llama-cloud 0.1.5__py3-none-any.whl → 0.1.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +12 -10
- llama_cloud/environment.py +1 -1
- llama_cloud/resources/__init__.py +2 -1
- llama_cloud/resources/data_sinks/client.py +14 -14
- llama_cloud/resources/data_sources/client.py +16 -16
- llama_cloud/resources/embedding_model_configs/client.py +80 -24
- llama_cloud/resources/evals/client.py +36 -26
- llama_cloud/resources/extraction/client.py +32 -32
- llama_cloud/resources/files/__init__.py +2 -2
- llama_cloud/resources/files/client.py +53 -28
- llama_cloud/resources/files/types/__init__.py +2 -1
- llama_cloud/resources/files/types/file_create_permission_info_value.py +7 -0
- llama_cloud/resources/organizations/client.py +60 -56
- llama_cloud/resources/parsing/client.py +555 -324
- llama_cloud/resources/pipelines/client.py +446 -302
- llama_cloud/resources/projects/client.py +270 -136
- llama_cloud/types/__init__.py +10 -10
- llama_cloud/types/azure_open_ai_embedding.py +12 -6
- llama_cloud/types/base_prompt_template.py +6 -2
- llama_cloud/types/bedrock_embedding.py +12 -6
- llama_cloud/types/character_splitter.py +4 -2
- llama_cloud/types/chat_message.py +1 -1
- llama_cloud/types/cloud_az_storage_blob_data_source.py +16 -7
- llama_cloud/types/cloud_box_data_source.py +13 -6
- llama_cloud/types/cloud_confluence_data_source.py +7 -6
- llama_cloud/types/cloud_document.py +3 -1
- llama_cloud/types/cloud_document_create.py +3 -1
- llama_cloud/types/cloud_google_drive_data_source.py +1 -0
- llama_cloud/types/cloud_jira_data_source.py +7 -4
- llama_cloud/types/cloud_notion_page_data_source.py +3 -2
- llama_cloud/types/cloud_one_drive_data_source.py +6 -3
- llama_cloud/types/cloud_s_3_data_source.py +9 -4
- llama_cloud/types/cloud_sharepoint_data_source.py +9 -6
- llama_cloud/types/cloud_slack_data_source.py +7 -6
- llama_cloud/types/code_splitter.py +1 -1
- llama_cloud/types/cohere_embedding.py +7 -3
- llama_cloud/types/data_sink.py +4 -4
- llama_cloud/types/data_sink_create.py +1 -1
- llama_cloud/types/data_source.py +7 -5
- llama_cloud/types/data_source_create.py +4 -2
- llama_cloud/types/embedding_model_config.py +2 -2
- llama_cloud/types/embedding_model_config_update.py +4 -2
- llama_cloud/types/eval_dataset.py +2 -2
- llama_cloud/types/eval_dataset_job_record.py +13 -7
- llama_cloud/types/eval_execution_params_override.py +6 -2
- llama_cloud/types/eval_question.py +2 -2
- llama_cloud/types/extraction_result.py +2 -2
- llama_cloud/types/extraction_schema.py +5 -3
- llama_cloud/types/file.py +15 -7
- llama_cloud/types/file_permission_info_value.py +5 -0
- llama_cloud/types/filter_operator.py +2 -2
- llama_cloud/types/gemini_embedding.py +10 -6
- llama_cloud/types/hugging_face_inference_api_embedding.py +27 -11
- llama_cloud/types/input_message.py +3 -1
- llama_cloud/types/job_name_mapping.py +4 -0
- llama_cloud/types/llama_parse_parameters.py +11 -0
- llama_cloud/types/llm.py +4 -2
- llama_cloud/types/llm_parameters.py +5 -2
- llama_cloud/types/local_eval.py +10 -8
- llama_cloud/types/local_eval_results.py +1 -1
- llama_cloud/types/managed_ingestion_status_response.py +5 -3
- llama_cloud/types/markdown_element_node_parser.py +5 -3
- llama_cloud/types/markdown_node_parser.py +1 -1
- llama_cloud/types/metadata_filter.py +2 -2
- llama_cloud/types/metric_result.py +3 -3
- llama_cloud/types/node_parser.py +1 -1
- llama_cloud/types/open_ai_embedding.py +12 -6
- llama_cloud/types/organization.py +2 -2
- llama_cloud/types/page_splitter_node_parser.py +2 -2
- llama_cloud/types/parsing_job_structured_result.py +32 -0
- llama_cloud/types/permission.py +3 -3
- llama_cloud/types/pipeline.py +17 -7
- llama_cloud/types/pipeline_configuration_hashes.py +3 -3
- llama_cloud/types/pipeline_create.py +15 -5
- llama_cloud/types/pipeline_data_source.py +13 -7
- llama_cloud/types/pipeline_data_source_create.py +3 -1
- llama_cloud/types/pipeline_deployment.py +4 -4
- llama_cloud/types/pipeline_file.py +25 -11
- llama_cloud/types/pipeline_file_create.py +3 -1
- llama_cloud/types/pipeline_file_permission_info_value.py +7 -0
- llama_cloud/types/playground_session.py +2 -2
- llama_cloud/types/preset_retrieval_params.py +14 -7
- llama_cloud/types/presigned_url.py +3 -1
- llama_cloud/types/project.py +2 -2
- llama_cloud/types/prompt_mixin_prompts.py +1 -1
- llama_cloud/types/prompt_spec.py +4 -2
- llama_cloud/types/role.py +3 -3
- llama_cloud/types/sentence_splitter.py +4 -2
- llama_cloud/types/text_node.py +3 -3
- llama_cloud/types/{hugging_face_inference_api_embedding_token.py → token.py} +1 -1
- llama_cloud/types/token_text_splitter.py +1 -1
- llama_cloud/types/user_organization.py +9 -5
- llama_cloud/types/user_organization_create.py +4 -4
- llama_cloud/types/user_organization_delete.py +2 -2
