llama-cloud 0.1.5__py3-none-any.whl → 0.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

Files changed (105) hide show
  1. llama_cloud/__init__.py +12 -10
  2. llama_cloud/environment.py +1 -1
  3. llama_cloud/resources/__init__.py +2 -1
  4. llama_cloud/resources/data_sinks/client.py +14 -14
  5. llama_cloud/resources/data_sources/client.py +16 -16
  6. llama_cloud/resources/embedding_model_configs/client.py +80 -24
  7. llama_cloud/resources/evals/client.py +36 -26
  8. llama_cloud/resources/extraction/client.py +32 -32
  9. llama_cloud/resources/files/__init__.py +2 -2
  10. llama_cloud/resources/files/client.py +53 -28
  11. llama_cloud/resources/files/types/__init__.py +2 -1
  12. llama_cloud/resources/files/types/file_create_permission_info_value.py +7 -0
  13. llama_cloud/resources/organizations/client.py +60 -56
  14. llama_cloud/resources/parsing/client.py +555 -324
  15. llama_cloud/resources/pipelines/client.py +446 -302
  16. llama_cloud/resources/projects/client.py +270 -136
  17. llama_cloud/types/__init__.py +10 -10
  18. llama_cloud/types/azure_open_ai_embedding.py +12 -6
  19. llama_cloud/types/base_prompt_template.py +6 -2
  20. llama_cloud/types/bedrock_embedding.py +12 -6
  21. llama_cloud/types/character_splitter.py +4 -2
  22. llama_cloud/types/chat_message.py +1 -1
  23. llama_cloud/types/cloud_az_storage_blob_data_source.py +16 -7
  24. llama_cloud/types/cloud_box_data_source.py +13 -6
  25. llama_cloud/types/cloud_confluence_data_source.py +7 -6
  26. llama_cloud/types/cloud_document.py +3 -1
  27. llama_cloud/types/cloud_document_create.py +3 -1
  28. llama_cloud/types/cloud_google_drive_data_source.py +1 -0
  29. llama_cloud/types/cloud_jira_data_source.py +7 -4
  30. llama_cloud/types/cloud_notion_page_data_source.py +3 -2
  31. llama_cloud/types/cloud_one_drive_data_source.py +6 -3
  32. llama_cloud/types/cloud_s_3_data_source.py +9 -4
  33. llama_cloud/types/cloud_sharepoint_data_source.py +9 -6
  34. llama_cloud/types/cloud_slack_data_source.py +7 -6
  35. llama_cloud/types/code_splitter.py +1 -1
  36. llama_cloud/types/cohere_embedding.py +7 -3
  37. llama_cloud/types/data_sink.py +4 -4
  38. llama_cloud/types/data_sink_create.py +1 -1
  39. llama_cloud/types/data_source.py +7 -5
  40. llama_cloud/types/data_source_create.py +4 -2
  41. llama_cloud/types/embedding_model_config.py +2 -2
  42. llama_cloud/types/embedding_model_config_update.py +4 -2
  43. llama_cloud/types/eval_dataset.py +2 -2
  44. llama_cloud/types/eval_dataset_job_record.py +13 -7
  45. llama_cloud/types/eval_execution_params_override.py +6 -2
  46. llama_cloud/types/eval_question.py +2 -2
  47. llama_cloud/types/extraction_result.py +2 -2
  48. llama_cloud/types/extraction_schema.py +5 -3
  49. llama_cloud/types/file.py +15 -7
  50. llama_cloud/types/file_permission_info_value.py +5 -0
  51. llama_cloud/types/filter_operator.py +2 -2
  52. llama_cloud/types/gemini_embedding.py +10 -6
  53. llama_cloud/types/hugging_face_inference_api_embedding.py +27 -11
  54. llama_cloud/types/input_message.py +3 -1
  55. llama_cloud/types/job_name_mapping.py +4 -0
  56. llama_cloud/types/llama_parse_parameters.py +11 -0
  57. llama_cloud/types/llm.py +4 -2
  58. llama_cloud/types/llm_parameters.py +5 -2
  59. llama_cloud/types/local_eval.py +10 -8
  60. llama_cloud/types/local_eval_results.py +1 -1
  61. llama_cloud/types/managed_ingestion_status_response.py +5 -3
  62. llama_cloud/types/markdown_element_node_parser.py +5 -3
  63. llama_cloud/types/markdown_node_parser.py +1 -1
  64. llama_cloud/types/metadata_filter.py +2 -2
  65. llama_cloud/types/metric_result.py +3 -3
  66. llama_cloud/types/node_parser.py +1 -1
  67. llama_cloud/types/open_ai_embedding.py +12 -6
  68. llama_cloud/types/organization.py +2 -2
  69. llama_cloud/types/page_splitter_node_parser.py +2 -2
  70. llama_cloud/types/parsing_job_structured_result.py +32 -0
  71. llama_cloud/types/permission.py +3 -3
  72. llama_cloud/types/pipeline.py +17 -7
  73. llama_cloud/types/pipeline_configuration_hashes.py +3 -3
  74. llama_cloud/types/pipeline_create.py +15 -5
  75. llama_cloud/types/pipeline_data_source.py +13 -7
  76. llama_cloud/types/pipeline_data_source_create.py +3 -1
  77. llama_cloud/types/pipeline_deployment.py +4 -4
  78. llama_cloud/types/pipeline_file.py +25 -11
  79. llama_cloud/types/pipeline_file_create.py +3 -1
  80. llama_cloud/types/pipeline_file_permission_info_value.py +7 -0
  81. llama_cloud/types/playground_session.py +2 -2
  82. llama_cloud/types/preset_retrieval_params.py +14 -7
  83. llama_cloud/types/presigned_url.py +3 -1
  84. llama_cloud/types/project.py +2 -2
  85. llama_cloud/types/prompt_mixin_prompts.py +1 -1
  86. llama_cloud/types/prompt_spec.py +4 -2
  87. llama_cloud/types/role.py +3 -3
  88. llama_cloud/types/sentence_splitter.py +4 -2
  89. llama_cloud/types/text_node.py +3 -3
  90. llama_cloud/types/{hugging_face_inference_api_embedding_token.py → token.py} +1 -1
  91. llama_cloud/types/token_text_splitter.py +1 -1
  92. llama_cloud/types/user_organization.py +9 -5
  93. llama_cloud/types/user_organization_create.py +4 -4
  94. llama_cloud/types/user_organization_delete.py +2 -2
  95. llama_cloud/types/user_organization_role.py +2 -2
  96. llama_cloud/types/value.py +5 -0
  97. llama_cloud/types/vertex_text_embedding.py +9 -5
  98. {llama_cloud-0.1.5.dist-info → llama_cloud-0.1.6.dist-info}/METADATA +2 -1
  99. {llama_cloud-0.1.5.dist-info → llama_cloud-0.1.6.dist-info}/RECORD +101 -100
  100. {llama_cloud-0.1.5.dist-info → llama_cloud-0.1.6.dist-info}/WHEEL +1 -1
  101. llama_cloud/types/data_sink_component.py +0 -20
  102. llama_cloud/types/data_source_component.py +0 -28
  103. llama_cloud/types/metadata_filter_value.py +0 -5
  104. llama_cloud/types/pipeline_data_source_component.py +0 -28
  105. {llama_cloud-0.1.5.dist-info → llama_cloud-0.1.6.dist-info}/LICENSE +0 -0
@@ -80,15 +80,12 @@ class PipelinesClient:
80
80
 
81
81
  - organization_id: typing.Optional[str].
82
82
  ---
83
- from llama_cloud import PipelineType
84
83
  from llama_cloud.client import LlamaCloud
85
84
 
86
85
  client = LlamaCloud(
87
86
  token="YOUR_TOKEN",
88
87
  )
89
- client.pipelines.search_pipelines(
90
- pipeline_type=PipelineType.PLAYGROUND,
91
- )
88
+ client.pipelines.search_pipelines()
92
89
  """
93
90
  _response = self._client_wrapper.httpx_client.request(
94
91
  "GET",
@@ -131,6 +128,18 @@ class PipelinesClient:
131
128
  - organization_id: typing.Optional[str].
132
129
 
133
130
  - request: PipelineCreate.
131
+ ---
132
+ from llama_cloud import PipelineCreate
133
+ from llama_cloud.client import LlamaCloud
134
+
135
+ client = LlamaCloud(
136
+ token="YOUR_TOKEN",
137
+ )
138
+ client.pipelines.create_pipeline(
139
+ request=PipelineCreate(
140
+ name="name",
141
+ ),
142
+ )
134
143
  """
135
144
  _response = self._client_wrapper.httpx_client.request(
136
145
  "POST",
@@ -167,6 +176,18 @@ class PipelinesClient:
167
176
  - organization_id: typing.Optional[str].
168
177
 
169
178
  - request: PipelineCreate.
179
+ ---
180
+ from llama_cloud import PipelineCreate
181
+ from llama_cloud.client import LlamaCloud
182
+
183
+ client = LlamaCloud(
184
+ token="YOUR_TOKEN",
185
+ )
186
+ client.pipelines.upsert_pipeline(
187
+ request=PipelineCreate(
188
+ name="name",
189
+ ),
190
+ )
170
191
  """
171
192
  _response = self._client_wrapper.httpx_client.request(
172
193
  "PUT",
@@ -192,6 +213,15 @@ class PipelinesClient:
192
213
 
193
214
  Parameters:
194
215
  - pipeline_id: str.
216
+ ---
217
+ from llama_cloud.client import LlamaCloud
218
+
219
+ client = LlamaCloud(
220
+ token="YOUR_TOKEN",
221
+ )
222
+ client.pipelines.get_pipeline(
223
+ pipeline_id="pipeline_id",
224
+ )
195
225
  """
196
226
  _response = self._client_wrapper.httpx_client.request(
197
227
  "GET",
@@ -235,23 +265,32 @@ class PipelinesClient:
235
265
 
236
266
  - transform_config: typing.Optional[PipelineUpdateTransformConfig]. Configuration for the transformation.
237
267
 
238
- - configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]].
268
+ - configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]]. Deprecated, use embedding_config or transform_config instead. configured transformations for the pipeline.
239
269
 
