llama-cloud 0.1.6__py3-none-any.whl → 0.1.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +140 -6
- llama_cloud/client.py +15 -0
- llama_cloud/environment.py +1 -1
- llama_cloud/resources/__init__.py +15 -0
- llama_cloud/{types/token.py → resources/chat_apps/__init__.py} +0 -3
- llama_cloud/resources/chat_apps/client.py +630 -0
- llama_cloud/resources/data_sinks/client.py +12 -12
- llama_cloud/resources/data_sources/client.py +14 -14
- llama_cloud/resources/embedding_model_configs/client.py +20 -76
- llama_cloud/resources/evals/client.py +26 -36
- llama_cloud/resources/extraction/client.py +32 -32
- llama_cloud/resources/files/client.py +40 -44
- llama_cloud/resources/jobs/__init__.py +2 -0
- llama_cloud/resources/jobs/client.py +148 -0
- llama_cloud/resources/llama_extract/__init__.py +5 -0
- llama_cloud/resources/llama_extract/client.py +1038 -0
- llama_cloud/resources/llama_extract/types/__init__.py +6 -0
- llama_cloud/resources/llama_extract/types/extract_agent_create_data_schema_value.py +7 -0
- llama_cloud/resources/llama_extract/types/extract_agent_update_data_schema_value.py +7 -0
- llama_cloud/resources/organizations/client.py +66 -70
- llama_cloud/resources/parsing/client.py +448 -428
- llama_cloud/resources/pipelines/client.py +256 -344
- llama_cloud/resources/projects/client.py +34 -60
- llama_cloud/resources/reports/__init__.py +5 -0
- llama_cloud/resources/reports/client.py +1198 -0
- llama_cloud/resources/reports/types/__init__.py +7 -0
- llama_cloud/resources/reports/types/update_report_plan_api_v_1_reports_report_id_plan_patch_request_action.py +25 -0
- llama_cloud/resources/retrievers/__init__.py +2 -0
- llama_cloud/resources/retrievers/client.py +654 -0
- llama_cloud/types/__init__.py +128 -6
- llama_cloud/types/{chat_message.py → app_schema_chat_chat_message.py} +3 -3
- llama_cloud/types/azure_open_ai_embedding.py +6 -12
- llama_cloud/types/base_prompt_template.py +2 -6
- llama_cloud/types/bedrock_embedding.py +6 -12
- llama_cloud/types/character_splitter.py +2 -4
- llama_cloud/types/chat_app.py +44 -0
- llama_cloud/types/chat_app_response.py +41 -0
- llama_cloud/types/cloud_az_storage_blob_data_source.py +7 -15
- llama_cloud/types/cloud_box_data_source.py +6 -12
- llama_cloud/types/cloud_confluence_data_source.py +6 -6
- llama_cloud/types/cloud_document.py +1 -3
- llama_cloud/types/cloud_document_create.py +1 -3
- llama_cloud/types/cloud_jira_data_source.py +4 -6
- llama_cloud/types/cloud_notion_page_data_source.py +2 -2
- llama_cloud/types/cloud_one_drive_data_source.py +3 -5
- llama_cloud/types/cloud_postgres_vector_store.py +1 -0
- llama_cloud/types/cloud_s_3_data_source.py +4 -8
- llama_cloud/types/cloud_sharepoint_data_source.py +6 -8
- llama_cloud/types/cloud_slack_data_source.py +6 -6
- llama_cloud/types/code_splitter.py +1 -1
- llama_cloud/types/cohere_embedding.py +3 -7
- llama_cloud/types/composite_retrieval_mode.py +21 -0
- llama_cloud/types/composite_retrieval_result.py +38 -0
- llama_cloud/types/composite_retrieved_text_node.py +42 -0
- llama_cloud/types/data_sink.py +4 -4
- llama_cloud/types/data_sink_component.py +20 -0
- llama_cloud/types/data_source.py +5 -7
- llama_cloud/types/data_source_component.py +28 -0
- llama_cloud/types/data_source_create.py +1 -3
- llama_cloud/types/edit_suggestion.py +39 -0
- llama_cloud/types/embedding_model_config.py +2 -2
- llama_cloud/types/embedding_model_config_update.py +2 -4
- llama_cloud/types/eval_dataset.py +2 -2
- llama_cloud/types/eval_dataset_job_record.py +8 -13
- llama_cloud/types/eval_execution_params_override.py +2 -6
- llama_cloud/types/eval_question.py +2 -2
- llama_cloud/types/extract_agent.py +45 -0
- llama_cloud/types/extract_agent_data_schema_value.py +5 -0
- llama_cloud/types/extract_config.py +40 -0
- llama_cloud/types/extract_job.py +35 -0
- llama_cloud/types/extract_job_create.py +40 -0
- llama_cloud/types/extract_job_create_data_schema_override_value.py +7 -0
- llama_cloud/types/extract_mode.py +17 -0
- llama_cloud/types/extract_resultset.py +46 -0
- llama_cloud/types/extract_resultset_data.py +11 -0
- llama_cloud/types/extract_resultset_data_item_value.py +7 -0
- llama_cloud/types/extract_resultset_data_zero_value.py +7 -0
- llama_cloud/types/extract_resultset_extraction_metadata_value.py +7 -0
- llama_cloud/types/extraction_result.py +2 -2
- llama_cloud/types/extraction_schema.py +3 -5
- llama_cloud/types/file.py +9 -14
- llama_cloud/types/filter_condition.py +9 -1
- llama_cloud/types/filter_operator.py +6 -2
