesClient:
1838
1797
  - organization_id: typing.Optional[str].
1839
1798
 
1840
1799
  - request: PipelineCreate.
1841
- ---
1842
- from llama_cloud import PipelineCreate
1843
- from llama_cloud.client import AsyncLlamaCloud
1844
-
1845
- client = AsyncLlamaCloud(
1846
- token="YOUR_TOKEN",
1847
- )
1848
- await client.pipelines.create_pipeline(
1849
- request=PipelineCreate(
1850
- name="name",
1851
- ),
1852
- )
1853
1800
  """
1854
1801
  _response = await self._client_wrapper.httpx_client.request(
1855
1802
  "POST",
@@ -1886,18 +1833,6 @@ class AsyncPipelinesClient:
1886
1833
  - organization_id: typing.Optional[str].
1887
1834
 
1888
1835
  - request: PipelineCreate.
1889
- ---
1890
- from llama_cloud import PipelineCreate
1891
- from llama_cloud.client import AsyncLlamaCloud
1892
-
1893
- client = AsyncLlamaCloud(
1894
- token="YOUR_TOKEN",
1895
- )
1896
- await client.pipelines.upsert_pipeline(
1897
- request=PipelineCreate(
1898
- name="name",
1899
- ),
1900
- )
1901
1836
  """
1902
1837
  _response = await self._client_wrapper.httpx_client.request(
1903
1838
  "PUT",
@@ -1923,15 +1858,6 @@ class AsyncPipelinesClient:
1923
1858
 
1924
1859
  Parameters:
1925
1860
  - pipeline_id: str.
1926
- ---
1927
- from llama_cloud.client import AsyncLlamaCloud
1928
-
1929
- client = AsyncLlamaCloud(
1930
- token="YOUR_TOKEN",
1931
- )
1932
- await client.pipelines.get_pipeline(
1933
- pipeline_id="pipeline_id",
1934
- )
1935
1861
  """
1936
1862
  _response = await self._client_wrapper.httpx_client.request(
1937
1863
  "GET",
@@ -1975,32 +1901,23 @@ class AsyncPipelinesClient:
1975
1901
 
1976
1902
  - transform_config: typing.Optional[PipelineUpdateTransformConfig]. Configuration for the transformation.
1977
1903
 
1978
- - configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]]. Deprecated, use embedding_config or transform_config instead. configured transformations for the pipeline.
1904
+ - configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]].
1979
1905
 
1980
- - data_sink_id: typing.Optional[str]. Data sink ID. When provided instead of data_sink, the data sink will be looked up by ID.
1906
+ - data_sink_id: typing.Optional[str].
1981
1907
 
1982
- - embedding_model_config_id: typing.Optional[str]. Embedding model config ID. When provided instead of embedding_config, the embedding model config will be looked up by ID.
1908
+ - embedding_model_config_id: typing.Optional[str].
1983
1909
 
1984
- - data_sink: typing.Optional[DataSinkCreate]. Data sink. When provided instead of data_sink_id, the data sink will be created.
1910
+ - data_sink: typing.Optional[DataSinkCreate].
1985
1911
 
1986
- - preset_retrieval_parameters: typing.Optional[PresetRetrievalParams]. Preset retrieval parameters for the pipeline.
1912
+ - preset_retrieval_parameters: typing.Optional[PresetRetrievalParams].
1987
1913
 
1988
- - eval_parameters: typing.Optional[EvalExecutionParams]. Eval parameters for the pipeline.
1914
+ - eval_parameters: typing.Optional[EvalExecutionParams].
1989
1915
 
1990
- - llama_parse_parameters: typing.Optional[LlamaParseParameters]. Settings that can be configured for how to use LlamaParse to parse files within a LlamaCloud pipeline.
1916
+ - llama_parse_parameters: typing.Optional[LlamaParseParameters].
1991
1917
 