- llama_cloud/types/user_organization_role.py +2 -2
- llama_cloud/types/value.py +5 -0
- llama_cloud/types/vertex_text_embedding.py +9 -5
- {llama_cloud-0.1.5.dist-info → llama_cloud-0.1.6.dist-info}/METADATA +2 -1
- {llama_cloud-0.1.5.dist-info → llama_cloud-0.1.6.dist-info}/RECORD +101 -100
- {llama_cloud-0.1.5.dist-info → llama_cloud-0.1.6.dist-info}/WHEEL +1 -1
- llama_cloud/types/data_sink_component.py +0 -20
- llama_cloud/types/data_source_component.py +0 -28
- llama_cloud/types/metadata_filter_value.py +0 -5
- llama_cloud/types/pipeline_data_source_component.py +0 -28
- {llama_cloud-0.1.5.dist-info → llama_cloud-0.1.6.dist-info}/LICENSE +0 -0
llama_cloud/types/__init__.py
CHANGED
|
@@ -55,12 +55,10 @@ from .configurable_transformation_names import ConfigurableTransformationNames
|
|
|
55
55
|
from .configured_transformation_item import ConfiguredTransformationItem
|
|
56
56
|
from .configured_transformation_item_component import ConfiguredTransformationItemComponent
|
|
57
57
|
from .data_sink import DataSink
|
|
58
|
-
from .data_sink_component import DataSinkComponent
|
|
59
58
|
from .data_sink_create import DataSinkCreate
|
|
60
59
|
from .data_sink_create_component import DataSinkCreateComponent
|
|
61
60
|
from .data_sink_definition import DataSinkDefinition
|
|
62
61
|
from .data_source import DataSource
|
|
63
|
-
from .data_source_component import DataSourceComponent
|
|
64
62
|
from .data_source_create import DataSourceCreate
|
|
65
63
|
from .data_source_create_component import DataSourceCreateComponent
|
|
66
64
|
from .data_source_create_custom_metadata_value import DataSourceCreateCustomMetadataValue
|
|
@@ -104,6 +102,7 @@ from .extraction_result_data_value import ExtractionResultDataValue
|
|
|
104
102
|
from .extraction_schema import ExtractionSchema
|
|
105
103
|
from .extraction_schema_data_schema_value import ExtractionSchemaDataSchemaValue
|
|
106
104
|
from .file import File
|
|
105
|
+
from .file_permission_info_value import FilePermissionInfoValue
|
|
107
106
|
from .file_resource_info_value import FileResourceInfoValue
|
|
108
107
|
from .filter_condition import FilterCondition
|
|
109
108
|
from .filter_operator import FilterOperator
|
|
@@ -112,7 +111,6 @@ from .gemini_embedding_config import GeminiEmbeddingConfig
|
|
|
112
111
|
from .http_validation_error import HttpValidationError
|
|
113
112
|
from .hugging_face_inference_api_embedding import HuggingFaceInferenceApiEmbedding
|
|
114
113
|
from .hugging_face_inference_api_embedding_config import HuggingFaceInferenceApiEmbeddingConfig
|
|
115
|
-
from .hugging_face_inference_api_embedding_token import HuggingFaceInferenceApiEmbeddingToken
|
|
116
114
|
from .ingestion_error_response import IngestionErrorResponse
|
|
117
115
|
from .input_message import InputMessage
|
|
118
116
|
from .interval_usage_and_plan import IntervalUsageAndPlan
|
|
@@ -132,7 +130,6 @@ from .markdown_node_parser import MarkdownNodeParser
|
|
|
132
130
|
from .message_annotation import MessageAnnotation
|
|
133
131
|
from .message_role import MessageRole
|
|
134
132
|
from .metadata_filter import MetadataFilter
|
|
135
|
-
from .metadata_filter_value import MetadataFilterValue
|
|
136
133
|
from .metadata_filters import MetadataFilters
|
|
137
134
|
from .metadata_filters_filters_item import MetadataFiltersFiltersItem
|
|
138
135
|
from .metric_result import MetricResult
|
|
@@ -155,6 +152,7 @@ from .parsing_history_item import ParsingHistoryItem
|
|
|
155
152
|
from .parsing_job import ParsingJob
|
|
156
153
|
from .parsing_job_json_result import ParsingJobJsonResult
|
|
157
154
|
from .parsing_job_markdown_result import ParsingJobMarkdownResult
|
|
155
|
+
from .parsing_job_structured_result import ParsingJobStructuredResult
|
|
158
156
|
from .parsing_job_text_result import ParsingJobTextResult
|
|
159
157
|
from .parsing_usage import ParsingUsage
|
|
160
158
|
from .partition_names import PartitionNames
|
|
@@ -174,7 +172,6 @@ from .pipeline_create_embedding_config import (
|
|
|
174
172
|
)
|
|
175
173
|
from .pipeline_create_transform_config import PipelineCreateTransformConfig
|
|
176
174
|
from .pipeline_data_source import PipelineDataSource
|
|
177
|
-
from .pipeline_data_source_component import PipelineDataSourceComponent
|
|
178
175
|
from .pipeline_data_source_create import PipelineDataSourceCreate
|
|
179
176
|
from .pipeline_data_source_custom_metadata_value import PipelineDataSourceCustomMetadataValue
|
|
180
177
|
from .pipeline_deployment import PipelineDeployment
|
|
@@ -193,6 +190,7 @@ from .pipeline_file_config_hash_value import PipelineFileConfigHashValue
|
|
|
193
190
|
from .pipeline_file_create import PipelineFileCreate
|
|
194
191
|