- llama_cloud/types/gemini_embedding.py +6 -10
- llama_cloud/types/hugging_face_inference_api_embedding.py +11 -27
- llama_cloud/types/hugging_face_inference_api_embedding_token.py +5 -0
- llama_cloud/types/image_block.py +35 -0
- llama_cloud/types/input_message.py +2 -4
- llama_cloud/types/job_names.py +89 -0
- llama_cloud/types/job_record.py +57 -0
- llama_cloud/types/job_record_with_usage_metrics.py +36 -0
- llama_cloud/types/llama_index_core_base_llms_types_chat_message.py +39 -0
- llama_cloud/types/llama_index_core_base_llms_types_chat_message_blocks_item.py +33 -0
- llama_cloud/types/llama_parse_parameters.py +4 -0
- llama_cloud/types/llm.py +3 -4
- llama_cloud/types/llm_model_data.py +1 -0
- llama_cloud/types/llm_parameters.py +3 -5
- llama_cloud/types/local_eval.py +8 -10
- llama_cloud/types/local_eval_results.py +1 -1
- llama_cloud/types/managed_ingestion_status.py +4 -0
- llama_cloud/types/managed_ingestion_status_response.py +4 -5
- llama_cloud/types/markdown_element_node_parser.py +3 -5
- llama_cloud/types/markdown_node_parser.py +1 -1
- llama_cloud/types/metadata_filter.py +2 -2
- llama_cloud/types/metadata_filter_value.py +5 -0
- llama_cloud/types/metric_result.py +3 -3
- llama_cloud/types/node_parser.py +1 -1
- llama_cloud/types/object_type.py +4 -0
- llama_cloud/types/open_ai_embedding.py +6 -12
- llama_cloud/types/organization.py +7 -2
- llama_cloud/types/page_splitter_node_parser.py +2 -2
- llama_cloud/types/paginated_jobs_history_with_metrics.py +35 -0
- llama_cloud/types/paginated_report_response.py +35 -0
- llama_cloud/types/parse_plan_level.py +21 -0
- llama_cloud/types/permission.py +3 -3
- llama_cloud/types/pipeline.py +7 -17
- llama_cloud/types/pipeline_configuration_hashes.py +3 -3
- llama_cloud/types/pipeline_create.py +8 -16
- llama_cloud/types/pipeline_data_source.py +7 -13
- llama_cloud/types/pipeline_data_source_component.py +28 -0
- llama_cloud/types/pipeline_data_source_create.py +1 -3
- llama_cloud/types/pipeline_deployment.py +4 -4
- llama_cloud/types/pipeline_file.py +13 -24
- llama_cloud/types/pipeline_file_create.py +1 -3
- llama_cloud/types/playground_session.py +4 -4
- llama_cloud/types/preset_retrieval_params.py +8 -14
- llama_cloud/types/presigned_url.py +1 -3
- llama_cloud/types/progress_event.py +44 -0
- llama_cloud/types/progress_event_status.py +33 -0
- llama_cloud/types/project.py +2 -2
- llama_cloud/types/prompt_mixin_prompts.py +1 -1
- llama_cloud/types/prompt_spec.py +3 -5
- llama_cloud/types/related_node_info.py +2 -2
- llama_cloud/types/related_node_info_node_type.py +7 -0
- llama_cloud/types/report.py +33 -0
- llama_cloud/types/report_block.py +34 -0
- llama_cloud/types/report_block_dependency.py +29 -0
- llama_cloud/types/report_create_response.py +31 -0
- llama_cloud/types/report_event_item.py +40 -0
- llama_cloud/types/report_event_item_event_data.py +45 -0
- llama_cloud/types/report_event_type.py +37 -0
- llama_cloud/types/report_metadata.py +43 -0
- llama_cloud/types/report_plan.py +36 -0
- llama_cloud/types/report_plan_block.py +36 -0
- llama_cloud/types/report_query.py +33 -0
- llama_cloud/types/report_response.py +41 -0
- llama_cloud/types/report_state.py +37 -0
- llama_cloud/types/report_state_event.py +38 -0
- llama_cloud/types/report_update_event.py +38 -0
- llama_cloud/types/retrieve_results.py +1 -1
- llama_cloud/types/retriever.py +45 -0
- llama_cloud/types/retriever_create.py +37 -0
- llama_cloud/types/retriever_pipeline.py +37 -0
- llama_cloud/types/role.py +3 -3
- llama_cloud/types/sentence_splitter.py +2 -4
- llama_cloud/types/status_enum.py +4 -0
- llama_cloud/types/supported_llm_model_names.py +4 -0
- llama_cloud/types/text_block.py +31 -0
- llama_cloud/types/text_node.py +15 -8
- llama_cloud/types/token_text_splitter.py +1 -1
- llama_cloud/types/usage_metric_response.py +34 -0
- llama_cloud/types/user_job_record.py +32 -0
- llama_cloud/types/user_organization.py +5 -9
- llama_cloud/types/user_organization_create.py +4 -4
- llama_cloud/types/user_organization_delete.py +2 -2
- llama_cloud/types/user_organization_role.py +2 -2
- llama_cloud/types/vertex_text_embedding.py +5 -9
- {llama_cloud-0.1.6.dist-info → llama_cloud-0.1.7.dist-info}/METADATA +2 -1
- llama_cloud-0.1.7.dist-info/RECORD +310 -0
- llama_cloud/types/value.py +0 -5
- llama_cloud-0.1.6.dist-info/RECORD +0 -241
- {llama_cloud-0.1.6.dist-info → llama_cloud-0.1.7.dist-info}/LICENSE +0 -0