240
- - data_sink_id: typing.Optional[str].
270
+ - data_sink_id: typing.Optional[str]. Data sink ID. When provided instead of data_sink, the data sink will be looked up by ID.
241
271
 
242
- - embedding_model_config_id: typing.Optional[str].
272
+ - embedding_model_config_id: typing.Optional[str]. Embedding model config ID. When provided instead of embedding_config, the embedding model config will be looked up by ID.
243
273
 
244
- - data_sink: typing.Optional[DataSinkCreate].
274
+ - data_sink: typing.Optional[DataSinkCreate]. Data sink. When provided instead of data_sink_id, the data sink will be created.
245
275
 
246
- - preset_retrieval_parameters: typing.Optional[PresetRetrievalParams].
276
+ - preset_retrieval_parameters: typing.Optional[PresetRetrievalParams]. Preset retrieval parameters for the pipeline.
247
277
 
248
- - eval_parameters: typing.Optional[EvalExecutionParams].
278
+ - eval_parameters: typing.Optional[EvalExecutionParams]. Eval parameters for the pipeline.
249
279
 
250
- - llama_parse_parameters: typing.Optional[LlamaParseParameters].
280
+ - llama_parse_parameters: typing.Optional[LlamaParseParameters]. Settings that can be configured for how to use LlamaParse to parse files within a LlamaCloud pipeline.
251
281
 
252
282
  - name: typing.Optional[str].
253
283
 
254
- - managed_pipeline_id: typing.Optional[str].
284
+ - managed_pipeline_id: typing.Optional[str]. The ID of the ManagedPipeline this playground pipeline is linked to.
285
+ ---
286
+ from llama_cloud.client import LlamaCloud
287
+
288
+ client = LlamaCloud(
289
+ token="YOUR_TOKEN",
290
+ )
291
+ client.pipelines.update_existing_pipeline(
292
+ pipeline_id="pipeline_id",
293
+ )
255
294
  """
256
295
  _request: typing.Dict[str, typing.Any] = {}
257
296
  if embedding_config is not OMIT:
@@ -306,7 +345,7 @@ class PipelinesClient:
306
345
  token="YOUR_TOKEN",
307
346
  )
308
347
  client.pipelines.delete_pipeline(
309
- pipeline_id="string",
348
+ pipeline_id="pipeline_id",
310
349
  )
311
350
  """
312
351
  _response = self._client_wrapper.httpx_client.request(
@@ -338,7 +377,7 @@ class PipelinesClient:
338
377
  token="YOUR_TOKEN",
339
378
  )
340
379
  client.pipelines.get_pipeline_status(
341
- pipeline_id="string",
380
+ pipeline_id="pipeline_id",
342
381
  )
343
382
  """
344
383
  _response = self._client_wrapper.httpx_client.request(
@@ -363,6 +402,15 @@ class PipelinesClient:
363
402
 
364
403
  Parameters:
365
404
  - pipeline_id: str.
405
+ ---
406
+ from llama_cloud.client import LlamaCloud
407
+
408
+ client = LlamaCloud(
409
+ token="YOUR_TOKEN",
410
+ )
411
+ client.pipelines.sync_pipeline(
412
+ pipeline_id="pipeline_id",
413
+ )
366
414
  """
367
415
  _response = self._client_wrapper.httpx_client.request(
368
416
  "POST",
@@ -386,6 +434,15 @@ class PipelinesClient:
386
434
 
387
435
  Parameters:
388
436
  - pipeline_id: str.
437
+ ---
438
+ from llama_cloud.client import LlamaCloud
439
+
440
+ client = LlamaCloud(
441
+ token="YOUR_TOKEN",
442
+ )
443
+ client.pipelines.copy_pipeline(
444
+ pipeline_id="pipeline_id",
445
+ )
389
446
  """
390
447
  _response = self._client_wrapper.httpx_client.request(
391
448
  "POST",
@@ -403,14 +460,14 @@ class PipelinesClient:
403
460
  raise ApiError(status_code=_response.status_code, body=_response.text)
404
461
  raise ApiError(status_code=_response.status_code, body=_response_json)
405
462
 
406
- def get_eval_dataset_executions(self, pipeline_id: str, eval_dataset_id: str) -> typing.List[EvalDatasetJobRecord]:
463
+ def get_eval_dataset_executions(self, eval_dataset_id: str, pipeline_id: str) -> typing.List[EvalDatasetJobRecord]:
407
464
  """
408
465
  Get the status of an EvalDatasetExecution.
409
466
 
410
467
  Parameters:
411
- - pipeline_id: str.
412
-
413
468
  - eval_dataset_id: str.
469
+
470
+ - pipeline_id: str.
414
471
  ---
415
472
  from llama_cloud.client import LlamaCloud
416
473
 
@@ -418,8 +475,8 @@ class PipelinesClient:
418
475
  token="YOUR_TOKEN",
419
476
  )
420
477
  client.pipelines.get_eval_dataset_executions(
421
- pipeline_id="string",
422
- eval_dataset_id="string",
478
+ eval_dataset_id="eval_dataset_id",
479
+ pipeline_id="pipeline_id",
423
480
  )
424
481
  """
425
482
  _response = self._client_wrapper.httpx_client.request(
@@ -443,8 +500,8 @@ class PipelinesClient:
443
500
 
444
501
  def execute_eval_dataset(
445
502
  self,
446
- pipeline_id: str,
447
503
  eval_dataset_id: str,
504
+ pipeline_id: str,
448
505
  *,
449
506
  eval_question_ids: typing.List[str],
450
507
  params: typing.Optional[EvalExecutionParamsOverride] = OMIT,
@@ -453,27 +510,23 @@ class PipelinesClient:
453
510
  Execute a dataset.
454
511
 
455
512
  Parameters:
456
- - pipeline_id: str.
457
-
458
513
  - eval_dataset_id: str.
459
514
 
515
+ - pipeline_id: str.
516
+
460
517
  - eval_question_ids: typing.List[str].
461
518
 
462
519
  - params: typing.Optional[EvalExecutionParamsOverride]. The parameters for the eval execution that will override the ones set in the pipeline.
463
520
  ---
464
- from llama_cloud import EvalExecutionParamsOverride, SupportedLlmModelNames
465
521
  from llama_cloud.client import LlamaCloud
466
522
 
467
523
  client = LlamaCloud(
468
524
  token="YOUR_TOKEN",
469
525
  )
470
526
  client.pipelines.execute_eval_dataset(
471
- pipeline_id="string",
472
- eval_dataset_id="string",
473
- eval_question_ids=[],
474
- params=EvalExecutionParamsOverride(
475
- llm_model=SupportedLlmModelNames.GPT_3_5_TURBO,
476
- ),
527
+ eval_dataset_id="eval_dataset_id",
528
+ pipeline_id="pipeline_id",
529
+ eval_question_ids=["eval_question_ids"],
477
530
  )
478
531
  """
479
532
  _request: typing.Dict[str, typing.Any] = {"eval_question_ids": eval_question_ids}
@@ -500,7 +553,7 @@ class PipelinesClient:
500
553
  raise ApiError(status_code=_response.status_code, body=_response_json)
501
554
 
502
555
  def get_eval_dataset_execution_result(
503
- self, pipeline_id: str, eval_dataset_id: str
556
+ self, eval_dataset_id: str, pipeline_id: str
504
557
  ) -> typing.List[EvalQuestionResult]:
505
558
  """
506
559
  Get the result of an EvalDatasetExecution.
@@ -509,9 +562,9 @@ class PipelinesClient:
509
562
  If any of the specified questions do not have a result, they will be ignored.
510
563
 
511
564
  Parameters:
512
- - pipeline_id: str.
513
-
514
565
  - eval_dataset_id: str.
566
+
567
+ - pipeline_id: str.
515
568
  ---
516
569
  from llama_cloud.client import LlamaCloud
517
570
 
@@ -519,8 +572,8 @@ class PipelinesClient:
519
572
  token="YOUR_TOKEN",
520
573
  )
521
574
  client.pipelines.get_eval_dataset_execution_result(
522
- pipeline_id="string",
523
- eval_dataset_id="string",
575
+ eval_dataset_id="eval_dataset_id",
576
+ pipeline_id="pipeline_id",
524
577
  )
525
578
  """
526
579
  _response = self._client_wrapper.httpx_client.request(
@@ -543,17 +596,17 @@ class PipelinesClient:
543
596
  raise ApiError(status_code=_response.status_code, body=_response_json)
544
597
 
545
598
  def get_eval_dataset_execution(
546
- self, pipeline_id: str, eval_dataset_id: str, eval_dataset_execution_id: str
599
+ self, eval_dataset_id: str, eval_dataset_execution_id: str, pipeline_id: str
547
600
  ) -> EvalDatasetJobRecord:
548
601
  """
549
602
  Get the status of an EvalDatasetExecution.
550
603
 
551
604
  Parameters:
552
- - pipeline_id: str.
553
-
554
605
  - eval_dataset_id: str.
555
606
 
556
607
  - eval_dataset_execution_id: str.
608
+
609
+ - pipeline_id: str.
557
610
  ---
558
611
  from llama_cloud.client import LlamaCloud
559
612
 
@@ -561,9 +614,9 @@ class PipelinesClient:
561
614
  token="YOUR_TOKEN",
562
615
  )
563
616
  client.pipelines.get_eval_dataset_execution(
564
- pipeline_id="string",
565
- eval_dataset_id="string",
566
- eval_dataset_execution_id="string",
617
+ eval_dataset_id="eval_dataset_id",
618
+ eval_dataset_execution_id="eval_dataset_execution_id",
619
+ pipeline_id="pipeline_id",
567
620
  )
568
621
  """
569
622
  _response = self._client_wrapper.httpx_client.request(
@@ -608,7 +661,7 @@ class PipelinesClient:
608
661
  token="YOUR_TOKEN",
609
662
  )
610
663
  client.pipelines.list_pipeline_files(
611
- pipeline_id="string",
664
+ pipeline_id="pipeline_id",
612
665
  )
613
666
  """
614
667
  _response = self._client_wrapper.httpx_client.request(
@@ -641,14 +694,19 @@ class PipelinesClient:
641
694
 
642
695
  - request: typing.List[PipelineFileCreate].
643
696
  ---
697
+ from llama_cloud import PipelineFileCreate
644
698
  from llama_cloud.client import LlamaCloud
645
699
 