from .pipeline_file_create_custom_metadata_value import PipelineFileCreateCustomMetadataValue
|
|
195
192
|
from .pipeline_file_custom_metadata_value import PipelineFileCustomMetadataValue
|
|
193
|
+
from .pipeline_file_permission_info_value import PipelineFilePermissionInfoValue
|
|
196
194
|
from .pipeline_file_resource_info_value import PipelineFileResourceInfoValue
|
|
197
195
|
from .pipeline_transform_config import (
|
|
198
196
|
PipelineTransformConfig,
|
|
@@ -223,6 +221,7 @@ from .supported_llm_model_names import SupportedLlmModelNames
|
|
|
223
221
|
from .text_node import TextNode
|
|
224
222
|
from .text_node_relationships_value import TextNodeRelationshipsValue
|
|
225
223
|
from .text_node_with_score import TextNodeWithScore
|
|
224
|
+
from .token import Token
|
|
226
225
|
from .token_chunking_config import TokenChunkingConfig
|
|
227
226
|
from .token_text_splitter import TokenTextSplitter
|
|
228
227
|
from .transformation_category_names import TransformationCategoryNames
|
|
@@ -233,6 +232,7 @@ from .user_organization_delete import UserOrganizationDelete
|
|
|
233
232
|
from .user_organization_role import UserOrganizationRole
|
|
234
233
|
from .validation_error import ValidationError
|
|
235
234
|
from .validation_error_loc_item import ValidationErrorLocItem
|
|
235
|
+
from .value import Value
|
|
236
236
|
from .vertex_ai_embedding_config import VertexAiEmbeddingConfig
|
|
237
237
|
from .vertex_embedding_mode import VertexEmbeddingMode
|
|
238
238
|
from .vertex_text_embedding import VertexTextEmbedding
|
|
@@ -289,12 +289,10 @@ __all__ = [
|
|
|
289
289
|
"ConfiguredTransformationItem",
|
|
290
290
|
"ConfiguredTransformationItemComponent",
|
|
291
291
|
"DataSink",
|
|
292
|
-
"DataSinkComponent",
|
|
293
292
|
"DataSinkCreate",
|
|
294
293
|
"DataSinkCreateComponent",
|
|
295
294
|
"DataSinkDefinition",
|
|
296
295
|
"DataSource",
|
|
297
|
-
"DataSourceComponent",
|
|
298
296
|
"DataSourceCreate",
|
|
299
297
|
"DataSourceCreateComponent",
|
|
300
298
|
"DataSourceCreateCustomMetadataValue",
|
|
@@ -334,6 +332,7 @@ __all__ = [
|
|
|
334
332
|
"ExtractionSchema",
|
|
335
333
|
"ExtractionSchemaDataSchemaValue",
|
|
336
334
|
"File",
|
|
335
|
+
"FilePermissionInfoValue",
|
|
337
336
|
"FileResourceInfoValue",
|
|
338
337
|
"FilterCondition",
|
|
339
338
|
"FilterOperator",
|
|
@@ -342,7 +341,6 @@ __all__ = [
|
|
|
342
341
|
"HttpValidationError",
|
|
343
342
|
"HuggingFaceInferenceApiEmbedding",
|
|
344
343
|
"HuggingFaceInferenceApiEmbeddingConfig",
|
|
345
|
-
"HuggingFaceInferenceApiEmbeddingToken",
|
|
346
344
|
"IngestionErrorResponse",
|
|
347
345
|
"InputMessage",
|
|
348
346
|
"IntervalUsageAndPlan",
|
|
@@ -362,7 +360,6 @@ __all__ = [
|
|
|
362
360
|
"MessageAnnotation",
|
|
363
361
|
"MessageRole",
|
|
364
362
|
"MetadataFilter",
|
|
365
|
-
"MetadataFilterValue",
|
|
366
363
|
"MetadataFilters",
|
|
367
364
|
"MetadataFiltersFiltersItem",
|
|
368
365
|
"MetricResult",
|
|
@@ -385,6 +382,7 @@ __all__ = [
|
|
|
385
382
|
"ParsingJob",
|
|
386
383
|
"ParsingJobJsonResult",
|
|
387
384
|
"ParsingJobMarkdownResult",
|
|
385
|
+
"ParsingJobStructuredResult",
|
|
388
386
|
"ParsingJobTextResult",
|
|
389
387
|
"ParsingUsage",
|
|
390
388
|
"PartitionNames",
|
|
@@ -402,7 +400,6 @@ __all__ = [
|
|
|
402
400
|
"PipelineCreateEmbeddingConfig_VertexaiEmbedding",
|
|
403
401
|
"PipelineCreateTransformConfig",
|
|
404
402
|
"PipelineDataSource",
|
|
405
|
-
"PipelineDataSourceComponent",
|
|
406
403
|
"PipelineDataSourceCreate",
|
|
407
404
|
"PipelineDataSourceCustomMetadataValue",
|
|
408
405
|
"PipelineDeployment",
|
|
@@ -419,6 +416,7 @@ __all__ = [
|
|
|
419
416
|
"PipelineFileCreate",
|
|
420
417
|
"PipelineFileCreateCustomMetadataValue",
|
|
421
418
|
"PipelineFileCustomMetadataValue",
|
|
419
|
+
"PipelineFilePermissionInfoValue",
|
|
422
420
|
"PipelineFileResourceInfoValue",
|
|
423
421
|
"PipelineTransformConfig",
|
|
424
422
|
"PipelineTransformConfig_Advanced",
|
|
@@ -447,6 +445,7 @@ __all__ = [
|
|
|
447
445
|
"TextNode",
|
|
448
446
|
"TextNodeRelationshipsValue",
|
|
449
447
|
"TextNodeWithScore",
|
|
448
|
+
"Token",
|
|
450
449
|
"TokenChunkingConfig",
|
|
451
450
|
"TokenTextSplitter",
|
|
452
451
|
"TransformationCategoryNames",
|
|
@@ -457,6 +456,7 @@ __all__ = [
|
|
|
457
456
|
"UserOrganizationRole",
|
|
458
457
|
"ValidationError",
|
|
459
458
|
"ValidationErrorLocItem",
|
|
459
|
+
"Value",
|
|
460
460
|
"VertexAiEmbeddingConfig",
|
|
461
461
|
"VertexEmbeddingMode",
|
|
462
462
|
"VertexTextEmbedding",
|
|
@@ -17,22 +17,28 @@ except ImportError:
|
|
|
17
17
|
class AzureOpenAiEmbedding(pydantic.BaseModel):
|
|
18
18
|
model_name: typing.Optional[str] = pydantic.Field(description="The name of the OpenAI embedding model.")