- {llama_cloud-0.1.6.dist-info → llama_cloud-0.1.7.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import typing
|
|
6
|
+
|
|
7
|
+
import typing_extensions
|
|
8
|
+
|
|
9
|
+
from .image_block import ImageBlock
|
|
10
|
+
from .text_block import TextBlock
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Image(ImageBlock):
|
|
14
|
+
block_type: typing_extensions.Literal["image"]
|
|
15
|
+
|
|
16
|
+
class Config:
|
|
17
|
+
frozen = True
|
|
18
|
+
smart_union = True
|
|
19
|
+
allow_population_by_field_name = True
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Text(TextBlock):
|
|
23
|
+
block_type: typing_extensions.Literal["text"]
|
|
24
|
+
|
|
25
|
+
class Config:
|
|
26
|
+
frozen = True
|
|
27
|
+
smart_union = True
|
|
28
|
+
allow_population_by_field_name = True
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem = typing.Union[
|
|
32
|
+
LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Image, LlamaIndexCoreBaseLlmsTypesChatMessageBlocksItem_Text
|
|
33
|
+
]
|
|
@@ -34,7 +34,9 @@ class LlamaParseParameters(pydantic.BaseModel):
|
|
|
34
34
|
gpt_4_o_mode: typing.Optional[bool] = pydantic.Field(alias="gpt4o_mode")
|
|
35
35
|
gpt_4_o_api_key: typing.Optional[str] = pydantic.Field(alias="gpt4o_api_key")
|
|
36
36
|
do_not_unroll_columns: typing.Optional[bool]
|
|
37
|
+
extract_layout: typing.Optional[bool]
|
|
37
38
|
html_make_all_elements_visible: typing.Optional[bool]
|
|
39
|
+
html_remove_navigation_elements: typing.Optional[bool]
|
|
38
40
|
html_remove_fixed_elements: typing.Optional[bool]
|
|
39
41
|
guess_xlsx_sheet_name: typing.Optional[bool]
|
|
40
42
|
page_separator: typing.Optional[str]
|
|
@@ -72,6 +74,8 @@ class LlamaParseParameters(pydantic.BaseModel):
|
|
|
72
74
|
structured_output_json_schema: typing.Optional[str]
|
|
73
75
|
structured_output_json_schema_name: typing.Optional[str]
|
|
74
76
|
max_pages: typing.Optional[int]
|
|
77
|
+
max_pages_enforced: typing.Optional[int]
|
|
78
|
+
extract_charts: typing.Optional[bool]
|
|
75
79
|
|
|
76
80
|
def json(self, **kwargs: typing.Any) -> str:
|
|
77
81
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
llama_cloud/types/llm.py
CHANGED
|
@@ -34,7 +34,7 @@ class Llm(pydantic.BaseModel):
|
|
|
34
34
|
"""
|
|
35
35
|
|
|
36
36
|
callback_manager: typing.Optional[typing.Any]
|
|
37
|
-
system_prompt: typing.Optional[str]
|
|
37
|
+
system_prompt: typing.Optional[str]
|
|
38
38
|
messages_to_prompt: typing.Optional[str] = pydantic.Field(
|
|
39
39
|
description="Function to convert a list of messages to an LLM prompt."
|
|
40
40
|
)
|
|
@@ -43,9 +43,8 @@ class Llm(pydantic.BaseModel):
|
|
|
43
43
|
)
|
|
44
44
|
output_parser: typing.Optional[typing.Any]
|
|
45
45
|
pydantic_program_mode: typing.Optional[PydanticProgramMode]
|
|
46
|
-
query_wrapper_prompt: typing.Optional[BasePromptTemplate]
|
|
47
|
-
|
|
48
|
-
)
|
|
46
|
+
query_wrapper_prompt: typing.Optional[BasePromptTemplate]
|
|
47
|
+
class_name: typing.Optional[str]
|
|
49
48
|
|
|
50
49
|
def json(self, **kwargs: typing.Any) -> str:
|
|
51
50
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -22,6 +22,7 @@ class LlmModelData(pydantic.BaseModel):
|
|
|
22
22
|
name: str = pydantic.Field(description="The name of the LLM model.")
|
|
23
23
|
description: str = pydantic.Field(description="The description of the LLM model.")
|
|
24
24
|
multi_modal: bool = pydantic.Field(description="Whether the model supports multi-modal image input")
|
|
25
|
+
model_name: typing.Optional[str]
|
|
25
26
|
|
|
26
27
|
def json(self, **kwargs: typing.Any) -> str:
|
|
27
28
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -19,11 +19,9 @@ class LlmParameters(pydantic.BaseModel):
|
|
|
19
19
|
model_name: typing.Optional[SupportedLlmModelNames] = pydantic.Field(
|
|
20
20
|
description="The name of the model to use for LLM completions."
|
|
21
21
|
)
|
|
22
|
-
system_prompt: typing.Optional[str]
|
|
23
|
-
temperature: typing.Optional[float]
|
|
24
|
-
use_chain_of_thought_reasoning: typing.Optional[bool]
|
|
25
|
-
description="Whether to use chain of thought reasoning."
|
|
26
|
-
)
|
|
22
|
+
system_prompt: typing.Optional[str]
|
|
23
|
+
temperature: typing.Optional[float]
|
|
24
|
+
use_chain_of_thought_reasoning: typing.Optional[bool]
|
|
27
25
|
class_name: typing.Optional[str]
|
|
28
26
|
|
|
29
27
|
def json(self, **kwargs: typing.Any) -> str:
|
llama_cloud/types/local_eval.py
CHANGED
|
@@ -21,19 +21,17 @@ class LocalEval(pydantic.BaseModel):
|
|
|
21
21
|
Output of an BaseEvaluator.