646
700
  client = LlamaCloud(
647
701
  token="YOUR_TOKEN",
648
702
  )
649
703
  client.pipelines.add_files_to_pipeline(
650
- pipeline_id="string",
651
- request=[],
704
+ pipeline_id="pipeline_id",
705
+ request=[
706
+ PipelineFileCreate(
707
+ file_id="file_id",
708
+ )
709
+ ],
652
710
  )
653
711
  """
654
712
  _response = self._client_wrapper.httpx_client.request(
@@ -697,7 +755,7 @@ class PipelinesClient:
697
755
  token="YOUR_TOKEN",
698
756
  )
699
757
  client.pipelines.list_pipeline_files_2(
700
- pipeline_id="string",
758
+ pipeline_id="pipeline_id",
701
759
  )
702
760
  """
703
761
  _response = self._client_wrapper.httpx_client.request(
@@ -724,14 +782,14 @@ class PipelinesClient:
724
782
  raise ApiError(status_code=_response.status_code, body=_response.text)
725
783
  raise ApiError(status_code=_response.status_code, body=_response_json)
726
784
 
727
- def get_pipeline_file_status(self, pipeline_id: str, file_id: str) -> ManagedIngestionStatusResponse:
785
+ def get_pipeline_file_status(self, file_id: str, pipeline_id: str) -> ManagedIngestionStatusResponse:
728
786
  """
729
787
  Get status of a file for a pipeline.
730
788
 
731
789
  Parameters:
732
- - pipeline_id: str.
733
-
734
790
  - file_id: str.
791
+
792
+ - pipeline_id: str.
735
793
  ---
736
794
  from llama_cloud.client import LlamaCloud
737
795
 
@@ -739,8 +797,8 @@ class PipelinesClient:
739
797
  token="YOUR_TOKEN",
740
798
  )
741
799
  client.pipelines.get_pipeline_file_status(
742
- pipeline_id="string",
743
- file_id="string",
800
+ file_id="file_id",
801
+ pipeline_id="pipeline_id",
744
802
  )
745
803
  """
746
804
  _response = self._client_wrapper.httpx_client.request(
@@ -763,8 +821,8 @@ class PipelinesClient:
763
821
 
764
822
  def update_pipeline_file(
765
823
  self,
766
- pipeline_id: str,
767
824
  file_id: str,
825
+ pipeline_id: str,
768
826
  *,
769
827
  custom_metadata: typing.Optional[
770
828
  typing.Dict[str, typing.Optional[PipelineFileUpdateCustomMetadataValue]]
@@ -774,11 +832,11 @@ class PipelinesClient:
774
832
  Update a file for a pipeline.
775
833
 
776
834
  Parameters:
777
- - pipeline_id: str.
778
-
779
835
  - file_id: str.
780
836
 
781
- - custom_metadata: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileUpdateCustomMetadataValue]]].
837
+ - pipeline_id: str.
838
+
839
+ - custom_metadata: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileUpdateCustomMetadataValue]]]. Custom metadata for the file
782
840
  ---
783
841
  from llama_cloud.client import LlamaCloud
784
842
 
@@ -786,8 +844,8 @@ class PipelinesClient:
786
844
  token="YOUR_TOKEN",
787
845
  )
788
846
  client.pipelines.update_pipeline_file(
789
- pipeline_id="string",
790
- file_id="string",
847
+ file_id="file_id",
848
+ pipeline_id="pipeline_id",
791
849
  )
792
850
  """
793
851
  _request: typing.Dict[str, typing.Any] = {}
@@ -812,14 +870,14 @@ class PipelinesClient:
812
870
  raise ApiError(status_code=_response.status_code, body=_response.text)
813
871
  raise ApiError(status_code=_response.status_code, body=_response_json)
814
872
 
815
- def delete_pipeline_file(self, pipeline_id: str, file_id: str) -> None:
873
+ def delete_pipeline_file(self, file_id: str, pipeline_id: str) -> None:
816
874
  """
817
875
  Delete a file from a pipeline.
818
876
 
819
877
  Parameters:
820
- - pipeline_id: str.
821
-
822
878
  - file_id: str.
879
+
880
+ - pipeline_id: str.
823
881
  ---
824
882
  from llama_cloud.client import LlamaCloud
825
883
 
@@ -827,8 +885,8 @@ class PipelinesClient:
827
885
  token="YOUR_TOKEN",
828
886
  )
829
887
  client.pipelines.delete_pipeline_file(
830
- pipeline_id="string",
831
- file_id="string",
888
+ file_id="file_id",
889
+ pipeline_id="pipeline_id",
832
890
  )
833
891
  """
834
892
  _response = self._client_wrapper.httpx_client.request(
@@ -857,6 +915,15 @@ class PipelinesClient:
857
915
  - pipeline_id: str.
858
916
 
859
917
  - upload_file: typing.IO.
918
+ ---
919
+ from llama_cloud.client import LlamaCloud
920
+
921
+ client = LlamaCloud(
922
+ token="YOUR_TOKEN",
923
+ )
924
+ client.pipelines.import_pipeline_metadata(
925
+ pipeline_id="pipeline_id",
926
+ )
860
927
  """
861
928
  _response = self._client_wrapper.httpx_client.request(
862
929
  "PUT",
@@ -889,7 +956,7 @@ class PipelinesClient:
889
956
  token="YOUR_TOKEN",
890
957
  )
891
958
  client.pipelines.delete_pipeline_files_metadata(
892
- pipeline_id="string",
959
+ pipeline_id="pipeline_id",
893
960
  )
894
961
  """
895
962
  _response = self._client_wrapper.httpx_client.request(
@@ -921,7 +988,7 @@ class PipelinesClient:
921
988
  token="YOUR_TOKEN",
922
989
  )
923
990
  client.pipelines.list_pipeline_data_sources(
924
- pipeline_id="string",
991
+ pipeline_id="pipeline_id",
925
992
  )
926
993
  """
927
994
  _response = self._client_wrapper.httpx_client.request(
@@ -953,14 +1020,19 @@ class PipelinesClient:
953
1020
 
954
1021
  - request: typing.List[PipelineDataSourceCreate].
955
1022
  ---
1023
+ from llama_cloud import PipelineDataSourceCreate
956
1024
  from llama_cloud.client import LlamaCloud
957
1025
 
958
1026
  client = LlamaCloud(
959
1027
  token="YOUR_TOKEN",
960
1028
  )
961
1029
  client.pipelines.add_data_sources_to_pipeline(
962
- pipeline_id="string",
963
- request=[],
1030
+ pipeline_id="pipeline_id",
1031
+ request=[
1032
+ PipelineDataSourceCreate(
1033
+ data_source_id="data_source_id",
1034
+ )
1035
+ ],
964
1036
  )
965
1037
  """
966
1038
  _response = self._client_wrapper.httpx_client.request(
@@ -983,17 +1055,17 @@ class PipelinesClient:
983
1055
  raise ApiError(status_code=_response.status_code, body=_response_json)
984
1056
 
985
1057
  def update_pipeline_data_source(
986
- self, pipeline_id: str, data_source_id: str, *, sync_interval: typing.Optional[float] = OMIT
1058
+ self, data_source_id: str, pipeline_id: str, *, sync_interval: typing.Optional[float] = OMIT
987
1059
  ) -> PipelineDataSource:
988
1060
  """
989
1061
  Update the configuration of a data source in a pipeline.
990
1062
 
991
1063
  Parameters:
992
- - pipeline_id: str.
993
-
994
1064
  - data_source_id: str.
995
1065
 
996
- - sync_interval: typing.Optional[float].
1066
+ - pipeline_id: str.
1067
+
1068
+ - sync_interval: typing.Optional[float]. The interval at which the data source should be synced.
997
1069
  ---
998
1070
  from llama_cloud.client import LlamaCloud
999
1071
 
@@ -1001,8 +1073,8 @@ class PipelinesClient:
1001
1073
  token="YOUR_TOKEN",
1002
1074
  )
1003
1075
  client.pipelines.update_pipeline_data_source(
1004
- pipeline_id="string",
1005
- data_source_id="string",
1076
+ data_source_id="data_source_id",
1077
+ pipeline_id="pipeline_id",
1006
1078
  )
1007
1079
  """
1008
1080
  _request: typing.Dict[str, typing.Any] = {}
@@ -1028,14 +1100,14 @@ class PipelinesClient:
1028
1100
  raise ApiError(status_code=_response.status_code, body=_response.text)
1029
1101
  raise ApiError(status_code=_response.status_code, body=_response_json)
1030
1102
 
1031
- def delete_pipeline_data_source(self, pipeline_id: str, data_source_id: str) -> None:
1103
+ def delete_pipeline_data_source(self, data_source_id: str, pipeline_id: str) -> None:
1032
1104
  """
1033
1105
  Delete a data source from a pipeline.
1034
1106
 
1035
1107
  Parameters:
1036
- - pipeline_id: str.
1037
-
1038
1108
  - data_source_id: str.
1109
+
1110
+ - pipeline_id: str.
1039
1111
  ---
1040
1112
  from llama_cloud.client import LlamaCloud
1041
1113
 
@@ -1043,8 +1115,8 @@ class PipelinesClient:
1043
1115
  token="YOUR_TOKEN",
1044
1116
  )
1045
1117
  client.pipelines.delete_pipeline_data_source(
1046
- pipeline_id="string",
1047
- data_source_id="string",
1118
+ data_source_id="data_source_id",
1119
+ pipeline_id="pipeline_id",
1048
1120
  )
1049
1121
  """
1050
1122
  _response = self._client_wrapper.httpx_client.request(
@@ -1066,14 +1138,24 @@ class PipelinesClient:
1066
1138
  raise ApiError(status_code=_response.status_code, body=_response.text)
1067
1139
  raise ApiError(status_code=_response.status_code, body=_response_json)
1068
1140
 
1069
- def sync_pipeline_data_source(self, pipeline_id: str, data_source_id: str) -> Pipeline:
1141
+ def sync_pipeline_data_source(self, data_source_id: str, pipeline_id: str) -> Pipeline:
1070
1142
  """
1071
1143
  Run ingestion for the pipeline data source by incrementally updating the data-sink with upstream changes from data-source.
1072
1144
 