1992
1918
  - name: typing.Optional[str].
1993
1919
 
1994
- - managed_pipeline_id: typing.Optional[str]. The ID of the ManagedPipeline this playground pipeline is linked to.
1995
- ---
1996
- from llama_cloud.client import AsyncLlamaCloud
1997
-
1998
- client = AsyncLlamaCloud(
1999
- token="YOUR_TOKEN",
2000
- )
2001
- await client.pipelines.update_existing_pipeline(
2002
- pipeline_id="pipeline_id",
2003
- )
1920
+ - managed_pipeline_id: typing.Optional[str].
2004
1921
  """
2005
1922
  _request: typing.Dict[str, typing.Any] = {}
2006
1923
  if embedding_config is not OMIT:
@@ -2055,7 +1972,7 @@ class AsyncPipelinesClient:
2055
1972
  token="YOUR_TOKEN",
2056
1973
  )
2057
1974
  await client.pipelines.delete_pipeline(
2058
- pipeline_id="pipeline_id",
1975
+ pipeline_id="string",
2059
1976
  )
2060
1977
  """
2061
1978
  _response = await self._client_wrapper.httpx_client.request(
@@ -2087,7 +2004,7 @@ class AsyncPipelinesClient:
2087
2004
  token="YOUR_TOKEN",
2088
2005
  )
2089
2006
  await client.pipelines.get_pipeline_status(
2090
- pipeline_id="pipeline_id",
2007
+ pipeline_id="string",
2091
2008
  )
2092
2009
  """
2093
2010
  _response = await self._client_wrapper.httpx_client.request(
@@ -2112,15 +2029,6 @@ class AsyncPipelinesClient:
2112
2029
 
2113
2030
  Parameters:
2114
2031
  - pipeline_id: str.
2115
- ---
2116
- from llama_cloud.client import AsyncLlamaCloud
2117
-
2118
- client = AsyncLlamaCloud(
2119
- token="YOUR_TOKEN",
2120
- )
2121
- await client.pipelines.sync_pipeline(
2122
- pipeline_id="pipeline_id",
2123
- )
2124
2032
  """
2125
2033
  _response = await self._client_wrapper.httpx_client.request(
2126
2034
  "POST",
@@ -2138,21 +2046,35 @@ class AsyncPipelinesClient:
2138
2046
  raise ApiError(status_code=_response.status_code, body=_response.text)
2139
2047
  raise ApiError(status_code=_response.status_code, body=_response_json)
2140
2048
 
2049
+ async def cancel_pipeline_sync(self, pipeline_id: str) -> Pipeline:
2050
+ """
2051
+ Parameters:
2052
+ - pipeline_id: str.
2053
+ """
2054
+ _response = await self._client_wrapper.httpx_client.request(
2055
+ "POST",
2056
+ urllib.parse.urljoin(
2057
+ f"{self._client_wrapper.get_base_url()}/", f"api/v1/pipelines/{pipeline_id}/sync/cancel"
2058
+ ),
2059
+ headers=self._client_wrapper.get_headers(),
2060
+ timeout=60,
2061
+ )
2062
+ if 200 <= _response.status_code < 300:
2063
+ return pydantic.parse_obj_as(Pipeline, _response.json()) # type: ignore
2064
+ if _response.status_code == 422:
2065
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
2066
+ try:
2067
+ _response_json = _response.json()
2068
+ except JSONDecodeError:
2069
+ raise ApiError(status_code=_response.status_code, body=_response.text)
2070
+ raise ApiError(status_code=_response.status_code, body=_response_json)
2071
+
2141
2072
  async def copy_pipeline(self, pipeline_id: str) -> Pipeline:
2142
2073
  """
2143
2074
  Copy a pipeline by ID.
2144
2075
 
2145
2076
  Parameters:
2146
2077
  - pipeline_id: str.
2147
- ---
2148
- from llama_cloud.client import AsyncLlamaCloud
2149
-
2150
- client = AsyncLlamaCloud(
2151
- token="YOUR_TOKEN",
2152
- )
2153
- await client.pipelines.copy_pipeline(
2154
- pipeline_id="pipeline_id",
2155
- )
2156
2078
  """
2157
2079
  _response = await self._client_wrapper.httpx_client.request(
2158
2080
  "POST",
@@ -2187,8 +2109,8 @@ class AsyncPipelinesClient:
2187
2109
  token="YOUR_TOKEN",
2188
2110
  )
2189
2111
  await client.pipelines.get_eval_dataset_executions(
2190
- eval_dataset_id="eval_dataset_id",
2191
- pipeline_id="pipeline_id",
2112
+ eval_dataset_id="string",
2113
+ pipeline_id="string",
2192
2114
  )
2193
2115
  """
2194
2116
  _response = await self._client_wrapper.httpx_client.request(
@@ -2230,15 +2152,19 @@ class AsyncPipelinesClient:
2230
2152
 