|
|
22
22
|
"""
|
|
23
23
|
|
|
24
|
-
query: typing.Optional[str]
|
|
25
|
-
contexts: typing.Optional[typing.List[str]]
|
|
26
|
-
response: typing.Optional[str]
|
|
27
|
-
passing: typing.Optional[bool]
|
|
28
|
-
feedback: typing.Optional[str]
|
|
29
|
-
score: typing.Optional[float]
|
|
30
|
-
pairwise_source: typing.Optional[str]
|
|
31
|
-
description="Used only for pairwise and specifies whether it is from original order of presented answers or flipped order"
|
|
32
|
-
)
|
|
24
|
+
query: typing.Optional[str]
|
|
25
|
+
contexts: typing.Optional[typing.List[str]]
|
|
26
|
+
response: typing.Optional[str]
|
|
27
|
+
passing: typing.Optional[bool]
|
|
28
|
+
feedback: typing.Optional[str]
|
|
29
|
+
score: typing.Optional[float]
|
|
30
|
+
pairwise_source: typing.Optional[str]
|
|
33
31
|
invalid_result: typing.Optional[bool] = pydantic.Field(
|
|
34
32
|
description="Whether the evaluation result is an invalid one."
|
|
35
33
|
)
|
|
36
|
-
invalid_reason: typing.Optional[str]
|
|
34
|
+
invalid_reason: typing.Optional[str]
|
|
37
35
|
|
|
38
36
|
def json(self, **kwargs: typing.Any) -> str:
|
|
39
37
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -21,7 +21,7 @@ class LocalEvalResults(pydantic.BaseModel):
|
|
|
21
21
|
"""
|
|
22
22
|
|
|
23
23
|
project_id: str = pydantic.Field(description="The ID of the project.")
|
|
24
|
-
eval_set_id: typing.Optional[str]
|
|
24
|
+
eval_set_id: typing.Optional[str]
|
|
25
25
|
app_name: str = pydantic.Field(description="The name of the app.")
|
|
26
26
|
eval_name: str = pydantic.Field(description="The name of the eval.")
|
|
27
27
|
result: LocalEval = pydantic.Field(description="The eval results.")
|
|
@@ -16,6 +16,7 @@ class ManagedIngestionStatus(str, enum.Enum):
|
|
|
16
16
|
SUCCESS = "SUCCESS"
|
|
17
17
|
ERROR = "ERROR"
|
|
18
18
|
PARTIAL_SUCCESS = "PARTIAL_SUCCESS"
|
|
19
|
+
CANCELLED = "CANCELLED"
|
|
19
20
|
|
|
20
21
|
def visit(
|
|
21
22
|
self,
|
|
@@ -24,6 +25,7 @@ class ManagedIngestionStatus(str, enum.Enum):
|
|
|
24
25
|
success: typing.Callable[[], T_Result],
|
|
25
26
|
error: typing.Callable[[], T_Result],
|
|
26
27
|
partial_success: typing.Callable[[], T_Result],
|
|
28
|
+
cancelled: typing.Callable[[], T_Result],
|
|
27
29
|
) -> T_Result:
|
|
28
30
|
if self is ManagedIngestionStatus.NOT_STARTED:
|
|
29
31
|
return not_started()
|
|
@@ -35,3 +37,5 @@ class ManagedIngestionStatus(str, enum.Enum):
|
|
|
35
37
|
return error()
|
|
36
38
|
if self is ManagedIngestionStatus.PARTIAL_SUCCESS:
|
|
37
39
|
return partial_success()
|
|
40
|
+
if self is ManagedIngestionStatus.CANCELLED:
|
|
41
|
+
return cancelled()
|
|
@@ -17,12 +17,11 @@ except ImportError:
|
|
|
17
17
|
|
|
18
18
|
|
|
19
19
|
class ManagedIngestionStatusResponse(pydantic.BaseModel):
|
|
20
|
-
job_id: typing.Optional[str]
|
|
21
|
-
deployment_date: typing.Optional[dt.datetime]
|
|
20
|
+
job_id: typing.Optional[str]
|
|
21
|
+
deployment_date: typing.Optional[dt.datetime]
|
|
22
22
|
status: ManagedIngestionStatus = pydantic.Field(description="Status of the ingestion.")
|
|
23
|
-
error: typing.Optional[typing.List[IngestionErrorResponse]]
|
|
24
|
-
|
|
25
|
-
)
|
|
23
|
+
error: typing.Optional[typing.List[IngestionErrorResponse]]
|
|
24
|
+
effective_at: typing.Optional[dt.datetime]
|
|
26
25
|
|
|
27
26
|
def json(self, **kwargs: typing.Any) -> str:
|
|
28
27
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -29,14 +29,12 @@ class MarkdownElementNodeParser(pydantic.BaseModel):
|
|
|
29
29
|
)
|
|
30
30
|
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
31
31
|
callback_manager: typing.Optional[typing.Any]
|
|
32
|
-
id_func: typing.Optional[str]
|
|
33
|
-
llm: typing.Optional[Llm]
|
|
32
|
+
id_func: typing.Optional[str]
|
|
33
|
+
llm: typing.Optional[Llm]
|
|
34
34
|
summary_query_str: typing.Optional[str] = pydantic.Field(description="Query string to use for summarization.")