1073
1145
  Parameters:
1146
+ - data_source_id: str.
1147
+
1074
1148
  - pipeline_id: str.
1149
+ ---
1150
+ from llama_cloud.client import LlamaCloud
1075
1151
 
1076
- - data_source_id: str.
1152
+ client = LlamaCloud(
1153
+ token="YOUR_TOKEN",
1154
+ )
1155
+ client.pipelines.sync_pipeline_data_source(
1156
+ data_source_id="data_source_id",
1157
+ pipeline_id="pipeline_id",
1158
+ )
1077
1159
  """
1078
1160
  _response = self._client_wrapper.httpx_client.request(
1079
1161
  "POST",
@@ -1094,14 +1176,14 @@ class PipelinesClient:
1094
1176
  raise ApiError(status_code=_response.status_code, body=_response.text)
1095
1177
  raise ApiError(status_code=_response.status_code, body=_response_json)
1096
1178
 
1097
- def get_pipeline_data_source_status(self, pipeline_id: str, data_source_id: str) -> ManagedIngestionStatusResponse:
1179
+ def get_pipeline_data_source_status(self, data_source_id: str, pipeline_id: str) -> ManagedIngestionStatusResponse:
1098
1180
  """
1099
1181
  Get the status of a data source for a pipeline.
1100
1182
 
1101
1183
  Parameters:
1102
- - pipeline_id: str.
1103
-
1104
1184
  - data_source_id: str.
1185
+
1186
+ - pipeline_id: str.
1105
1187
  ---
1106
1188
  from llama_cloud.client import LlamaCloud
1107
1189
 
@@ -1109,8 +1191,8 @@ class PipelinesClient:
1109
1191
  token="YOUR_TOKEN",
1110
1192
  )
1111
1193
  client.pipelines.get_pipeline_data_source_status(
1112
- pipeline_id="string",
1113
- data_source_id="string",
1194
+ data_source_id="data_source_id",
1195
+ pipeline_id="pipeline_id",
1114
1196
  )
1115
1197
  """
1116
1198
  _response = self._client_wrapper.httpx_client.request(
@@ -1137,6 +1219,7 @@ class PipelinesClient:
1137
1219
  pipeline_id: str,
1138
1220
  *,
1139
1221
  dense_similarity_top_k: typing.Optional[int] = OMIT,
1222
+ dense_similarity_cutoff: typing.Optional[float] = OMIT,
1140
1223
  sparse_similarity_top_k: typing.Optional[int] = OMIT,
1141
1224
  enable_reranking: typing.Optional[bool] = OMIT,
1142
1225
  rerank_top_n: typing.Optional[int] = OMIT,
@@ -1154,19 +1237,21 @@ class PipelinesClient:
1154
1237
  Parameters:
1155
1238
  - pipeline_id: str.
1156
1239
 
1157
- - dense_similarity_top_k: typing.Optional[int].
1240
+ - dense_similarity_top_k: typing.Optional[int]. Number of nodes for dense retrieval.
1158
1241
 
1159
- - sparse_similarity_top_k: typing.Optional[int].
1242
+ - dense_similarity_cutoff: typing.Optional[float]. Minimum similarity score wrt query for retrieval
1160
1243
 
1161
- - enable_reranking: typing.Optional[bool].
1244
+ - sparse_similarity_top_k: typing.Optional[int]. Number of nodes for sparse retrieval.
1162
1245
 
1163
- - rerank_top_n: typing.Optional[int].
1246
+ - enable_reranking: typing.Optional[bool]. Enable reranking for retrieval
1164
1247
 
1165
- - alpha: typing.Optional[float].
1248
+ - rerank_top_n: typing.Optional[int]. Number of reranked nodes for returning.
1166
1249
 
1167
- - search_filters: typing.Optional[MetadataFilters].
1250
+ - alpha: typing.Optional[float]. Alpha value for hybrid retrieval to determine the weights between dense and sparse retrieval. 0 is sparse retrieval and 1 is dense retrieval.
1168
1251
 
1169
- - files_top_k: typing.Optional[int].
1252
+ - search_filters: typing.Optional[MetadataFilters]. Search filters for retrieval.
1253
+
1254
+ - files_top_k: typing.Optional[int]. Number of files to retrieve (only for retrieval mode files_via_metadata and files_via_content).
1170
1255
 
1171
1256
  - retrieval_mode: typing.Optional[RetrievalMode]. The retrieval mode for the query.
1172
1257
 
@@ -1176,25 +1261,21 @@ class PipelinesClient:
1176
1261
 
1177
1262
  - class_name: typing.Optional[str].
1178
1263
  ---
1179
- from llama_cloud import FilterCondition, MetadataFilters, RetrievalMode
1180
1264
  from llama_cloud.client import LlamaCloud
1181
1265
 
1182
1266
  client = LlamaCloud(
1183
1267
  token="YOUR_TOKEN",
1184
1268
  )
1185
1269
  client.pipelines.run_search(
1186
- pipeline_id="string",
1187
- search_filters=MetadataFilters(
1188
- filters=[],
1189
- condition=FilterCondition.AND,
1190
- ),
1191
- retrieval_mode=RetrievalMode.CHUNKS,
1192
- query="string",
1270
+ pipeline_id="pipeline_id",
1271
+ query="query",
1193
1272
  )
1194
1273
  """
1195
1274
  _request: typing.Dict[str, typing.Any] = {"query": query}
1196
1275
  if dense_similarity_top_k is not OMIT:
1197
1276
  _request["dense_similarity_top_k"] = dense_similarity_top_k
1277
+ if dense_similarity_cutoff is not OMIT:
1278
+ _request["dense_similarity_cutoff"] = dense_similarity_cutoff
1198
1279
  if sparse_similarity_top_k is not OMIT:
1199
1280
  _request["sparse_similarity_top_k"] = sparse_similarity_top_k
1200
1281
  if enable_reranking is not OMIT:
@@ -1243,7 +1324,7 @@ class PipelinesClient:
1243
1324
  token="YOUR_TOKEN",
1244
1325
  )
1245
1326
  client.pipelines.list_pipeline_jobs(
1246
- pipeline_id="string",
1327
+ pipeline_id="pipeline_id",
1247
1328
  )
1248
1329
  """
1249
1330
  _response = self._client_wrapper.httpx_client.request(
@@ -1262,14 +1343,14 @@ class PipelinesClient:
1262
1343
  raise ApiError(status_code=_response.status_code, body=_response.text)
1263
1344
  raise ApiError(status_code=_response.status_code, body=_response_json)
1264
1345
 
1265
- def get_pipeline_job(self, pipeline_id: str, job_id: str) -> PipelineDeployment:
1346
+ def get_pipeline_job(self, job_id: str, pipeline_id: str) -> PipelineDeployment:
1266
1347
  """
1267
1348
  Get a job for a pipeline.
1268
1349
 
1269
1350
  Parameters:
1270
- - pipeline_id: str.
1271
-
1272
1351
  - job_id: str.
1352
+
1353
+ - pipeline_id: str.
1273
1354
  ---
1274
1355
  from llama_cloud.client import LlamaCloud
1275
1356
 
@@ -1277,8 +1358,8 @@ class PipelinesClient:
1277
1358
  token="YOUR_TOKEN",
1278
1359
  )
1279
1360
  client.pipelines.get_pipeline_job(
1280
- pipeline_id="string",
1281
- job_id="string",
1361
+ job_id="job_id",
1362
+ pipeline_id="pipeline_id",
1282
1363
  )
1283
1364
  """
1284
1365
  _response = self._client_wrapper.httpx_client.request(
@@ -1312,7 +1393,7 @@ class PipelinesClient:
1312
1393
  token="YOUR_TOKEN",
1313
1394
  )
1314
1395
  client.pipelines.get_playground_session(
1315
- pipeline_id="string",
1396
+ pipeline_id="pipeline_id",
1316
1397
  )
1317
1398
  """
1318
1399
  _response = self._client_wrapper.httpx_client.request(
@@ -1353,34 +1434,13 @@ class PipelinesClient:
1353
1434
 
1354
1435
  - class_name: typing.Optional[str].
1355
1436
  ---
1356
- from llama_cloud import (
1357
- ChatData,
1358
- FilterCondition,
1359
- LlmParameters,
1360
- MetadataFilters,
1361
- PresetRetrievalParams,
1362
- RetrievalMode,
1363
- SupportedLlmModelNames,
1364
- )
1365
1437
  from llama_cloud.client import LlamaCloud
1366
1438
 
1367
1439
  client = LlamaCloud(
1368
1440
  token="YOUR_TOKEN",
1369
1441
  )
1370
1442
  client.pipelines.chat(
1371
- pipeline_id="string",
1372
- data=ChatData(
1373
- retrieval_parameters=PresetRetrievalParams(
1374
- search_filters=MetadataFilters(
1375
- filters=[],
1376
- condition=FilterCondition.AND,
1377
- ),
1378
- retrieval_mode=RetrievalMode.CHUNKS,
1379
- ),
1380
- llm_parameters=LlmParameters(
1381
- model_name=SupportedLlmModelNames.GPT_3_5_TURBO,
1382
- ),
1383
- ),
1443
+ pipeline_id="pipeline_id",
1384
1444
  )
1385
1445
  """
1386
1446
  _request: typing.Dict[str, typing.Any] = {}
@@ -1436,7 +1496,7 @@ class PipelinesClient:
1436
1496
  token="YOUR_TOKEN",
1437
1497
  )
1438
1498
  client.pipelines.list_pipeline_documents(
1439
- pipeline_id="string",
1499
+ pipeline_id="pipeline_id",
1440
1500
  )
1441
1501
  """
1442
1502
  _response = self._client_wrapper.httpx_client.request(
@@ -1471,14 +1531,20 @@ class PipelinesClient:
1471
1531
 
1472
1532
  - request: typing.List[CloudDocumentCreate].
1473
1533
  ---
1534
+ from llama_cloud import CloudDocumentCreate
1474
1535
  from llama_cloud.client import LlamaCloud
1475
1536
 