2231
2153
  - params: typing.Optional[EvalExecutionParamsOverride]. The parameters for the eval execution that will override the ones set in the pipeline.
2232
2154
  ---
2155
+ from llama_cloud import EvalExecutionParamsOverride, SupportedLlmModelNames
2233
2156
  from llama_cloud.client import AsyncLlamaCloud
2234
2157
 
2235
2158
  client = AsyncLlamaCloud(
2236
2159
  token="YOUR_TOKEN",
2237
2160
  )
2238
2161
  await client.pipelines.execute_eval_dataset(
2239
- eval_dataset_id="eval_dataset_id",
2240
- pipeline_id="pipeline_id",
2241
- eval_question_ids=["eval_question_ids"],
2162
+ eval_dataset_id="string",
2163
+ pipeline_id="string",
2164
+ eval_question_ids=[],
2165
+ params=EvalExecutionParamsOverride(
2166
+ llm_model=SupportedLlmModelNames.GPT_3_5_TURBO,
2167
+ ),
2242
2168
  )
2243
2169
  """
2244
2170
  _request: typing.Dict[str, typing.Any] = {"eval_question_ids": eval_question_ids}
@@ -2284,8 +2210,8 @@ class AsyncPipelinesClient:
2284
2210
  token="YOUR_TOKEN",
2285
2211
  )
2286
2212
  await client.pipelines.get_eval_dataset_execution_result(
2287
- eval_dataset_id="eval_dataset_id",
2288
- pipeline_id="pipeline_id",
2213
+ eval_dataset_id="string",
2214
+ pipeline_id="string",
2289
2215
  )
2290
2216
  """
2291
2217
  _response = await self._client_wrapper.httpx_client.request(
@@ -2326,9 +2252,9 @@ class AsyncPipelinesClient:
2326
2252
  token="YOUR_TOKEN",
2327
2253
  )
2328
2254
  await client.pipelines.get_eval_dataset_execution(
2329
- eval_dataset_id="eval_dataset_id",
2330
- eval_dataset_execution_id="eval_dataset_execution_id",
2331
- pipeline_id="pipeline_id",
2255
+ eval_dataset_id="string",
2256
+ eval_dataset_execution_id="string",
2257
+ pipeline_id="string",
2332
2258
  )
2333
2259
  """
2334
2260
  _response = await self._client_wrapper.httpx_client.request(
@@ -2373,7 +2299,7 @@ class AsyncPipelinesClient:
2373
2299
  token="YOUR_TOKEN",
2374
2300
  )
2375
2301
  await client.pipelines.list_pipeline_files(
2376
- pipeline_id="pipeline_id",
2302
+ pipeline_id="string",
2377
2303
  )
2378
2304
  """
2379
2305
  _response = await self._client_wrapper.httpx_client.request(
@@ -2406,19 +2332,14 @@ class AsyncPipelinesClient:
2406
2332
 
2407
2333
  - request: typing.List[PipelineFileCreate].
2408
2334
  ---
2409
- from llama_cloud import PipelineFileCreate
2410
2335
  from llama_cloud.client import AsyncLlamaCloud
2411
2336
 
2412
2337
  client = AsyncLlamaCloud(
2413
2338
  token="YOUR_TOKEN",
2414
2339
  )
2415
2340
  await client.pipelines.add_files_to_pipeline(
2416
- pipeline_id="pipeline_id",
2417
- request=[
2418
- PipelineFileCreate(
2419
- file_id="file_id",
2420
- )
2421
- ],
2341
+ pipeline_id="string",
2342
+ request=[],
2422
2343
  )
2423
2344
  """
2424
2345
  _response = await self._client_wrapper.httpx_client.request(
@@ -2467,7 +2388,7 @@ class AsyncPipelinesClient:
2467
2388
  token="YOUR_TOKEN",
2468
2389
  )
2469
2390
  await client.pipelines.list_pipeline_files_2(
2470
- pipeline_id="pipeline_id",
2391
+ pipeline_id="string",
2471
2392
  )
2472
2393
  """
2473
2394
  _response = await self._client_wrapper.httpx_client.request(
@@ -2509,8 +2430,8 @@ class AsyncPipelinesClient:
2509
2430
  token="YOUR_TOKEN",
2510
2431
  )
2511
2432
  await client.pipelines.get_pipeline_file_status(
2512
- file_id="file_id",
2513
- pipeline_id="pipeline_id",
2433
+ file_id="string",
2434
+ pipeline_id="string",
2514
2435
  )
2515
2436
  """
2516
2437
  _response = await self._client_wrapper.httpx_client.request(
@@ -2548,7 +2469,7 @@ class AsyncPipelinesClient:
2548
2469
 