|
|
35
35
|
num_workers: typing.Optional[int] = pydantic.Field(description="Num of workers for async jobs.")
|
|
36
36
|
show_progress: typing.Optional[bool] = pydantic.Field(description="Whether to show progress.")
|
|
37
|
-
nested_node_parser: typing.Optional[NodeParser]
|
|
38
|
-
description="Other types of node parsers to handle some types of nodes."
|
|
39
|
-
)
|
|
37
|
+
nested_node_parser: typing.Optional[NodeParser]
|
|
40
38
|
class_name: typing.Optional[str]
|
|
41
39
|
|
|
42
40
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -31,7 +31,7 @@ class MarkdownNodeParser(pydantic.BaseModel):
|
|
|
31
31
|
)
|
|
32
32
|
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
33
33
|
callback_manager: typing.Optional[typing.Any]
|
|
34
|
-
id_func: typing.Optional[str]
|
|
34
|
+
id_func: typing.Optional[str]
|
|
35
35
|
class_name: typing.Optional[str]
|
|
36
36
|
|
|
37
37
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -5,7 +5,7 @@ import typing
|
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
7
|
from .filter_operator import FilterOperator
|
|
8
|
-
from .
|
|
8
|
+
from .metadata_filter_value import MetadataFilterValue
|
|
9
9
|
|
|
10
10
|
try:
|
|
11
11
|
import pydantic
|
|
@@ -27,7 +27,7 @@ class MetadataFilter(pydantic.BaseModel):
|
|
|
27
27
|
"""
|
|
28
28
|
|
|
29
29
|
key: str
|
|
30
|
-
value: typing.Optional[
|
|
30
|
+
value: typing.Optional[MetadataFilterValue]
|
|
31
31
|
operator: typing.Optional[FilterOperator]
|
|
32
32
|
|
|
33
33
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -15,9 +15,9 @@ except ImportError:
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class MetricResult(pydantic.BaseModel):
|
|
18
|
-
passing: typing.Optional[bool]
|
|
19
|
-
score: typing.Optional[float]
|
|
20
|
-
feedback: typing.Optional[str]
|
|
18
|
+
passing: typing.Optional[bool]
|
|
19
|
+
score: typing.Optional[float]
|
|
20
|
+
feedback: typing.Optional[str]
|
|
21
21
|
|
|
22
22
|
def json(self, **kwargs: typing.Any) -> str:
|
|
23
23
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
llama_cloud/types/node_parser.py
CHANGED
|
@@ -24,7 +24,7 @@ class NodeParser(pydantic.BaseModel):
|
|
|
24
24
|
)
|
|
25
25
|
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
26
26
|
callback_manager: typing.Optional[typing.Any]
|
|
27
|
-
id_func: typing.Optional[str]
|
|
27
|
+
id_func: typing.Optional[str]
|
|
28
28
|
class_name: typing.Optional[str]
|
|
29
29
|
|
|
30
30
|
def json(self, **kwargs: typing.Any) -> str:
|
llama_cloud/types/object_type.py
CHANGED
|
@@ -11,6 +11,7 @@ class ObjectType(str, enum.Enum):
|
|
|
11
11
|
TWO = "2"
|
|
12
12
|
THREE = "3"
|
|
13
13
|
FOUR = "4"
|
|
14
|
+
FIVE = "5"
|
|
14
15
|
|
|
15
16
|
def visit(
|
|
16
17
|
self,
|
|
@@ -18,6 +19,7 @@ class ObjectType(str, enum.Enum):
|
|
|
18
19
|
two: typing.Callable[[], T_Result],
|
|
19
20
|
three: typing.Callable[[], T_Result],
|
|
20
21
|
four: typing.Callable[[], T_Result],
|
|
22
|
+
five: typing.Callable[[], T_Result],
|
|
21
23
|
) -> T_Result:
|
|
22
24
|
if self is ObjectType.ONE:
|
|
23
25
|
return one()
|
|
@@ -27,3 +29,5 @@ class ObjectType(str, enum.Enum):
|
|
|
27
29
|
return three()
|
|
28
30
|
if self is ObjectType.FOUR:
|
|
29
31
|
return four()
|
|
32
|
+
if self is ObjectType.FIVE:
|
|
33
|
+
return five()
|
|
@@ -17,26 +17,20 @@ except ImportError:
|
|
|
17
17
|
class OpenAiEmbedding(pydantic.BaseModel):
|
|
18
18
|
model_name: typing.Optional[str] = pydantic.Field(description="The name of the OpenAI embedding model.")
|
|
19
19
|
embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
|
|
20
|
-
num_workers: typing.Optional[int]
|
|
21
|
-
description="The number of workers to use for async embedding calls."
|
|
22
|
-
)
|
|
20
|
+
num_workers: typing.Optional[int]
|
|
23
21
|
additional_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = pydantic.Field(
|
|
24
22
|
description="Additional kwargs for the OpenAI API."
|
|
25
23
|
)
|
|
26
|
-
api_key: typing.Optional[str]
|
|
27
|
-
api_base: typing.Optional[str]
|
|
28
|
-
api_version: typing.Optional[str]
|
|
24
|
+
api_key: typing.Optional[str]
|
|
25
|
+
api_base: typing.Optional[str]
|
|
26
|
+
api_version: typing.Optional[str]
|
|
29
27
|
max_retries: typing.Optional[int] = pydantic.Field(description="Maximum number of retries.")
|
|
30
28
|
timeout: typing.Optional[float] = pydantic.Field(description="Timeout for each request.")