1476
1537
  client = LlamaCloud(
1477
1538
  token="YOUR_TOKEN",
1478
1539
  )
1479
1540
  client.pipelines.create_batch_pipeline_documents(
1480
- pipeline_id="string",
1481
- request=[],
1541
+ pipeline_id="pipeline_id",
1542
+ request=[
1543
+ CloudDocumentCreate(
1544
+ text="text",
1545
+ metadata={"key": "value"},
1546
+ )
1547
+ ],
1482
1548
  )
1483
1549
  """
1484
1550
  _response = self._client_wrapper.httpx_client.request(
@@ -1511,14 +1577,20 @@ class PipelinesClient:
1511
1577
 
1512
1578
  - request: typing.List[CloudDocumentCreate].
1513
1579
  ---
1580
+ from llama_cloud import CloudDocumentCreate
1514
1581
  from llama_cloud.client import LlamaCloud
1515
1582
 
1516
1583
  client = LlamaCloud(
1517
1584
  token="YOUR_TOKEN",
1518
1585
  )
1519
1586
  client.pipelines.upsert_batch_pipeline_documents(
1520
- pipeline_id="string",
1521
- request=[],
1587
+ pipeline_id="pipeline_id",
1588
+ request=[
1589
+ CloudDocumentCreate(
1590
+ text="text",
1591
+ metadata={"key": "value"},
1592
+ )
1593
+ ],
1522
1594
  )
1523
1595
  """
1524
1596
  _response = self._client_wrapper.httpx_client.request(
@@ -1540,14 +1612,14 @@ class PipelinesClient:
1540
1612
  raise ApiError(status_code=_response.status_code, body=_response.text)
1541
1613
  raise ApiError(status_code=_response.status_code, body=_response_json)
1542
1614
 
1543
- def get_pipeline_document(self, pipeline_id: str, document_id: str) -> CloudDocument:
1615
+ def get_pipeline_document(self, document_id: str, pipeline_id: str) -> CloudDocument:
1544
1616
  """
1545
1617
  Return a single document for a pipeline.
1546
1618
 
1547
1619
  Parameters:
1548
- - pipeline_id: str.
1549
-
1550
1620
  - document_id: str.
1621
+
1622
+ - pipeline_id: str.
1551
1623
  ---
1552
1624
  from llama_cloud.client import LlamaCloud
1553
1625
 
@@ -1555,8 +1627,8 @@ class PipelinesClient:
1555
1627
  token="YOUR_TOKEN",
1556
1628
  )
1557
1629
  client.pipelines.get_pipeline_document(
1558
- pipeline_id="string",
1559
- document_id="string",
1630
+ document_id="document_id",
1631
+ pipeline_id="pipeline_id",
1560
1632
  )
1561
1633
  """
1562
1634
  _response = self._client_wrapper.httpx_client.request(
@@ -1577,14 +1649,14 @@ class PipelinesClient:
1577
1649
  raise ApiError(status_code=_response.status_code, body=_response.text)
1578
1650
  raise ApiError(status_code=_response.status_code, body=_response_json)
1579
1651
 
1580
- def delete_pipeline_document(self, pipeline_id: str, document_id: str) -> None:
1652
+ def delete_pipeline_document(self, document_id: str, pipeline_id: str) -> None:
1581
1653
  """
1582
1654
  Delete a document for a pipeline.
1583
1655
 
1584
1656
  Parameters:
1585
- - pipeline_id: str.
1586
-
1587
1657
  - document_id: str.
1658
+
1659
+ - pipeline_id: str.
1588
1660
  ---
1589
1661
  from llama_cloud.client import LlamaCloud
1590
1662
 
@@ -1592,8 +1664,8 @@ class PipelinesClient:
1592
1664
  token="YOUR_TOKEN",
1593
1665
  )
1594
1666
  client.pipelines.delete_pipeline_document(
1595
- pipeline_id="string",
1596
- document_id="string",
1667
+ document_id="document_id",
1668
+ pipeline_id="pipeline_id",
1597
1669
  )
1598
1670
  """
1599
1671
  _response = self._client_wrapper.httpx_client.request(
@@ -1614,14 +1686,14 @@ class PipelinesClient:
1614
1686
  raise ApiError(status_code=_response.status_code, body=_response.text)
1615
1687
  raise ApiError(status_code=_response.status_code, body=_response_json)
1616
1688
 
1617
- def get_pipeline_document_status(self, pipeline_id: str, document_id: str) -> ManagedIngestionStatusResponse:
1689
+ def get_pipeline_document_status(self, document_id: str, pipeline_id: str) -> ManagedIngestionStatusResponse:
1618
1690
  """
1619
1691
  Return a single document for a pipeline.
1620
1692
 
1621
1693
  Parameters:
1622
- - pipeline_id: str.
1623
-
1624
1694
  - document_id: str.
1695
+
1696
+ - pipeline_id: str.
1625
1697
  ---
1626
1698
  from llama_cloud.client import LlamaCloud
1627
1699
 
@@ -1629,8 +1701,8 @@ class PipelinesClient:
1629
1701
  token="YOUR_TOKEN",
1630
1702
  )
1631
1703
  client.pipelines.get_pipeline_document_status(
1632
- pipeline_id="string",
1633
- document_id="string",
1704
+ document_id="document_id",
1705
+ pipeline_id="pipeline_id",
1634
1706
  )
1635
1707
  """
1636
1708
  _response = self._client_wrapper.httpx_client.request(
@@ -1652,14 +1724,14 @@ class PipelinesClient:
1652
1724
  raise ApiError(status_code=_response.status_code, body=_response.text)
1653
1725
  raise ApiError(status_code=_response.status_code, body=_response_json)
1654
1726
 
1655
- def list_pipeline_document_chunks(self, pipeline_id: str, document_id: str) -> typing.List[TextNode]:
1727
+ def list_pipeline_document_chunks(self, document_id: str, pipeline_id: str) -> typing.List[TextNode]:
1656
1728
  """
1657
1729
  Return a list of chunks for a pipeline document.
1658
1730
 
1659
1731
  Parameters:
1660
- - pipeline_id: str.
1661
-
1662
1732
  - document_id: str.
1733
+
1734
+ - pipeline_id: str.
1663
1735
  ---
1664
1736
  from llama_cloud.client import LlamaCloud
1665
1737
 
@@ -1667,8 +1739,8 @@ class PipelinesClient:
1667
1739
  token="YOUR_TOKEN",
1668
1740
  )
1669
1741
  client.pipelines.list_pipeline_document_chunks(
1670
- pipeline_id="string",
1671
- document_id="string",
1742
+ document_id="document_id",
1743
+ pipeline_id="pipeline_id",
1672
1744
  )
1673
1745
  """
1674
1746
  _response = self._client_wrapper.httpx_client.request(
@@ -1718,15 +1790,12 @@ class AsyncPipelinesClient:
1718
1790
 
1719
1791
  - organization_id: typing.Optional[str].
1720
1792
  ---
1721
- from llama_cloud import PipelineType
1722
1793
  from llama_cloud.client import AsyncLlamaCloud
1723
1794
 
1724
1795
  client = AsyncLlamaCloud(
1725
1796
  token="YOUR_TOKEN",
1726
1797
  )
1727
- await client.pipelines.search_pipelines(
1728
- pipeline_type=PipelineType.PLAYGROUND,
1729
- )
1798
+ await client.pipelines.search_pipelines()
1730
1799
  """
1731
1800
  _response = await self._client_wrapper.httpx_client.request(
1732
1801
  "GET",
@@ -1769,6 +1838,18 @@ class AsyncPipelinesClient:
1769
1838
  - organization_id: typing.Optional[str].
1770
1839
 
1771
1840
  - request: PipelineCreate.
1841
+ ---
1842
+ from llama_cloud import PipelineCreate
1843
+ from llama_cloud.client import AsyncLlamaCloud
1844
+
1845
+ client = AsyncLlamaCloud(
1846
+ token="YOUR_TOKEN",
1847
+ )
1848
+ await client.pipelines.create_pipeline(
1849
+ request=PipelineCreate(
1850
+ name="name",
1851
+ ),
1852
+ )
1772
1853
  """
1773
1854
  _response = await self._client_wrapper.httpx_client.request(
1774
1855
  "POST",
@@ -1805,6 +1886,18 @@ class AsyncPipelinesClient:
1805
1886
  - organization_id: typing.Optional[str].
1806
1887
 
1807
1888
  - request: PipelineCreate.
1889
+ ---
1890
+ from llama_cloud import PipelineCreate
1891
+ from llama_cloud.client import AsyncLlamaCloud
1892
+
1893
+ client = AsyncLlamaCloud(
1894
+ token="YOUR_TOKEN",
1895
+ )
1896
+ await client.pipelines.upsert_pipeline(
1897
+ request=PipelineCreate(
1898
+ name="name",
1899
+ ),
1900
+ )
1808
1901
  """
1809
1902
  _response = await self._client_wrapper.httpx_client.request(
1810
1903
  "PUT",
@@ -1830,6 +1923,15 @@ class AsyncPipelinesClient:
1830
1923
 
1831
1924
  Parameters:
1832
1925
  - pipeline_id: str.
1926
+ ---
1927
+ from llama_cloud.client import AsyncLlamaCloud
1928
+
1929
+ client = AsyncLlamaCloud(
1930
+ token="YOUR_TOKEN",
1931
+ )
1932
+ await client.pipelines.get_pipeline(
1933
+ pipeline_id="pipeline_id",
1934
+ )
1833
1935
  """
1834
1936
  _response = await self._client_wrapper.httpx_client.request(
1835
1937
  "GET",
@@ -1873,23 +1975,32 @@ class AsyncPipelinesClient:
1873
1975
 
1874
1976
  - transform_config: typing.Optional[PipelineUpdateTransformConfig]. Configuration for the transformation.
1875
1977
 
1876
- - configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]].
1978
+ - configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]]. Deprecated, use embedding_config or transform_config instead. configured transformations for the pipeline.
1877
1979
 
1878
- - data_sink_id: typing.Optional[str].
1980
+ - data_sink_id: typing.Optional[str]. Data sink ID. When provided instead of data_sink, the data sink will be looked up by ID.
1879
1981
 
1880
- - embedding_model_config_id: typing.Optional[str].
1982
+ - embedding_model_config_id: typing.Optional[str]. Embedding model config ID. When provided instead of embedding_config, the embedding model config will be looked up by ID.
1881
1983
 