2549
2470
  - pipeline_id: str.
2550
2471
 
2551
- - custom_metadata: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileUpdateCustomMetadataValue]]]. Custom metadata for the file
2472
+ - custom_metadata: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileUpdateCustomMetadataValue]]].
2552
2473
  ---
2553
2474
  from llama_cloud.client import AsyncLlamaCloud
2554
2475
 
@@ -2556,8 +2477,8 @@ class AsyncPipelinesClient:
2556
2477
  token="YOUR_TOKEN",
2557
2478
  )
2558
2479
  await client.pipelines.update_pipeline_file(
2559
- file_id="file_id",
2560
- pipeline_id="pipeline_id",
2480
+ file_id="string",
2481
+ pipeline_id="string",
2561
2482
  )
2562
2483
  """
2563
2484
  _request: typing.Dict[str, typing.Any] = {}
@@ -2597,8 +2518,8 @@ class AsyncPipelinesClient:
2597
2518
  token="YOUR_TOKEN",
2598
2519
  )
2599
2520
  await client.pipelines.delete_pipeline_file(
2600
- file_id="file_id",
2601
- pipeline_id="pipeline_id",
2521
+ file_id="string",
2522
+ pipeline_id="string",
2602
2523
  )
2603
2524
  """
2604
2525
  _response = await self._client_wrapper.httpx_client.request(
@@ -2627,15 +2548,6 @@ class AsyncPipelinesClient:
2627
2548
  - pipeline_id: str.
2628
2549
 
2629
2550
  - upload_file: typing.IO.
2630
- ---
2631
- from llama_cloud.client import AsyncLlamaCloud
2632
-
2633
- client = AsyncLlamaCloud(
2634
- token="YOUR_TOKEN",
2635
- )
2636
- await client.pipelines.import_pipeline_metadata(
2637
- pipeline_id="pipeline_id",
2638
- )
2639
2551
  """
2640
2552
  _response = await self._client_wrapper.httpx_client.request(
2641
2553
  "PUT",
@@ -2668,7 +2580,7 @@ class AsyncPipelinesClient:
2668
2580
  token="YOUR_TOKEN",
2669
2581
  )
2670
2582
  await client.pipelines.delete_pipeline_files_metadata(
2671
- pipeline_id="pipeline_id",
2583
+ pipeline_id="string",
2672
2584
  )
2673
2585
  """
2674
2586
  _response = await self._client_wrapper.httpx_client.request(
@@ -2700,7 +2612,7 @@ class AsyncPipelinesClient:
2700
2612
  token="YOUR_TOKEN",
2701
2613
  )
2702
2614
  await client.pipelines.list_pipeline_data_sources(
2703
- pipeline_id="pipeline_id",
2615
+ pipeline_id="string",
2704
2616
  )
2705
2617
  """
2706
2618
  _response = await self._client_wrapper.httpx_client.request(
@@ -2732,19 +2644,14 @@ class AsyncPipelinesClient:
2732
2644
 
2733
2645
  - request: typing.List[PipelineDataSourceCreate].
2734
2646
  ---
2735
- from llama_cloud import PipelineDataSourceCreate
2736
2647
  from llama_cloud.client import AsyncLlamaCloud
2737
2648
 
2738
2649
  client = AsyncLlamaCloud(
2739
2650
  token="YOUR_TOKEN",
2740
2651
  )
2741
2652
  await client.pipelines.add_data_sources_to_pipeline(
2742
- pipeline_id="pipeline_id",
2743
- request=[
2744
- PipelineDataSourceCreate(
2745
- data_source_id="data_source_id",
2746
- )
2747
- ],
2653
+ pipeline_id="string",
2654
+ request=[],
2748
2655
  )
2749
2656
  """
2750
2657
  _response = await self._client_wrapper.httpx_client.request(
@@ -2777,7 +2684,7 @@ class AsyncPipelinesClient:
2777
2684
 