|
|
19
19
|
embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
|
|
20
|
-
num_workers: typing.Optional[int]
|
|
20
|
+
num_workers: typing.Optional[int] = pydantic.Field(
|
|
21
|
+
description="The number of workers to use for async embedding calls."
|
|
22
|
+
)
|
|
21
23
|
additional_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = pydantic.Field(
|
|
22
24
|
description="Additional kwargs for the OpenAI API."
|
|
23
25
|
)
|
|
24
|
-
api_key: typing.Optional[str]
|
|
26
|
+
api_key: typing.Optional[str] = pydantic.Field(description="The OpenAI API key.")
|
|
25
27
|
api_base: typing.Optional[str] = pydantic.Field(description="The base URL for Azure deployment.")
|
|
26
28
|
api_version: typing.Optional[str] = pydantic.Field(description="The version for Azure OpenAI API.")
|
|
27
29
|
max_retries: typing.Optional[int] = pydantic.Field(description="Maximum number of retries.")
|
|
28
30
|
timeout: typing.Optional[float] = pydantic.Field(description="Timeout for each request.")
|
|
29
|
-
default_headers: typing.Optional[typing.Dict[str, typing.Optional[str]]]
|
|
31
|
+
default_headers: typing.Optional[typing.Dict[str, typing.Optional[str]]] = pydantic.Field(
|
|
32
|
+
description="The default headers for API requests."
|
|
33
|
+
)
|
|
30
34
|
reuse_client: typing.Optional[bool] = pydantic.Field(
|
|
31
35
|
description="Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability."
|
|
32
36
|
)
|
|
33
|
-
dimensions: typing.Optional[int]
|
|
34
|
-
|
|
35
|
-
|
|
37
|
+
dimensions: typing.Optional[int] = pydantic.Field(
|
|
38
|
+
description="The number of dimensions on the output embedding vectors. Works only with v3 embedding models."
|
|
39
|
+
)
|
|
40
|
+
azure_endpoint: typing.Optional[str] = pydantic.Field(description="The Azure endpoint to use.")
|
|
41
|
+
azure_deployment: typing.Optional[str] = pydantic.Field(description="The Azure deployment to use.")
|
|
36
42
|
class_name: typing.Optional[str]
|
|
37
43
|
|
|
38
44
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -19,8 +19,12 @@ class BasePromptTemplate(pydantic.BaseModel):
|
|
|
19
19
|
template_vars: typing.List[str]
|
|
20
20
|
kwargs: typing.Dict[str, str]
|
|
21
21
|
output_parser: typing.Any
|
|
22
|
-
template_var_mappings: typing.Optional[typing.Dict[str, typing.Any]]
|
|
23
|
-
|
|
22
|
+
template_var_mappings: typing.Optional[typing.Dict[str, typing.Any]] = pydantic.Field(
|
|
23
|
+
description="Template variable mappings (Optional)."
|
|
24
|
+
)
|
|
25
|
+
function_mappings: typing.Optional[typing.Dict[str, typing.Optional[str]]] = pydantic.Field(
|
|
26
|
+
description="Function mappings (Optional). This is a mapping from template variable names to functions that take in the current kwargs and return a string."
|
|
27
|
+
)
|
|
24
28
|
|
|
25
29
|
def json(self, **kwargs: typing.Any) -> str:
|
|
26
30
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -17,12 +17,18 @@ except ImportError:
|
|
|
17
17
|
class BedrockEmbedding(pydantic.BaseModel):
|
|
18
18
|
model_name: typing.Optional[str] = pydantic.Field(description="The modelId of the Bedrock model to use.")
|
|
19
19
|
embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
|
|
20
|
-
num_workers: typing.Optional[int]
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
20
|
+
num_workers: typing.Optional[int] = pydantic.Field(
|
|
21
|
+
description="The number of workers to use for async embedding calls."
|
|
22
|
+
)
|
|
23
|
+
profile_name: typing.Optional[str] = pydantic.Field(
|
|
24
|
+
description="The name of aws profile to use. If not given, then the default profile is used."
|
|
25
|
+
)
|
|
26
|
+
aws_access_key_id: typing.Optional[str] = pydantic.Field(description="AWS Access Key ID to use")
|
|
27
|
+
aws_secret_access_key: typing.Optional[str] = pydantic.Field(description="AWS Secret Access Key to use")
|
|
28
|
+
aws_session_token: typing.Optional[str] = pydantic.Field(description="AWS Session Token to use")
|
|
29
|
+
region_name: typing.Optional[str] = pydantic.Field(
|
|
30
|
+
description="AWS region name to use. Uses region configured in AWS CLI if not passed"
|
|
31
|
+
)
|
|
26
32
|
max_retries: typing.Optional[int] = pydantic.Field(description="The maximum number of API retries.")
|
|
27
33
|
timeout: typing.Optional[float] = pydantic.Field(
|
|
28
34
|
description="The timeout for the Bedrock API request in seconds. It will be used for both connect and read timeouts."
|
|
@@ -24,12 +24,14 @@ class CharacterSplitter(pydantic.BaseModel):
|
|
|
24
24
|
)
|
|
25
25
|
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
26
26
|
callback_manager: typing.Optional[typing.Any]
|
|
27
|
-
id_func: typing.Optional[str]
|
|
27
|
+
id_func: typing.Optional[str] = pydantic.Field(description="Function to generate node IDs.")
|
|
28
28
|
chunk_size: typing.Optional[int] = pydantic.Field(description="The token chunk size for each chunk.")
|
|
29
29
|
chunk_overlap: typing.Optional[int] = pydantic.Field(description="The token overlap of each chunk when splitting.")