|
|
31
|
-
default_headers: typing.Optional[typing.Dict[str, typing.Optional[str]]]
|
|
32
|
-
description="The default headers for API requests."
|
|
33
|
-
)
|
|
29
|
+
default_headers: typing.Optional[typing.Dict[str, typing.Optional[str]]]
|
|
34
30
|
reuse_client: typing.Optional[bool] = pydantic.Field(
|
|
35
31
|
description="Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability."
|
|
36
32
|
)
|
|
37
|
-
dimensions: typing.Optional[int]
|
|
38
|
-
description="The number of dimensions on the output embedding vectors. Works only with v3 embedding models."
|
|
39
|
-
)
|
|
33
|
+
dimensions: typing.Optional[int]
|
|
40
34
|
class_name: typing.Optional[str]
|
|
41
35
|
|
|
42
36
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -4,6 +4,7 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .parse_plan_level import ParsePlanLevel
|
|
7
8
|
|
|
8
9
|
try:
|
|
9
10
|
import pydantic
|
|
@@ -20,9 +21,13 @@ class Organization(pydantic.BaseModel):
|
|
|
20
21
|
"""
|
|
21
22
|
|
|
22
23
|
id: str = pydantic.Field(description="Unique identifier")
|
|
23
|
-
created_at: typing.Optional[dt.datetime]
|
|
24
|
-
updated_at: typing.Optional[dt.datetime]
|
|
24
|
+
created_at: typing.Optional[dt.datetime]
|
|
25
|
+
updated_at: typing.Optional[dt.datetime]
|
|
25
26
|
name: str = pydantic.Field(description="A name for the organization.")
|
|
27
|
+
stripe_customer_id: typing.Optional[str]
|
|
28
|
+
parse_plan_level: typing.Optional[ParsePlanLevel] = pydantic.Field(
|
|
29
|
+
description="Whether the organization is a Parse Premium customer."
|
|
30
|
+
)
|
|
26
31
|
|
|
27
32
|
def json(self, **kwargs: typing.Any) -> str:
|
|
28
33
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -24,8 +24,8 @@ class PageSplitterNodeParser(pydantic.BaseModel):
|
|
|
24
24
|
)
|
|
25
25
|
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
26
26
|
callback_manager: typing.Optional[typing.Any]
|
|
27
|
-
id_func: typing.Optional[str]
|
|
28
|
-
page_separator: typing.Optional[str]
|
|
27
|
+
id_func: typing.Optional[str]
|
|
28
|
+
page_separator: typing.Optional[str]
|
|
29
29
|
class_name: typing.Optional[str]
|
|
30
30
|
|
|
31
31
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .job_record_with_usage_metrics import JobRecordWithUsageMetrics
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class PaginatedJobsHistoryWithMetrics(pydantic.BaseModel):
|
|
19
|
+
jobs: typing.List[JobRecordWithUsageMetrics]
|
|
20
|
+
total_count: int
|
|
21
|
+
limit: int
|
|
22
|
+
offset: int
|
|
23
|
+
|
|
24
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
25
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
26
|
+
return super().json(**kwargs_with_defaults)
|
|
27
|
+
|
|
28
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
29
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
30
|
+
return super().dict(**kwargs_with_defaults)
|
|
31
|
+
|
|
32
|
+
class Config:
|
|
33
|
+
frozen = True
|
|
34
|
+
smart_union = True
|
|
35
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .report_response import ReportResponse
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class PaginatedReportResponse(pydantic.BaseModel):
|
|
19
|
+
report_responses: typing.List[ReportResponse]
|
|
20
|
+
limit: int
|
|
21
|
+
offset: int
|
|
22
|
+
total_count: int
|
|
23
|
+
|
|
24
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
25
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
26
|
+
return super().json(**kwargs_with_defaults)
|
|
27
|
+
|
|
28
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
29
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
30
|
+
return super().dict(**kwargs_with_defaults)
|
|
31
|
+
|
|
32
|
+
class Config:
|
|
33
|
+
frozen = True
|
|
34
|
+
smart_union = True
|
|
35
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class ParsePlanLevel(str, enum.Enum):
|
|
10
|
+
"""
|
|
11
|
+
Enum for the Parse plan level.
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
DEFAULT = "DEFAULT"
|
|
15
|
+
PREMIUM = "PREMIUM"
|
|
16
|
+
|
|
17
|
+
def visit(self, default: typing.Callable[[], T_Result], premium: typing.Callable[[], T_Result]) -> T_Result:
|
|
18
|
+
if self is ParsePlanLevel.DEFAULT:
|
|
19
|
+
return default()
|
|
20
|
+
if self is ParsePlanLevel.PREMIUM:
|
|
21
|
+
return premium()
|
llama_cloud/types/permission.py
CHANGED
|
@@ -20,10 +20,10 @@ class Permission(pydantic.BaseModel):
|
|
|
20
20
|
"""
|
|
21
21
|
|
|
22
22
|
id: str = pydantic.Field(description="Unique identifier")
|
|
23
|
-
created_at: typing.Optional[dt.datetime]
|
|
24
|
-
updated_at: typing.Optional[dt.datetime]
|
|
23
|
+
created_at: typing.Optional[dt.datetime]
|
|
24
|
+
updated_at: typing.Optional[dt.datetime]
|
|
25
25
|
name: str = pydantic.Field(description="A name for the permission.")
|
|
26
|
-
description: typing.Optional[str]
|
|
26
|
+
description: typing.Optional[str]
|
|
27
27
|
access: bool = pydantic.Field(description="Whether the permission is granted or not.")