2778
2685
  - pipeline_id: str.
2779
2686
 
2780
- - sync_interval: typing.Optional[float]. The interval at which the data source should be synced.
2687
+ - sync_interval: typing.Optional[float].
2781
2688
  ---
2782
2689
  from llama_cloud.client import AsyncLlamaCloud
2783
2690
 
@@ -2785,8 +2692,8 @@ class AsyncPipelinesClient:
2785
2692
  token="YOUR_TOKEN",
2786
2693
  )
2787
2694
  await client.pipelines.update_pipeline_data_source(
2788
- data_source_id="data_source_id",
2789
- pipeline_id="pipeline_id",
2695
+ data_source_id="string",
2696
+ pipeline_id="string",
2790
2697
  )
2791
2698
  """
2792
2699
  _request: typing.Dict[str, typing.Any] = {}
@@ -2827,8 +2734,8 @@ class AsyncPipelinesClient:
2827
2734
  token="YOUR_TOKEN",
2828
2735
  )
2829
2736
  await client.pipelines.delete_pipeline_data_source(
2830
- data_source_id="data_source_id",
2831
- pipeline_id="pipeline_id",
2737
+ data_source_id="string",
2738
+ pipeline_id="string",
2832
2739
  )
2833
2740
  """
2834
2741
  _response = await self._client_wrapper.httpx_client.request(
@@ -2858,16 +2765,6 @@ class AsyncPipelinesClient:
2858
2765
  - data_source_id: str.
2859
2766
 
2860
2767
  - pipeline_id: str.
2861
- ---
2862
- from llama_cloud.client import AsyncLlamaCloud
2863
-
2864
- client = AsyncLlamaCloud(
2865
- token="YOUR_TOKEN",
2866
- )
2867
- await client.pipelines.sync_pipeline_data_source(
2868
- data_source_id="data_source_id",
2869
- pipeline_id="pipeline_id",
2870
- )
2871
2768
  """
2872
2769
  _response = await self._client_wrapper.httpx_client.request(
2873
2770
  "POST",
@@ -2905,8 +2802,8 @@ class AsyncPipelinesClient:
2905
2802
  token="YOUR_TOKEN",
2906
2803
  )
2907
2804
  await client.pipelines.get_pipeline_data_source_status(
2908
- data_source_id="data_source_id",
2909
- pipeline_id="pipeline_id",
2805
+ data_source_id="string",
2806
+ pipeline_id="string",
2910
2807
  )
2911
2808
  """
2912
2809
  _response = await self._client_wrapper.httpx_client.request(
@@ -2951,21 +2848,21 @@ class AsyncPipelinesClient:
2951
2848
  Parameters:
2952
2849
  - pipeline_id: str.
2953
2850
 
2954
- - dense_similarity_top_k: typing.Optional[int]. Number of nodes for dense retrieval.
2851
+ - dense_similarity_top_k: typing.Optional[int].
2955
2852
 
2956
- - dense_similarity_cutoff: typing.Optional[float]. Minimum similarity score wrt query for retrieval
2853
+ - dense_similarity_cutoff: typing.Optional[float].
2957
2854
 
2958
- - sparse_similarity_top_k: typing.Optional[int]. Number of nodes for sparse retrieval.
2855
+ - sparse_similarity_top_k: typing.Optional[int].
2959
2856
 
2960
- - enable_reranking: typing.Optional[bool]. Enable reranking for retrieval
2857
+ - enable_reranking: typing.Optional[bool].
2961
2858
 
2962
- - rerank_top_n: typing.Optional[int]. Number of reranked nodes for returning.
2859
+ - rerank_top_n: typing.Optional[int].
2963
2860
 
2964
- - alpha: typing.Optional[float]. Alpha value for hybrid retrieval to determine the weights between dense and sparse retrieval. 0 is sparse retrieval and 1 is dense retrieval.
2861
+ - alpha: typing.Optional[float].
2965
2862
 