|
|
30
30
|
separator: typing.Optional[str] = pydantic.Field(description="Default separator for splitting into words")
|
|
31
31
|
paragraph_separator: typing.Optional[str] = pydantic.Field(description="Separator between paragraphs.")
|
|
32
|
-
secondary_chunking_regex: typing.Optional[str]
|
|
32
|
+
secondary_chunking_regex: typing.Optional[str] = pydantic.Field(
|
|
33
|
+
description="Backup regex for splitting into sentences."
|
|
34
|
+
)
|
|
33
35
|
class_name: typing.Optional[str]
|
|
34
36
|
|
|
35
37
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -23,7 +23,7 @@ class ChatMessage(pydantic.BaseModel):
|
|
|
23
23
|
description="Retrieval annotations for the message."
|
|
24
24
|
)
|
|
25
25
|
role: MessageRole
|
|
26
|
-
content: typing.Optional[str]
|
|
26
|
+
content: typing.Optional[str] = pydantic.Field(description="Text content of the generation")
|
|
27
27
|
additional_kwargs: typing.Optional[typing.Dict[str, str]] = pydantic.Field(
|
|
28
28
|
description="Additional arguments passed to the model"
|
|
29
29
|
)
|
|
@@ -15,15 +15,24 @@ except ImportError:
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class CloudAzStorageBlobDataSource(pydantic.BaseModel):
|
|
18
|
+
supports_access_control: typing.Optional[bool]
|
|
18
19
|
container_name: str = pydantic.Field(description="The name of the Azure Storage Blob container to read from.")
|
|
19
20
|
account_url: str = pydantic.Field(description="The Azure Storage Blob account URL to use for authentication.")
|
|
20
|
-
blob: typing.Optional[str]
|
|
21
|
-
prefix: typing.Optional[str]
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
21
|
+
blob: typing.Optional[str] = pydantic.Field(description="The blob name to read from.")
|
|
22
|
+
prefix: typing.Optional[str] = pydantic.Field(
|
|
23
|
+
description="The prefix of the Azure Storage Blob objects to read from."
|
|
24
|
+
)
|
|
25
|
+
account_name: typing.Optional[str] = pydantic.Field(
|
|
26
|
+
description="The Azure Storage Blob account name to use for authentication."
|
|
27
|
+
)
|
|
28
|
+
account_key: typing.Optional[str] = pydantic.Field(
|
|
29
|
+
description="The Azure Storage Blob account key to use for authentication."
|
|
30
|
+
)
|
|
31
|
+
tenant_id: typing.Optional[str] = pydantic.Field(description="The Azure AD tenant ID to use for authentication.")
|
|
32
|
+
client_id: typing.Optional[str] = pydantic.Field(description="The Azure AD client ID to use for authentication.")
|
|
33
|
+
client_secret: typing.Optional[str] = pydantic.Field(
|
|
34
|
+
description="The Azure AD client secret to use for authentication."
|
|
35
|
+
)
|
|
27
36
|
class_name: typing.Optional[str]
|
|
28
37
|
|
|
29
38
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -16,15 +16,22 @@ except ImportError:
|
|
|
16
16
|
|
|
17
17
|
|
|
18
18
|
class CloudBoxDataSource(pydantic.BaseModel):
|
|
19
|
-
|
|
19
|
+
supports_access_control: typing.Optional[bool]
|
|
20
|
+
folder_id: typing.Optional[str] = pydantic.Field(description="The ID of the Box folder to read from.")
|
|
20
21
|
authentication_mechanism: BoxAuthMechanism = pydantic.Field(
|
|
21
22
|
description="The type of authentication to use (Developer Token or CCG)"
|
|
22
23
|
)
|
|
23
|
-
developer_token: typing.Optional[str]
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
24
|
+
developer_token: typing.Optional[str] = pydantic.Field(
|
|
25
|
+
description="Developer token for authentication if authentication_mechanism is 'developer_token'."
|
|
26
|
+
)
|
|
27
|
+
client_id: typing.Optional[str] = pydantic.Field(
|
|
28
|
+
description="Box API key used for identifying the application the user is authenticating with"
|
|
29
|
+
)
|
|
30
|
+
client_secret: typing.Optional[str] = pydantic.Field(description="Box API secret used for making auth requests.")
|
|
31
|
+
user_id: typing.Optional[str] = pydantic.Field(description="Box User ID, if provided authenticates as user.")
|
|
32
|
+
enterprise_id: typing.Optional[str] = pydantic.Field(
|
|
33
|
+
description="Box Enterprise ID, if provided authenticates as service."
|
|
34
|
+
)
|
|
28
35
|
class_name: typing.Optional[str]
|
|
29
36
|
|
|
30
37
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -15,16 +15,17 @@ except ImportError:
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class CloudConfluenceDataSource(pydantic.BaseModel):
|
|
18
|
+
supports_access_control: typing.Optional[bool]
|
|
18
19
|
server_url: str = pydantic.Field(description="The server URL of the Confluence instance.")
|
|
19
20
|
authentication_mechanism: str = pydantic.Field(
|
|
20
21
|
description="Type of Authentication for connecting to Confluence APIs."
|
|
21
22
|
)
|
|
22
|
-
user_name: typing.Optional[str]
|
|
23
|
-
api_token: typing.Optional[str]
|
|
24
|
-
space_key: typing.Optional[str]
|
|
25
|
-
page_ids: typing.Optional[str]
|
|
26
|
-
cql: typing.Optional[str]
|
|
27
|
-
label: typing.Optional[str]
|
|
23
|
+
user_name: typing.Optional[str] = pydantic.Field(description="The username to use for authentication.")
|
|
24
|
+
api_token: typing.Optional[str] = pydantic.Field(description="The API token to use for authentication.")
|
|
25
|
+
space_key: typing.Optional[str] = pydantic.Field(description="The space key to read from.")
|
|
26
|
+
page_ids: typing.Optional[str] = pydantic.Field(description="The page IDs of the Confluence to read from.")
|
|
27
|
+
cql: typing.Optional[str] = pydantic.Field(description="The CQL query to use for fetching pages.")