1882
- - data_sink: typing.Optional[DataSinkCreate].
1984
+ - data_sink: typing.Optional[DataSinkCreate]. Data sink. When provided instead of data_sink_id, the data sink will be created.
1883
1985
 
1884
- - preset_retrieval_parameters: typing.Optional[PresetRetrievalParams].
1986
+ - preset_retrieval_parameters: typing.Optional[PresetRetrievalParams]. Preset retrieval parameters for the pipeline.
1885
1987
 
1886
- - eval_parameters: typing.Optional[EvalExecutionParams].
1988
+ - eval_parameters: typing.Optional[EvalExecutionParams]. Eval parameters for the pipeline.
1887
1989
 
1888
- - llama_parse_parameters: typing.Optional[LlamaParseParameters].
1990
+ - llama_parse_parameters: typing.Optional[LlamaParseParameters]. Settings that can be configured for how to use LlamaParse to parse files within a LlamaCloud pipeline.
1889
1991
 
1890
1992
  - name: typing.Optional[str].
1891
1993
 
1892
- - managed_pipeline_id: typing.Optional[str].
1994
+ - managed_pipeline_id: typing.Optional[str]. The ID of the ManagedPipeline this playground pipeline is linked to.
1995
+ ---
1996
+ from llama_cloud.client import AsyncLlamaCloud
1997
+
1998
+ client = AsyncLlamaCloud(
1999
+ token="YOUR_TOKEN",
2000
+ )
2001
+ await client.pipelines.update_existing_pipeline(
2002
+ pipeline_id="pipeline_id",
2003
+ )
1893
2004
  """
1894
2005
  _request: typing.Dict[str, typing.Any] = {}
1895
2006
  if embedding_config is not OMIT:
@@ -1944,7 +2055,7 @@ class AsyncPipelinesClient:
1944
2055
  token="YOUR_TOKEN",
1945
2056
  )
1946
2057
  await client.pipelines.delete_pipeline(
1947
- pipeline_id="string",
2058
+ pipeline_id="pipeline_id",
1948
2059
  )
1949
2060
  """
1950
2061
  _response = await self._client_wrapper.httpx_client.request(
@@ -1976,7 +2087,7 @@ class AsyncPipelinesClient:
1976
2087
  token="YOUR_TOKEN",
1977
2088
  )
1978
2089
  await client.pipelines.get_pipeline_status(
1979
- pipeline_id="string",
2090
+ pipeline_id="pipeline_id",
1980
2091
  )
1981
2092
  """
1982
2093
  _response = await self._client_wrapper.httpx_client.request(
@@ -2001,6 +2112,15 @@ class AsyncPipelinesClient:
2001
2112
 
2002
2113
  Parameters:
2003
2114
  - pipeline_id: str.
2115
+ ---
2116
+ from llama_cloud.client import AsyncLlamaCloud
2117
+
2118
+ client = AsyncLlamaCloud(
2119
+ token="YOUR_TOKEN",
2120
+ )
2121
+ await client.pipelines.sync_pipeline(
2122
+ pipeline_id="pipeline_id",
2123
+ )
2004
2124
  """
2005
2125
  _response = await self._client_wrapper.httpx_client.request(
2006
2126
  "POST",
@@ -2024,6 +2144,15 @@ class AsyncPipelinesClient:
2024
2144
 
2025
2145
  Parameters:
2026
2146
  - pipeline_id: str.
2147
+ ---
2148
+ from llama_cloud.client import AsyncLlamaCloud
2149
+
2150
+ client = AsyncLlamaCloud(
2151
+ token="YOUR_TOKEN",
2152
+ )
2153
+ await client.pipelines.copy_pipeline(
2154
+ pipeline_id="pipeline_id",
2155
+ )
2027
2156
  """
2028
2157
  _response = await self._client_wrapper.httpx_client.request(
2029
2158
  "POST",
@@ -2042,15 +2171,15 @@ class AsyncPipelinesClient:
2042
2171
  raise ApiError(status_code=_response.status_code, body=_response_json)
2043
2172
 
2044
2173
  async def get_eval_dataset_executions(
2045
- self, pipeline_id: str, eval_dataset_id: str
2174
+ self, eval_dataset_id: str, pipeline_id: str
2046
2175
  ) -> typing.List[EvalDatasetJobRecord]:
2047
2176
  """
2048
2177
  Get the status of an EvalDatasetExecution.
2049
2178
 
2050
2179
  Parameters:
2051
- - pipeline_id: str.
2052
-
2053
2180
  - eval_dataset_id: str.
2181
+
2182
+ - pipeline_id: str.
2054
2183
  ---
2055
2184
  from llama_cloud.client import AsyncLlamaCloud
2056
2185
 
@@ -2058,8 +2187,8 @@ class AsyncPipelinesClient:
2058
2187
  token="YOUR_TOKEN",
2059
2188
  )
2060
2189
  await client.pipelines.get_eval_dataset_executions(
2061
- pipeline_id="string",
2062
- eval_dataset_id="string",
2190
+ eval_dataset_id="eval_dataset_id",
2191
+ pipeline_id="pipeline_id",
2063
2192
  )
2064
2193
  """
2065
2194
  _response = await self._client_wrapper.httpx_client.request(
@@ -2083,8 +2212,8 @@ class AsyncPipelinesClient:
2083
2212
 
2084
2213
  async def execute_eval_dataset(
2085
2214
  self,
2086
- pipeline_id: str,
2087
2215
  eval_dataset_id: str,
2216
+ pipeline_id: str,
2088
2217
  *,
2089
2218
  eval_question_ids: typing.List[str],
2090
2219
  params: typing.Optional[EvalExecutionParamsOverride] = OMIT,
@@ -2093,27 +2222,23 @@ class AsyncPipelinesClient:
2093
2222
  Execute a dataset.
2094
2223
 
2095
2224
  Parameters:
2096
- - pipeline_id: str.
2097
-
2098
2225
  - eval_dataset_id: str.
2099
2226
 
2227
+ - pipeline_id: str.
2228
+
2100
2229
  - eval_question_ids: typing.List[str].
2101
2230
 
2102
2231
  - params: typing.Optional[EvalExecutionParamsOverride]. The parameters for the eval execution that will override the ones set in the pipeline.
2103
2232
  ---
2104
- from llama_cloud import EvalExecutionParamsOverride, SupportedLlmModelNames
2105
2233
  from llama_cloud.client import AsyncLlamaCloud
2106
2234
 
2107
2235
  client = AsyncLlamaCloud(
2108
2236
  token="YOUR_TOKEN",
2109
2237
  )
2110
2238
  await client.pipelines.execute_eval_dataset(
2111
- pipeline_id="string",
2112
- eval_dataset_id="string",
2113
- eval_question_ids=[],
2114
- params=EvalExecutionParamsOverride(
2115
- llm_model=SupportedLlmModelNames.GPT_3_5_TURBO,
2116
- ),
2239
+ eval_dataset_id="eval_dataset_id",
2240
+ pipeline_id="pipeline_id",
2241
+ eval_question_ids=["eval_question_ids"],
2117
2242
  )
2118
2243
  """
2119
2244
  _request: typing.Dict[str, typing.Any] = {"eval_question_ids": eval_question_ids}
@@ -2140,7 +2265,7 @@ class AsyncPipelinesClient:
2140
2265
  raise ApiError(status_code=_response.status_code, body=_response_json)
2141
2266
 
2142
2267
  async def get_eval_dataset_execution_result(
2143
- self, pipeline_id: str, eval_dataset_id: str
2268
+ self, eval_dataset_id: str, pipeline_id: str
2144
2269
  ) -> typing.List[EvalQuestionResult]:
2145
2270
  """
2146
2271
  Get the result of an EvalDatasetExecution.
@@ -2149,9 +2274,9 @@ class AsyncPipelinesClient:
2149
2274
  If any of the specified questions do not have a result, they will be ignored.
2150
2275
 
2151
2276
  Parameters:
2152
- - pipeline_id: str.
2153
-
2154
2277
  - eval_dataset_id: str.
2278
+
2279
+ - pipeline_id: str.
2155
2280
  ---
2156
2281
  from llama_cloud.client import AsyncLlamaCloud
2157
2282
 
@@ -2159,8 +2284,8 @@ class AsyncPipelinesClient:
2159
2284
  token="YOUR_TOKEN",
2160
2285
  )
2161
2286
  await client.pipelines.get_eval_dataset_execution_result(
2162
- pipeline_id="string",
2163
- eval_dataset_id="string",
2287
+ eval_dataset_id="eval_dataset_id",
2288
+ pipeline_id="pipeline_id",
2164
2289
  )
2165
2290
  """
2166
2291
  _response = await self._client_wrapper.httpx_client.request(
@@ -2183,17 +2308,17 @@ class AsyncPipelinesClient:
2183
2308
  raise ApiError(status_code=_response.status_code, body=_response_json)
2184
2309
 
2185
2310
  async def get_eval_dataset_execution(
2186
- self, pipeline_id: str, eval_dataset_id: str, eval_dataset_execution_id: str
2311
+ self, eval_dataset_id: str, eval_dataset_execution_id: str, pipeline_id: str
2187
2312
  ) -> EvalDatasetJobRecord:
2188
2313
  """
2189
2314
  Get the status of an EvalDatasetExecution.
2190
2315
 
2191
2316
  Parameters:
2192
- - pipeline_id: str.
2193
-
2194
2317
  - eval_dataset_id: str.
2195
2318
 
2196
2319
  - eval_dataset_execution_id: str.
2320
+
2321
+ - pipeline_id: str.
2197
2322
  ---
2198
2323
  from llama_cloud.client import AsyncLlamaCloud
2199
2324
 
@@ -2201,9 +2326,9 @@ class AsyncPipelinesClient:
2201
2326
  token="YOUR_TOKEN",
2202
2327
  )
2203
2328
  await client.pipelines.get_eval_dataset_execution(
2204
- pipeline_id="string",
2205
- eval_dataset_id="string",
2206
- eval_dataset_execution_id="string",
2329
+ eval_dataset_id="eval_dataset_id",
2330
+ eval_dataset_execution_id="eval_dataset_execution_id",
2331
+ pipeline_id="pipeline_id",
2207
2332
  )
2208
2333
  """
2209
2334
  _response = await self._client_wrapper.httpx_client.request(
@@ -2248,7 +2373,7 @@ class AsyncPipelinesClient:
2248
2373
  token="YOUR_TOKEN",
2249
2374
  )
2250
2375
  await client.pipelines.list_pipeline_files(
2251
- pipeline_id="string",
2376
+ pipeline_id="pipeline_id",
2252
2377
  )
2253
2378
  """
2254
2379
  _response = await self._client_wrapper.httpx_client.request(
@@ -2281,14 +2406,19 @@ class AsyncPipelinesClient:
2281
2406
 