2966
- - search_filters: typing.Optional[MetadataFilters]. Search filters for retrieval.
2863
+ - search_filters: typing.Optional[MetadataFilters].
2967
2864
 
2968
- - files_top_k: typing.Optional[int]. Number of files to retrieve (only for retrieval mode files_via_metadata and files_via_content).
2865
+ - files_top_k: typing.Optional[int].
2969
2866
 
2970
2867
  - retrieval_mode: typing.Optional[RetrievalMode]. The retrieval mode for the query.
2971
2868
 
@@ -2975,14 +2872,20 @@ class AsyncPipelinesClient:
2975
2872
 
2976
2873
  - class_name: typing.Optional[str].
2977
2874
  ---
2875
+ from llama_cloud import FilterCondition, MetadataFilters, RetrievalMode
2978
2876
  from llama_cloud.client import AsyncLlamaCloud
2979
2877
 
2980
2878
  client = AsyncLlamaCloud(
2981
2879
  token="YOUR_TOKEN",
2982
2880
  )
2983
2881
  await client.pipelines.run_search(
2984
- pipeline_id="pipeline_id",
2985
- query="query",
2882
+ pipeline_id="string",
2883
+ search_filters=MetadataFilters(
2884
+ filters=[],
2885
+ condition=FilterCondition.AND,
2886
+ ),
2887
+ retrieval_mode=RetrievalMode.CHUNKS,
2888
+ query="string",
2986
2889
  )
2987
2890
  """
2988
2891
  _request: typing.Dict[str, typing.Any] = {"query": query}
@@ -3038,7 +2941,7 @@ class AsyncPipelinesClient:
3038
2941
  token="YOUR_TOKEN",
3039
2942
  )
3040
2943
  await client.pipelines.list_pipeline_jobs(
3041
- pipeline_id="pipeline_id",
2944
+ pipeline_id="string",
3042
2945
  )
3043
2946
  """
3044
2947
  _response = await self._client_wrapper.httpx_client.request(
@@ -3072,8 +2975,8 @@ class AsyncPipelinesClient:
3072
2975
  token="YOUR_TOKEN",
3073
2976
  )
3074
2977
  await client.pipelines.get_pipeline_job(
3075
- job_id="job_id",
3076
- pipeline_id="pipeline_id",
2978
+ job_id="string",
2979
+ pipeline_id="string",
3077
2980
  )
3078
2981
  """
3079
2982
  _response = await self._client_wrapper.httpx_client.request(
@@ -3107,7 +3010,7 @@ class AsyncPipelinesClient:
3107
3010
  token="YOUR_TOKEN",
3108
3011
  )
3109
3012
  await client.pipelines.get_playground_session(
3110
- pipeline_id="pipeline_id",
3013
+ pipeline_id="string",
3111
3014
  )
3112
3015
  """
3113
3016
  _response = await self._client_wrapper.httpx_client.request(
@@ -3148,13 +3051,34 @@ class AsyncPipelinesClient:
3148
3051
 
3149
3052
  - class_name: typing.Optional[str].
3150
3053
  ---
3054
+ from llama_cloud import (
3055
+ ChatData,
3056
+ FilterCondition,
3057
+ LlmParameters,
3058
+ MetadataFilters,
3059
+ PresetRetrievalParams,
3060
+ RetrievalMode,
3061
+ SupportedLlmModelNames,
3062
+ )
3151
3063
  from llama_cloud.client import AsyncLlamaCloud
3152
3064
 
3153
3065
  client = AsyncLlamaCloud(
3154
3066
  token="YOUR_TOKEN",
3155
3067
  )
3156
3068
  await client.pipelines.chat(
3157
- pipeline_id="pipeline_id",
3069
+ pipeline_id="string",
3070
+ data=ChatData(
3071
+ retrieval_parameters=PresetRetrievalParams(
3072
+ search_filters=MetadataFilters(
3073
+ filters=[],
3074
+ condition=FilterCondition.AND,
3075
+ ),
3076
+ retrieval_mode=RetrievalMode.CHUNKS,
3077
+ ),
3078
+ llm_parameters=LlmParameters(
3079
+ model_name=SupportedLlmModelNames.GPT_3_5_TURBO,
3080
+ ),
3081
+ ),
3158
3082
  )
3159
3083
  """
3160
3084
  _request: typing.Dict[str, typing.Any] = {}
@@ -3210,7 +3134,7 @@ class AsyncPipelinesClient:
3210
3134
  token="YOUR_TOKEN",
3211
3135
  )
3212
3136
  await client.pipelines.list_pipeline_documents(
3213
- pipeline_id="pipeline_id",
3137
+ pipeline_id="string",
3214
3138
  )
3215
3139
  """
3216
3140
  _response = await self._client_wrapper.httpx_client.request(
@@ -3245,20 +3169,14 @@ class AsyncPipelinesClient:
3245
3169
 