|
|
28
28
|
|
|
29
29
|
def json(self, **kwargs: typing.Any) -> str:
|
llama_cloud/types/pipeline.py
CHANGED
|
@@ -29,26 +29,20 @@ class Pipeline(pydantic.BaseModel):
|
|
|
29
29
|
"""
|
|
30
30
|
|
|
31
31
|
id: str = pydantic.Field(description="Unique identifier")
|
|
32
|
-
created_at: typing.Optional[dt.datetime]
|
|
33
|
-
updated_at: typing.Optional[dt.datetime]
|
|
32
|
+
created_at: typing.Optional[dt.datetime]
|
|
33
|
+
updated_at: typing.Optional[dt.datetime]
|
|
34
34
|
name: str
|
|
35
35
|
project_id: str
|
|
36
|
-
embedding_model_config_id: typing.Optional[str]
|
|
37
|
-
description="The ID of the EmbeddingModelConfig this pipeline is using."
|
|
38
|
-
)
|
|
36
|
+
embedding_model_config_id: typing.Optional[str]
|
|
39
37
|
pipeline_type: typing.Optional[PipelineType] = pydantic.Field(
|
|
40
38
|
description="Type of pipeline. Either PLAYGROUND or MANAGED."
|
|
41
39
|
)
|
|
42
|
-
managed_pipeline_id: typing.Optional[str]
|
|
43
|
-
description="The ID of the ManagedPipeline this playground pipeline is linked to."
|
|
44
|
-
)
|
|
40
|
+
managed_pipeline_id: typing.Optional[str]
|
|
45
41
|
embedding_config: PipelineEmbeddingConfig
|
|
46
42
|
configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]] = pydantic.Field(
|
|
47
43
|
description="Deprecated don't use it, List of configured transformations."
|
|
48
44
|
)
|
|
49
|
-
config_hash: typing.Optional[PipelineConfigurationHashes]
|
|
50
|
-
description="Hashes for the configuration of the pipeline."
|
|
51
|
-
)
|
|
45
|
+
config_hash: typing.Optional[PipelineConfigurationHashes]
|
|
52
46
|
transform_config: typing.Optional[PipelineTransformConfig] = pydantic.Field(
|
|
53
47
|
description="Configuration for the transformation."
|
|
54
48
|
)
|
|
@@ -58,12 +52,8 @@ class Pipeline(pydantic.BaseModel):
|
|
|
58
52
|
eval_parameters: typing.Optional[EvalExecutionParams] = pydantic.Field(
|
|
59
53
|
description="Eval parameters for the pipeline."
|
|
60
54
|
)
|
|
61
|
-
llama_parse_parameters: typing.Optional[LlamaParseParameters]
|
|
62
|
-
|
|
63
|
-
)
|
|
64
|
-
data_sink: typing.Optional[DataSink] = pydantic.Field(
|
|
65
|
-
description="The data sink for the pipeline. If None, the pipeline will use the fully managed data sink."
|
|
66
|
-
)
|
|
55
|
+
llama_parse_parameters: typing.Optional[LlamaParseParameters]
|
|
56
|
+
data_sink: typing.Optional[DataSink]
|
|
67
57
|
|
|
68
58
|
def json(self, **kwargs: typing.Any) -> str:
|
|
69
59
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -19,9 +19,9 @@ class PipelineConfigurationHashes(pydantic.BaseModel):
|
|
|
19
19
|
Hashes for the configuration of a pipeline.
|
|
20
20
|
"""
|
|
21
21
|
|
|
22
|
-
embedding_config_hash: typing.Optional[str]
|
|
23
|
-
parsing_config_hash: typing.Optional[str]
|
|
24
|
-
transform_config_hash: typing.Optional[str]
|
|
22
|
+
embedding_config_hash: typing.Optional[str]
|
|
23
|
+
parsing_config_hash: typing.Optional[str]
|
|
24
|
+
transform_config_hash: typing.Optional[str]
|
|
25
25
|
|
|
26
26
|
def json(self, **kwargs: typing.Any) -> str:
|
|
27
27
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -31,32 +31,24 @@ class PipelineCreate(pydantic.BaseModel):
|
|
|
31
31
|
transform_config: typing.Optional[PipelineCreateTransformConfig] = pydantic.Field(
|
|
32
32
|
description="Configuration for the transformation."
|
|
33
33
|
)
|
|
34
|
-
configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]]
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
description="Data sink ID. When provided instead of data_sink, the data sink will be looked up by ID."
|
|
39
|
-
)
|
|
40
|
-
embedding_model_config_id: typing.Optional[str] = pydantic.Field(
|
|
41
|
-
description="Embedding model config ID. When provided instead of embedding_config, the embedding model config will be looked up by ID."
|
|
42
|
-
)
|
|
43
|
-
data_sink: typing.Optional[DataSinkCreate] = pydantic.Field(
|
|
44
|
-
description="Data sink. When provided instead of data_sink_id, the data sink will be created."
|
|
45
|
-
)
|
|
34
|
+
configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]]
|
|
35
|
+
data_sink_id: typing.Optional[str]
|
|
36
|
+
embedding_model_config_id: typing.Optional[str]
|
|
37
|
+
data_sink: typing.Optional[DataSinkCreate]
|
|
46
38
|
preset_retrieval_parameters: typing.Optional[PresetRetrievalParams] = pydantic.Field(
|
|
47
39
|
description="Preset retrieval parameters for the pipeline."