2282
2407
  - request: typing.List[PipelineFileCreate].
2283
2408
  ---
2409
+ from llama_cloud import PipelineFileCreate
2284
2410
  from llama_cloud.client import AsyncLlamaCloud
2285
2411
 
2286
2412
  client = AsyncLlamaCloud(
2287
2413
  token="YOUR_TOKEN",
2288
2414
  )
2289
2415
  await client.pipelines.add_files_to_pipeline(
2290
- pipeline_id="string",
2291
- request=[],
2416
+ pipeline_id="pipeline_id",
2417
+ request=[
2418
+ PipelineFileCreate(
2419
+ file_id="file_id",
2420
+ )
2421
+ ],
2292
2422
  )
2293
2423
  """
2294
2424
  _response = await self._client_wrapper.httpx_client.request(
@@ -2337,7 +2467,7 @@ class AsyncPipelinesClient:
2337
2467
  token="YOUR_TOKEN",
2338
2468
  )
2339
2469
  await client.pipelines.list_pipeline_files_2(
2340
- pipeline_id="string",
2470
+ pipeline_id="pipeline_id",
2341
2471
  )
2342
2472
  """
2343
2473
  _response = await self._client_wrapper.httpx_client.request(
@@ -2364,14 +2494,14 @@ class AsyncPipelinesClient:
2364
2494
  raise ApiError(status_code=_response.status_code, body=_response.text)
2365
2495
  raise ApiError(status_code=_response.status_code, body=_response_json)
2366
2496
 
2367
- async def get_pipeline_file_status(self, pipeline_id: str, file_id: str) -> ManagedIngestionStatusResponse:
2497
+ async def get_pipeline_file_status(self, file_id: str, pipeline_id: str) -> ManagedIngestionStatusResponse:
2368
2498
  """
2369
2499
  Get status of a file for a pipeline.
2370
2500
 
2371
2501
  Parameters:
2372
- - pipeline_id: str.
2373
-
2374
2502
  - file_id: str.
2503
+
2504
+ - pipeline_id: str.
2375
2505
  ---
2376
2506
  from llama_cloud.client import AsyncLlamaCloud
2377
2507
 
@@ -2379,8 +2509,8 @@ class AsyncPipelinesClient:
2379
2509
  token="YOUR_TOKEN",
2380
2510
  )
2381
2511
  await client.pipelines.get_pipeline_file_status(
2382
- pipeline_id="string",
2383
- file_id="string",
2512
+ file_id="file_id",
2513
+ pipeline_id="pipeline_id",
2384
2514
  )
2385
2515
  """
2386
2516
  _response = await self._client_wrapper.httpx_client.request(
@@ -2403,8 +2533,8 @@ class AsyncPipelinesClient:
2403
2533
 
2404
2534
  async def update_pipeline_file(
2405
2535
  self,
2406
- pipeline_id: str,
2407
2536
  file_id: str,
2537
+ pipeline_id: str,
2408
2538
  *,
2409
2539
  custom_metadata: typing.Optional[
2410
2540
  typing.Dict[str, typing.Optional[PipelineFileUpdateCustomMetadataValue]]
@@ -2414,11 +2544,11 @@ class AsyncPipelinesClient:
2414
2544
  Update a file for a pipeline.
2415
2545
 
2416
2546
  Parameters:
2417
- - pipeline_id: str.
2418
-
2419
2547
  - file_id: str.
2420
2548
 
2421
- - custom_metadata: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileUpdateCustomMetadataValue]]].
2549
+ - pipeline_id: str.
2550
+
2551
+ - custom_metadata: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileUpdateCustomMetadataValue]]]. Custom metadata for the file
2422
2552
  ---
2423
2553
  from llama_cloud.client import AsyncLlamaCloud
2424
2554
 
@@ -2426,8 +2556,8 @@ class AsyncPipelinesClient:
2426
2556
  token="YOUR_TOKEN",
2427
2557
  )
2428
2558
  await client.pipelines.update_pipeline_file(
2429
- pipeline_id="string",
2430
- file_id="string",
2559
+ file_id="file_id",
2560
+ pipeline_id="pipeline_id",
2431
2561
  )
2432
2562
  """
2433
2563
  _request: typing.Dict[str, typing.Any] = {}
@@ -2452,14 +2582,14 @@ class AsyncPipelinesClient:
2452
2582
  raise ApiError(status_code=_response.status_code, body=_response.text)
2453
2583
  raise ApiError(status_code=_response.status_code, body=_response_json)
2454
2584
 
2455
- async def delete_pipeline_file(self, pipeline_id: str, file_id: str) -> None:
2585
+ async def delete_pipeline_file(self, file_id: str, pipeline_id: str) -> None:
2456
2586
  """
2457
2587
  Delete a file from a pipeline.
2458
2588
 
2459
2589
  Parameters:
2460
- - pipeline_id: str.
2461
-
2462
2590
  - file_id: str.
2591
+
2592
+ - pipeline_id: str.
2463
2593
  ---
2464
2594
  from llama_cloud.client import AsyncLlamaCloud
2465
2595
 
@@ -2467,8 +2597,8 @@ class AsyncPipelinesClient:
2467
2597
  token="YOUR_TOKEN",
2468
2598
  )
2469
2599
  await client.pipelines.delete_pipeline_file(
2470
- pipeline_id="string",
2471
- file_id="string",
2600
+ file_id="file_id",
2601
+ pipeline_id="pipeline_id",
2472
2602
  )
2473
2603
  """
2474
2604
  _response = await self._client_wrapper.httpx_client.request(
@@ -2497,6 +2627,15 @@ class AsyncPipelinesClient:
2497
2627
  - pipeline_id: str.
2498
2628
 
2499
2629
  - upload_file: typing.IO.
2630
+ ---
2631
+ from llama_cloud.client import AsyncLlamaCloud
2632
+
2633
+ client = AsyncLlamaCloud(
2634
+ token="YOUR_TOKEN",
2635
+ )
2636
+ await client.pipelines.import_pipeline_metadata(
2637
+ pipeline_id="pipeline_id",
2638
+ )
2500
2639
  """
2501
2640
  _response = await self._client_wrapper.httpx_client.request(
2502
2641
  "PUT",
@@ -2529,7 +2668,7 @@ class AsyncPipelinesClient:
2529
2668
  token="YOUR_TOKEN",
2530
2669
  )
2531
2670
  await client.pipelines.delete_pipeline_files_metadata(
2532
- pipeline_id="string",
2671
+ pipeline_id="pipeline_id",
2533
2672
  )
2534
2673
  """
2535
2674
  _response = await self._client_wrapper.httpx_client.request(
@@ -2561,7 +2700,7 @@ class AsyncPipelinesClient:
2561
2700
  token="YOUR_TOKEN",
2562
2701
  )
2563
2702
  await client.pipelines.list_pipeline_data_sources(
2564
- pipeline_id="string",
2703
+ pipeline_id="pipeline_id",
2565
2704
  )
2566
2705
  """
2567
2706
  _response = await self._client_wrapper.httpx_client.request(
@@ -2593,14 +2732,19 @@ class AsyncPipelinesClient:
2593
2732
 
2594
2733
  - request: typing.List[PipelineDataSourceCreate].
2595
2734
  ---
2735
+ from llama_cloud import PipelineDataSourceCreate
2596
2736
  from llama_cloud.client import AsyncLlamaCloud
2597
2737
 
2598
2738
  client = AsyncLlamaCloud(
2599
2739
  token="YOUR_TOKEN",
2600
2740
  )
2601
2741
  await client.pipelines.add_data_sources_to_pipeline(
2602
- pipeline_id="string",
2603
- request=[],
2742
+ pipeline_id="pipeline_id",
2743
+ request=[
2744
+ PipelineDataSourceCreate(
2745
+ data_source_id="data_source_id",
2746
+ )
2747
+ ],
2604
2748
  )
2605
2749
  """
2606
2750
  _response = await self._client_wrapper.httpx_client.request(
@@ -2623,17 +2767,17 @@ class AsyncPipelinesClient:
2623
2767
  raise ApiError(status_code=_response.status_code, body=_response_json)
2624
2768
 
2625
2769
  async def update_pipeline_data_source(
2626
- self, pipeline_id: str, data_source_id: str, *, sync_interval: typing.Optional[float] = OMIT
2770
+ self, data_source_id: str, pipeline_id: str, *, sync_interval: typing.Optional[float] = OMIT
2627
2771
  ) -> PipelineDataSource:
2628
2772
  """
2629
2773
  Update the configuration of a data source in a pipeline.
2630
2774
 
2631
2775
  Parameters:
2632
- - pipeline_id: str.
2633
-
2634
2776
  - data_source_id: str.
2635
2777
 
2636
- - sync_interval: typing.Optional[float].
2778
+ - pipeline_id: str.
2779
+
2780
+ - sync_interval: typing.Optional[float]. The interval at which the data source should be synced.
2637
2781
  ---
2638
2782
  from llama_cloud.client import AsyncLlamaCloud
2639
2783
 
@@ -2641,8 +2785,8 @@ class AsyncPipelinesClient:
2641
2785
  token="YOUR_TOKEN",
2642
2786
  )
2643
2787
  await client.pipelines.update_pipeline_data_source(
2644
- pipeline_id="string",
2645
- data_source_id="string",
2788
+ data_source_id="data_source_id",
2789
+ pipeline_id="pipeline_id",
2646
2790
  )
2647
2791
  """
2648
2792
  _request: typing.Dict[str, typing.Any] = {}
@@ -2668,14 +2812,14 @@ class AsyncPipelinesClient:
2668
2812
  raise ApiError(status_code=_response.status_code, body=_response.text)
2669
2813
  raise ApiError(status_code=_response.status_code, body=_response_json)
2670
2814
 