3246
3170
  - request: typing.List[CloudDocumentCreate].
3247
3171
  ---
3248
- from llama_cloud import CloudDocumentCreate
3249
3172
  from llama_cloud.client import AsyncLlamaCloud
3250
3173
 
3251
3174
  client = AsyncLlamaCloud(
3252
3175
  token="YOUR_TOKEN",
3253
3176
  )
3254
3177
  await client.pipelines.create_batch_pipeline_documents(
3255
- pipeline_id="pipeline_id",
3256
- request=[
3257
- CloudDocumentCreate(
3258
- text="text",
3259
- metadata={"key": "value"},
3260
- )
3261
- ],
3178
+ pipeline_id="string",
3179
+ request=[],
3262
3180
  )
3263
3181
  """
3264
3182
  _response = await self._client_wrapper.httpx_client.request(
@@ -3291,20 +3209,14 @@ class AsyncPipelinesClient:
3291
3209
 
3292
3210
  - request: typing.List[CloudDocumentCreate].
3293
3211
  ---
3294
- from llama_cloud import CloudDocumentCreate
3295
3212
  from llama_cloud.client import AsyncLlamaCloud
3296
3213
 
3297
3214
  client = AsyncLlamaCloud(
3298
3215
  token="YOUR_TOKEN",
3299
3216
  )
3300
3217
  await client.pipelines.upsert_batch_pipeline_documents(
3301
- pipeline_id="pipeline_id",
3302
- request=[
3303
- CloudDocumentCreate(
3304
- text="text",
3305
- metadata={"key": "value"},
3306
- )
3307
- ],
3218
+ pipeline_id="string",
3219
+ request=[],
3308
3220
  )
3309
3221
  """
3310
3222
  _response = await self._client_wrapper.httpx_client.request(
@@ -3341,8 +3253,8 @@ class AsyncPipelinesClient:
3341
3253
  token="YOUR_TOKEN",
3342
3254
  )
3343
3255
  await client.pipelines.get_pipeline_document(
3344
- document_id="document_id",
3345
- pipeline_id="pipeline_id",
3256
+ document_id="string",
3257
+ pipeline_id="string",
3346
3258
  )
3347
3259
  """
3348
3260
  _response = await self._client_wrapper.httpx_client.request(
@@ -3378,8 +3290,8 @@ class AsyncPipelinesClient:
3378
3290
  token="YOUR_TOKEN",
3379
3291
  )
3380
3292
  await client.pipelines.delete_pipeline_document(
3381
- document_id="document_id",
3382
- pipeline_id="pipeline_id",
3293
+ document_id="string",
3294
+ pipeline_id="string",
3383
3295
  )
3384
3296
  """
3385
3297
  _response = await self._client_wrapper.httpx_client.request(
@@ -3415,8 +3327,8 @@ class AsyncPipelinesClient:
3415
3327
  token="YOUR_TOKEN",
3416
3328
  )
3417
3329
  await client.pipelines.get_pipeline_document_status(
3418
- document_id="document_id",
3419
- pipeline_id="pipeline_id",
3330
+ document_id="string",
3331
+ pipeline_id="string",
3420
3332
  )
3421
3333
  """
3422
3334
  _response = await self._client_wrapper.httpx_client.request(
@@ -3453,8 +3365,8 @@ class AsyncPipelinesClient:
3453
3365
  token="YOUR_TOKEN",
3454
3366
  )
3455
3367
  await client.pipelines.list_pipeline_document_chunks(
3456
- document_id="document_id",
3457
- pipeline_id="pipeline_id",
3368
+ document_id="string",
3369
+ pipeline_id="string",
3458
3370
  )
3459
3371
  """
3460
3372
  _response = await self._client_wrapper.httpx_client.request(