|
|
28
|
+
label: typing.Optional[str] = pydantic.Field(description="The label to use for fetching pages.")
|
|
28
29
|
class_name: typing.Optional[str]
|
|
29
30
|
|
|
30
31
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -23,7 +23,9 @@ class CloudDocument(pydantic.BaseModel):
|
|
|
23
23
|
metadata: typing.Dict[str, typing.Any]
|
|
24
24
|
excluded_embed_metadata_keys: typing.Optional[typing.List[str]]
|
|
25
25
|
excluded_llm_metadata_keys: typing.Optional[typing.List[str]]
|
|
26
|
-
page_positions: typing.Optional[typing.List[int]]
|
|
26
|
+
page_positions: typing.Optional[typing.List[int]] = pydantic.Field(
|
|
27
|
+
description="indices in the CloudDocument.text where a new page begins. e.g. Second page starts at index specified by page_positions[1]."
|
|
28
|
+
)
|
|
27
29
|
id: str
|
|
28
30
|
|
|
29
31
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -23,7 +23,9 @@ class CloudDocumentCreate(pydantic.BaseModel):
|
|
|
23
23
|
metadata: typing.Dict[str, typing.Any]
|
|
24
24
|
excluded_embed_metadata_keys: typing.Optional[typing.List[str]]
|
|
25
25
|
excluded_llm_metadata_keys: typing.Optional[typing.List[str]]
|
|
26
|
-
page_positions: typing.Optional[typing.List[int]]
|
|
26
|
+
page_positions: typing.Optional[typing.List[int]] = pydantic.Field(
|
|
27
|
+
description="indices in the CloudDocument.text where a new page begins. e.g. Second page starts at index specified by page_positions[1]."
|
|
28
|
+
)
|
|
27
29
|
id: typing.Optional[str]
|
|
28
30
|
|
|
29
31
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -15,6 +15,7 @@ except ImportError:
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class CloudGoogleDriveDataSource(pydantic.BaseModel):
|
|
18
|
+
supports_access_control: typing.Optional[bool]
|
|
18
19
|
folder_id: str = pydantic.Field(description="The ID of the Google Drive folder to read from.")
|
|
19
20
|
service_account_key: typing.Dict[str, typing.Any] = pydantic.Field(
|
|
20
21
|
description="The service account key JSON to use for authentication."
|
|
@@ -19,10 +19,13 @@ class CloudJiraDataSource(pydantic.BaseModel):
|
|
|
19
19
|
Cloud Jira Data Source integrating JiraReader.
|
|
20
20
|
"""
|
|
21
21
|
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
22
|
+
supports_access_control: typing.Optional[bool]
|
|
23
|
+
email: typing.Optional[str] = pydantic.Field(description="The email address to use for authentication.")
|
|
24
|
+
api_token: typing.Optional[str] = pydantic.Field(
|
|
25
|
+
description="The API/ Access Token used for Basic, PAT and OAuth2 authentication."
|
|
26
|
+
)
|
|
27
|
+
server_url: typing.Optional[str] = pydantic.Field(description="The server url for Jira Cloud.")
|
|
28
|
+
cloud_id: typing.Optional[str] = pydantic.Field(description="The cloud ID, used in case of OAuth2.")
|
|
26
29
|
authentication_mechanism: str = pydantic.Field(description="Type of Authentication for connecting to Jira APIs.")
|
|
27
30
|
query: str = pydantic.Field(description="JQL (Jira Query Language) query to search.")
|
|
28
31
|
class_name: typing.Optional[str]
|
|
@@ -15,9 +15,10 @@ except ImportError:
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class CloudNotionPageDataSource(pydantic.BaseModel):
|
|
18
|
+
supports_access_control: typing.Optional[bool]
|
|
18
19
|
integration_token: str = pydantic.Field(description="The integration token to use for authentication.")
|
|
19
|
-
database_ids: typing.Optional[str]
|
|
20
|
-
page_ids: typing.Optional[str]
|
|
20
|
+
database_ids: typing.Optional[str] = pydantic.Field(description="The Notion Database Id to read content from.")
|
|
21
|
+
page_ids: typing.Optional[str] = pydantic.Field(description="The Page ID's of the Notion to read from.")
|
|
21
22
|
class_name: typing.Optional[str]
|
|
22
23
|
|
|
23
24
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -15,13 +15,16 @@ except ImportError:
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class CloudOneDriveDataSource(pydantic.BaseModel):
|
|
18
|
+
supports_access_control: typing.Optional[bool]
|
|
18
19
|
user_principal_name: str = pydantic.Field(description="The user principal name to use for authentication.")
|
|
19
|
-
folder_path: typing.Optional[str]
|
|
20
|
-
folder_id: typing.Optional[str]
|
|
20
|
+
folder_path: typing.Optional[str] = pydantic.Field(description="The path of the OneDrive folder to read from.")
|
|
21
|
+
folder_id: typing.Optional[str] = pydantic.Field(description="The ID of the OneDrive folder to read from.")
|
|
21
22
|
client_id: str = pydantic.Field(description="The client ID to use for authentication.")
|
|
22
23
|
client_secret: str = pydantic.Field(description="The client secret to use for authentication.")
|
|
23
24
|
tenant_id: str = pydantic.Field(description="The tenant ID to use for authentication.")
|
|
24
|
-
required_exts: typing.Optional[typing.List[str]]
|
|
25
|
+
required_exts: typing.Optional[typing.List[str]] = pydantic.Field(
|
|
26
|
+
description="The list of required file extensions."
|
|
27
|
+
)
|
|
25
28
|
class_name: typing.Optional[str]
|
|
26
29
|
|
|
27
30
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -15,11 +15,16 @@ except ImportError:
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class CloudS3DataSource(pydantic.BaseModel):
|
|
18
|
+
supports_access_control: typing.Optional[bool]
|
|
18
19
|
bucket: str = pydantic.Field(description="The name of the S3 bucket to read from.")