|
|
48
40
|
)
|
|
49
41
|
eval_parameters: typing.Optional[EvalExecutionParams] = pydantic.Field(
|
|
50
42
|
description="Eval parameters for the pipeline."
|
|
51
43
|
)
|
|
52
|
-
llama_parse_parameters: typing.Optional[LlamaParseParameters]
|
|
44
|
+
llama_parse_parameters: typing.Optional[LlamaParseParameters] = pydantic.Field(
|
|
45
|
+
description="Settings that can be configured for how to use LlamaParse to parse files within a LlamaCloud pipeline."
|
|
46
|
+
)
|
|
53
47
|
name: str
|
|
54
48
|
pipeline_type: typing.Optional[PipelineType] = pydantic.Field(
|
|
55
49
|
description="Type of pipeline. Either PLAYGROUND or MANAGED."
|
|
56
50
|
)
|
|
57
|
-
managed_pipeline_id: typing.Optional[str]
|
|
58
|
-
description="The ID of the ManagedPipeline this playground pipeline is linked to."
|
|
59
|
-
)
|
|
51
|
+
managed_pipeline_id: typing.Optional[str]
|
|
60
52
|
|
|
61
53
|
def json(self, **kwargs: typing.Any) -> str:
|
|
62
54
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -5,7 +5,7 @@ import typing
|
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
7
|
from .configurable_data_source_names import ConfigurableDataSourceNames
|
|
8
|
-
from .
|
|
8
|
+
from .pipeline_data_source_component import PipelineDataSourceComponent
|
|
9
9
|
from .pipeline_data_source_custom_metadata_value import PipelineDataSourceCustomMetadataValue
|
|
10
10
|
|
|
11
11
|
try:
|
|
@@ -23,24 +23,18 @@ class PipelineDataSource(pydantic.BaseModel):
|
|
|
23
23
|
"""
|
|
24
24
|
|
|
25
25
|
id: str = pydantic.Field(description="Unique identifier")
|
|
26
|
-
created_at: typing.Optional[dt.datetime]
|
|
27
|
-
updated_at: typing.Optional[dt.datetime]
|
|
26
|
+
created_at: typing.Optional[dt.datetime]
|
|
27
|
+
updated_at: typing.Optional[dt.datetime]
|
|
28
28
|
name: str = pydantic.Field(description="The name of the data source.")
|
|
29
29
|
source_type: ConfigurableDataSourceNames
|
|
30
|
-
custom_metadata: typing.Optional[
|
|
31
|
-
|
|
32
|
-
] = pydantic.Field(description="Custom metadata that will be present on all data loaded from the data source")
|
|
33
|
-
component: DataSourceCreateComponent = pydantic.Field(description="Component that implements the data source")
|
|
30
|
+
custom_metadata: typing.Optional[typing.Dict[str, typing.Optional[PipelineDataSourceCustomMetadataValue]]]
|
|
31
|
+
component: PipelineDataSourceComponent = pydantic.Field(description="Component that implements the data source")
|
|
34
32
|
project_id: str
|
|
35
33
|
data_source_id: str = pydantic.Field(description="The ID of the data source.")
|
|
36
34
|
pipeline_id: str = pydantic.Field(description="The ID of the pipeline.")
|
|
37
35
|
last_synced_at: dt.datetime = pydantic.Field(description="The last time the data source was automatically synced.")
|
|
38
|
-
sync_interval: typing.Optional[float]
|
|
39
|
-
|
|
40
|
-
)
|
|
41
|
-
sync_schedule_set_by: typing.Optional[str] = pydantic.Field(
|
|
42
|
-
description="The id of the user who set the sync schedule."
|
|
43
|
-
)
|
|
36
|
+
sync_interval: typing.Optional[float]
|
|
37
|
+
sync_schedule_set_by: typing.Optional[str]
|
|
44
38
|
|
|
45
39
|
def json(self, **kwargs: typing.Any) -> str:
|
|
46
40
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import typing
|
|
4
|
+
|
|
5
|
+
from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
|
|
6
|
+
from .cloud_box_data_source import CloudBoxDataSource
|
|
7
|
+
from .cloud_confluence_data_source import CloudConfluenceDataSource
|
|
8
|
+
from .cloud_google_drive_data_source import CloudGoogleDriveDataSource
|
|
9
|
+
from .cloud_jira_data_source import CloudJiraDataSource
|
|
10
|
+
from .cloud_notion_page_data_source import CloudNotionPageDataSource
|
|
11
|
+
from .cloud_one_drive_data_source import CloudOneDriveDataSource
|
|
12
|
+
from .cloud_s_3_data_source import CloudS3DataSource
|
|
13
|
+
from .cloud_sharepoint_data_source import CloudSharepointDataSource
|
|
14
|
+
from .cloud_slack_data_source import CloudSlackDataSource
|
|
15
|
+
|
|
16
|
+
PipelineDataSourceComponent = typing.Union[
|
|
17
|
+
typing.Dict[str, typing.Any],
|
|
18
|
+
CloudS3DataSource,
|
|
19
|
+
CloudAzStorageBlobDataSource,
|
|
20
|
+
CloudGoogleDriveDataSource,
|
|
21
|
+
CloudOneDriveDataSource,
|
|
22
|
+
CloudSharepointDataSource,
|
|
23
|
+
CloudSlackDataSource,
|
|
24
|
+
CloudNotionPageDataSource,
|
|
25
|
+
CloudConfluenceDataSource,
|
|
26
|
+
CloudJiraDataSource,
|
|
27
|
+
CloudBoxDataSource,
|
|
28
|
+
]
|