|
|
19
|
-
prefix: typing.Optional[str]
|
|
20
|
-
aws_access_id: typing.Optional[str]
|
|
21
|
-
aws_access_secret: typing.Optional[str]
|
|
22
|
-
|
|
20
|
+
prefix: typing.Optional[str] = pydantic.Field(description="The prefix of the S3 objects to read from.")
|
|
21
|
+
aws_access_id: typing.Optional[str] = pydantic.Field(description="The AWS access ID to use for authentication.")
|
|
22
|
+
aws_access_secret: typing.Optional[str] = pydantic.Field(
|
|
23
|
+
description="The AWS access secret to use for authentication."
|
|
24
|
+
)
|
|
25
|
+
s_3_endpoint_url: typing.Optional[str] = pydantic.Field(
|
|
26
|
+
alias="s3_endpoint_url", description="The S3 endpoint URL to use for authentication."
|
|
27
|
+
)
|
|
23
28
|
class_name: typing.Optional[str]
|
|
24
29
|
|
|
25
30
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -15,15 +15,18 @@ except ImportError:
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class CloudSharepointDataSource(pydantic.BaseModel):
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
18
|
+
supports_access_control: typing.Optional[bool]
|
|
19
|
+
site_name: typing.Optional[str] = pydantic.Field(description="The name of the SharePoint site to download from.")
|
|
20
|
+
site_id: typing.Optional[str] = pydantic.Field(description="The ID of the SharePoint site to download from.")
|
|
21
|
+
folder_path: typing.Optional[str] = pydantic.Field(description="The path of the Sharepoint folder to read from.")
|
|
22
|
+
folder_id: typing.Optional[str] = pydantic.Field(description="The ID of the Sharepoint folder to read from.")
|
|
23
|
+
drive_name: typing.Optional[str] = pydantic.Field(description="The name of the Sharepoint drive to read from.")
|
|
23
24
|
client_id: str = pydantic.Field(description="The client ID to use for authentication.")
|
|
24
25
|
client_secret: str = pydantic.Field(description="The client secret to use for authentication.")
|
|
25
26
|
tenant_id: str = pydantic.Field(description="The tenant ID to use for authentication.")
|
|
26
|
-
required_exts: typing.Optional[typing.List[str]]
|
|
27
|
+
required_exts: typing.Optional[typing.List[str]] = pydantic.Field(
|
|
28
|
+
description="The list of required file extensions."
|
|
29
|
+
)
|
|
27
30
|
class_name: typing.Optional[str]
|
|
28
31
|
|
|
29
32
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -15,13 +15,14 @@ except ImportError:
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class CloudSlackDataSource(pydantic.BaseModel):
|
|
18
|
+
supports_access_control: typing.Optional[bool]
|
|
18
19
|
slack_token: str = pydantic.Field(description="Slack Bot Token.")
|
|
19
|
-
channel_ids: typing.Optional[str]
|
|
20
|
-
latest_date: typing.Optional[str]
|
|
21
|
-
earliest_date: typing.Optional[str]
|
|
22
|
-
earliest_date_timestamp: typing.Optional[float]
|
|
23
|
-
latest_date_timestamp: typing.Optional[float]
|
|
24
|
-
channel_patterns: typing.Optional[str]
|
|
20
|
+
channel_ids: typing.Optional[str] = pydantic.Field(description="Slack Channel.")
|
|
21
|
+
latest_date: typing.Optional[str] = pydantic.Field(description="Latest date.")
|
|
22
|
+
earliest_date: typing.Optional[str] = pydantic.Field(description="Earliest date.")
|
|
23
|
+
earliest_date_timestamp: typing.Optional[float] = pydantic.Field(description="Earliest date timestamp.")
|
|
24
|
+
latest_date_timestamp: typing.Optional[float] = pydantic.Field(description="Latest date timestamp.")
|
|
25
|
+
channel_patterns: typing.Optional[str] = pydantic.Field(description="Slack Channel name pattern.")
|
|
25
26
|
class_name: typing.Optional[str]
|
|
26
27
|
|
|
27
28
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -27,7 +27,7 @@ class CodeSplitter(pydantic.BaseModel):
|
|
|
27
27
|
)
|
|
28
28
|
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
29
29
|
callback_manager: typing.Optional[typing.Any]
|
|
30
|
-
id_func: typing.Optional[str]
|
|
30
|
+
id_func: typing.Optional[str] = pydantic.Field(description="Function to generate node IDs.")
|
|
31
31
|
language: str = pydantic.Field(description="The programming language of the code being split.")
|
|
32
32
|
chunk_lines: typing.Optional[int] = pydantic.Field(description="The number of lines to include in each chunk.")
|
|
33
33
|
chunk_lines_overlap: typing.Optional[int] = pydantic.Field(
|
|
@@ -17,10 +17,14 @@ except ImportError:
|
|
|
17
17
|
class CohereEmbedding(pydantic.BaseModel):
|
|
18
18
|
model_name: typing.Optional[str] = pydantic.Field(description="The modelId of the Cohere model to use.")
|
|
19
19
|
embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
|
|
20
|
-
num_workers: typing.Optional[int]
|
|
21
|
-
|
|
20
|
+
num_workers: typing.Optional[int] = pydantic.Field(
|
|
21
|
+
description="The number of workers to use for async embedding calls."
|
|
22
|
+
)
|
|
23
|
+
api_key: typing.Optional[str] = pydantic.Field(description="The Cohere API key.")
|
|
22
24
|
truncate: typing.Optional[str] = pydantic.Field(description="Truncation type - START/ END/ NONE")
|
|
23
|
-
input_type: typing.Optional[str]
|
|
25
|
+
input_type: typing.Optional[str] = pydantic.Field(
|
|
26
|
+
description="Model Input type. If not provided, search_document and search_query are used when needed."
|
|
27
|
+
)
|
|
24
28
|
embedding_type: typing.Optional[str] = pydantic.Field(
|
|
25
29
|
description="Embedding type. If not provided float embedding_type is used when needed."
|
|
26
30
|
)
|
llama_cloud/types/data_sink.py
CHANGED
|
@@ -5,7 +5,7 @@ import typing
|
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
7
|
from .configurable_data_sink_names import ConfigurableDataSinkNames
|
|
8
|
-
from .
|
|
8
|
+
from .data_sink_create_component import DataSinkCreateComponent
|
|
9
9
|
|
|
10
10
|
try:
|
|
11
11
|
import pydantic
|
|
@@ -22,11 +22,11 @@ class DataSink(pydantic.BaseModel):
|
|
|
22
22
|
"""
|
|
23
23
|
|
|
24
24
|
id: str = pydantic.Field(description="Unique identifier")
|
|
25
|
-
created_at: typing.Optional[dt.datetime]
|
|
26
|
-
updated_at: typing.Optional[dt.datetime]
|
|
25
|
+
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
26
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
27
27
|
name: str = pydantic.Field(description="The name of the data sink.")
|
|
28
28
|
sink_type: ConfigurableDataSinkNames
|
|
29
|
-
component:
|
|
29
|
+
component: DataSinkCreateComponent = pydantic.Field(description="Component that implements the data sink")
|
|
30
30
|
project_id: str
|
|
31
31
|
|
|
32
32
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -23,7 +23,7 @@ class DataSinkCreate(pydantic.BaseModel):
|
|
|
23
23
|
|
|
24
24
|
name: str = pydantic.Field(description="The name of the data sink.")
|
|
25
25
|
sink_type: ConfigurableDataSinkNames
|
|
26
|
-
component: DataSinkCreateComponent
|
|
26
|
+
component: DataSinkCreateComponent = pydantic.Field(description="Component that implements the data sink")
|
|
27
27
|
|
|
28
28
|
def json(self, **kwargs: typing.Any) -> str:
|
|
29
29
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
llama_cloud/types/data_source.py
CHANGED
|
@@ -5,7 +5,7 @@ import typing
|
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
7
|
from .configurable_data_source_names import ConfigurableDataSourceNames
|
|
8
|
-
from .
|
|
8
|
+
from .data_source_create_component import DataSourceCreateComponent
|
|
9
9
|
from .data_source_custom_metadata_value import DataSourceCustomMetadataValue
|
|
10
10
|
|
|
11
11
|
try:
|
|
@@ -23,12 +23,14 @@ class DataSource(pydantic.BaseModel):
|
|
|
23
23
|
"""
|
|
24
24
|
|
|
25
25
|
id: str = pydantic.Field(description="Unique identifier")
|
|
26
|
-
created_at: typing.Optional[dt.datetime]
|
|
27
|
-
updated_at: typing.Optional[dt.datetime]
|
|
26
|
+
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
27
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
28
28
|
name: str = pydantic.Field(description="The name of the data source.")
|
|
29
29
|
source_type: ConfigurableDataSourceNames
|
|
30
|
-
custom_metadata: typing.Optional[typing.Dict[str, typing.Optional[DataSourceCustomMetadataValue]]]
|
|
31
|
-
|
|
30
|
+
custom_metadata: typing.Optional[typing.Dict[str, typing.Optional[DataSourceCustomMetadataValue]]] = pydantic.Field(
|
|
31
|
+
description="Custom metadata that will be present on all data loaded from the data source"
|
|
32
|
+
)
|
|
33
|
+
component: DataSourceCreateComponent = pydantic.Field(description="Component that implements the data source")
|
|
32
34
|
project_id: str
|
|
33
35
|
|
|
34
36
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -24,8 +24,10 @@ class DataSourceCreate(pydantic.BaseModel):
|
|
|
24
24
|
|
|
25
25
|
name: str = pydantic.Field(description="The name of the data source.")
|
|
26
26
|
source_type: ConfigurableDataSourceNames
|
|
27
|
-
custom_metadata: typing.Optional[
|
|
28
|
-
|
|
27
|
+
custom_metadata: typing.Optional[
|
|
28
|
+
typing.Dict[str, typing.Optional[DataSourceCreateCustomMetadataValue]]
|
|
29
|
+
] = pydantic.Field(description="Custom metadata that will be present on all data loaded from the data source")
|
|
30
|
+
component: DataSourceCreateComponent = pydantic.Field(description="Component that implements the data source")
|
|
29
31
|
|
|
30
32
|
def json(self, **kwargs: typing.Any) -> str:
|
|
31
33
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -21,8 +21,8 @@ class EmbeddingModelConfig(pydantic.BaseModel):
|
|
|
21
21
|
"""
|
|
22
22
|
|
|
23
23
|
id: str = pydantic.Field(description="Unique identifier")
|
|
24
|
-
created_at: typing.Optional[dt.datetime]
|
|
25
|
-
updated_at: typing.Optional[dt.datetime]
|
|
24
|
+
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
25
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
26
26
|
name: str = pydantic.Field(description="The name of the embedding model config.")
|
|
27
27
|
embedding_config: EmbeddingModelConfigEmbeddingConfig = pydantic.Field(
|
|
28
28
|
description="The embedding configuration for the embedding model config."
|
|
@@ -16,8 +16,10 @@ except ImportError:
|
|
|
16
16
|
|
|
17
17
|
|
|
18
18
|
class EmbeddingModelConfigUpdate(pydantic.BaseModel):
|
|
19
|
-
name: typing.Optional[str]
|
|
20
|
-
embedding_config: typing.Optional[EmbeddingModelConfigUpdateEmbeddingConfig]
|
|
19
|
+
name: typing.Optional[str] = pydantic.Field(description="The name of the embedding model config.")
|
|
20
|
+
embedding_config: typing.Optional[EmbeddingModelConfigUpdateEmbeddingConfig] = pydantic.Field(
|
|
21
|
+
description="The embedding configuration for the embedding model config."
|
|
22
|
+
)
|
|
21
23
|
|
|
22
24
|
def json(self, **kwargs: typing.Any) -> str:
|
|
23
25
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|