2671
- async def delete_pipeline_data_source(self, pipeline_id: str, data_source_id: str) -> None:
2815
+ async def delete_pipeline_data_source(self, data_source_id: str, pipeline_id: str) -> None:
2672
2816
  """
2673
2817
  Delete a data source from a pipeline.
2674
2818
 
2675
2819
  Parameters:
2676
- - pipeline_id: str.
2677
-
2678
2820
  - data_source_id: str.
2821
+
2822
+ - pipeline_id: str.
2679
2823
  ---
2680
2824
  from llama_cloud.client import AsyncLlamaCloud
2681
2825
 
@@ -2683,8 +2827,8 @@ class AsyncPipelinesClient:
2683
2827
  token="YOUR_TOKEN",
2684
2828
  )
2685
2829
  await client.pipelines.delete_pipeline_data_source(
2686
- pipeline_id="string",
2687
- data_source_id="string",
2830
+ data_source_id="data_source_id",
2831
+ pipeline_id="pipeline_id",
2688
2832
  )
2689
2833
  """
2690
2834
  _response = await self._client_wrapper.httpx_client.request(
@@ -2706,14 +2850,24 @@ class AsyncPipelinesClient:
2706
2850
  raise ApiError(status_code=_response.status_code, body=_response.text)
2707
2851
  raise ApiError(status_code=_response.status_code, body=_response_json)
2708
2852
 
2709
- async def sync_pipeline_data_source(self, pipeline_id: str, data_source_id: str) -> Pipeline:
2853
+ async def sync_pipeline_data_source(self, data_source_id: str, pipeline_id: str) -> Pipeline:
2710
2854
  """
2711
2855
  Run ingestion for the pipeline data source by incrementally updating the data-sink with upstream changes from data-source.
2712
2856
 
2713
2857
  Parameters:
2858
+ - data_source_id: str.
2859
+
2714
2860
  - pipeline_id: str.
2861
+ ---
2862
+ from llama_cloud.client import AsyncLlamaCloud
2715
2863
 
2716
- - data_source_id: str.
2864
+ client = AsyncLlamaCloud(
2865
+ token="YOUR_TOKEN",
2866
+ )
2867
+ await client.pipelines.sync_pipeline_data_source(
2868
+ data_source_id="data_source_id",
2869
+ pipeline_id="pipeline_id",
2870
+ )
2717
2871
  """
2718
2872
  _response = await self._client_wrapper.httpx_client.request(
2719
2873
  "POST",
@@ -2735,15 +2889,15 @@ class AsyncPipelinesClient:
2735
2889
  raise ApiError(status_code=_response.status_code, body=_response_json)
2736
2890
 
2737
2891
  async def get_pipeline_data_source_status(
2738
- self, pipeline_id: str, data_source_id: str
2892
+ self, data_source_id: str, pipeline_id: str
2739
2893
  ) -> ManagedIngestionStatusResponse:
2740
2894
  """
2741
2895
  Get the status of a data source for a pipeline.
2742
2896
 
2743
2897
  Parameters:
2744
- - pipeline_id: str.
2745
-
2746
2898
  - data_source_id: str.
2899
+
2900
+ - pipeline_id: str.
2747
2901
  ---
2748
2902
  from llama_cloud.client import AsyncLlamaCloud
2749
2903
 
@@ -2751,8 +2905,8 @@ class AsyncPipelinesClient:
2751
2905
  token="YOUR_TOKEN",
2752
2906
  )
2753
2907
  await client.pipelines.get_pipeline_data_source_status(
2754
- pipeline_id="string",
2755
- data_source_id="string",
2908
+ data_source_id="data_source_id",
2909
+ pipeline_id="pipeline_id",
2756
2910
  )
2757
2911
  """
2758
2912
  _response = await self._client_wrapper.httpx_client.request(
@@ -2779,6 +2933,7 @@ class AsyncPipelinesClient:
2779
2933
  pipeline_id: str,
2780
2934
  *,
2781
2935
  dense_similarity_top_k: typing.Optional[int] = OMIT,
2936
+ dense_similarity_cutoff: typing.Optional[float] = OMIT,
2782
2937
  sparse_similarity_top_k: typing.Optional[int] = OMIT,
2783
2938
  enable_reranking: typing.Optional[bool] = OMIT,
2784
2939
  rerank_top_n: typing.Optional[int] = OMIT,
@@ -2796,19 +2951,21 @@ class AsyncPipelinesClient:
2796
2951
  Parameters:
2797
2952
  - pipeline_id: str.
2798
2953
 
2799
- - dense_similarity_top_k: typing.Optional[int].
2954
+ - dense_similarity_top_k: typing.Optional[int]. Number of nodes for dense retrieval.
2800
2955
 
2801
- - sparse_similarity_top_k: typing.Optional[int].
2956
+ - dense_similarity_cutoff: typing.Optional[float]. Minimum similarity score wrt query for retrieval
2802
2957
 
2803
- - enable_reranking: typing.Optional[bool].
2958
+ - sparse_similarity_top_k: typing.Optional[int]. Number of nodes for sparse retrieval.
2804
2959
 
2805
- - rerank_top_n: typing.Optional[int].
2960
+ - enable_reranking: typing.Optional[bool]. Enable reranking for retrieval
2806
2961
 
2807
- - alpha: typing.Optional[float].
2962
+ - rerank_top_n: typing.Optional[int]. Number of reranked nodes for returning.
2808
2963
 
2809
- - search_filters: typing.Optional[MetadataFilters].
2964
+ - alpha: typing.Optional[float]. Alpha value for hybrid retrieval to determine the weights between dense and sparse retrieval. 0 is sparse retrieval and 1 is dense retrieval.
2810
2965
 
2811
- - files_top_k: typing.Optional[int].
2966
+ - search_filters: typing.Optional[MetadataFilters]. Search filters for retrieval.
2967
+
2968
+ - files_top_k: typing.Optional[int]. Number of files to retrieve (only for retrieval mode files_via_metadata and files_via_content).
2812
2969
 
2813
2970
  - retrieval_mode: typing.Optional[RetrievalMode]. The retrieval mode for the query.
2814
2971
 
@@ -2818,25 +2975,21 @@ class AsyncPipelinesClient:
2818
2975
 
2819
2976
  - class_name: typing.Optional[str].
2820
2977
  ---
2821
- from llama_cloud import FilterCondition, MetadataFilters, RetrievalMode
2822
2978
  from llama_cloud.client import AsyncLlamaCloud
2823
2979
 
2824
2980
  client = AsyncLlamaCloud(
2825
2981
  token="YOUR_TOKEN",
2826
2982
  )
2827
2983
  await client.pipelines.run_search(
2828
- pipeline_id="string",
2829
- search_filters=MetadataFilters(
2830
- filters=[],
2831
- condition=FilterCondition.AND,
2832
- ),
2833
- retrieval_mode=RetrievalMode.CHUNKS,
2834
- query="string",
2984
+ pipeline_id="pipeline_id",
2985
+ query="query",
2835
2986
  )
2836
2987
  """
2837
2988
  _request: typing.Dict[str, typing.Any] = {"query": query}
2838
2989
  if dense_similarity_top_k is not OMIT:
2839
2990
  _request["dense_similarity_top_k"] = dense_similarity_top_k
2991
+ if dense_similarity_cutoff is not OMIT:
2992
+ _request["dense_similarity_cutoff"] = dense_similarity_cutoff
2840
2993
  if sparse_similarity_top_k is not OMIT:
2841
2994
  _request["sparse_similarity_top_k"] = sparse_similarity_top_k
2842
2995
  if enable_reranking is not OMIT:
@@ -2885,7 +3038,7 @@ class AsyncPipelinesClient:
2885
3038
  token="YOUR_TOKEN",
2886
3039
  )
2887
3040
  await client.pipelines.list_pipeline_jobs(
2888
- pipeline_id="string",
3041
+ pipeline_id="pipeline_id",
2889
3042
  )
2890
3043
  """
2891
3044
  _response = await self._client_wrapper.httpx_client.request(
@@ -2904,14 +3057,14 @@ class AsyncPipelinesClient:
2904
3057
  raise ApiError(status_code=_response.status_code, body=_response.text)
2905
3058
  raise ApiError(status_code=_response.status_code, body=_response_json)
2906
3059
 
2907
- async def get_pipeline_job(self, pipeline_id: str, job_id: str) -> PipelineDeployment:
3060
+ async def get_pipeline_job(self, job_id: str, pipeline_id: str) -> PipelineDeployment:
2908
3061
  """
2909
3062
  Get a job for a pipeline.
2910
3063
 
2911
3064
  Parameters:
2912
- - pipeline_id: str.
2913
-
2914
3065
  - job_id: str.
3066
+
3067
+ - pipeline_id: str.
2915
3068
  ---
2916
3069
  from llama_cloud.client import AsyncLlamaCloud
2917
3070
 
@@ -2919,8 +3072,8 @@ class AsyncPipelinesClient:
2919
3072
  token="YOUR_TOKEN",
2920
3073
  )
2921
3074
  await client.pipelines.get_pipeline_job(
2922
- pipeline_id="string",
2923
- job_id="string",
3075
+ job_id="job_id",
3076
+ pipeline_id="pipeline_id",
2924
3077
  )
2925
3078
  """
2926
3079
  _response = await self._client_wrapper.httpx_client.request(
@@ -2954,7 +3107,7 @@ class AsyncPipelinesClient:
2954
3107
  token="YOUR_TOKEN",
2955
3108
  )
2956
3109
  await client.pipelines.get_playground_session(
2957
- pipeline_id="string",
3110
+ pipeline_id="pipeline_id",
2958
3111
  )
2959
3112
  """
2960
3113
  _response = await self._client_wrapper.httpx_client.request(
@@ -2995,34 +3148,13 @@ class AsyncPipelinesClient:
2995
3148
 
2996
3149
  - class_name: typing.Optional[str].
2997
3150
  ---
2998
- from llama_cloud import (
2999
- ChatData,
3000
- FilterCondition,
3001
- LlmParameters,
3002
- MetadataFilters,
3003
- PresetRetrievalParams,
3004
- RetrievalMode,
3005
- SupportedLlmModelNames,
3006
- )
3007
3151
  from llama_cloud.client import AsyncLlamaCloud
3008
3152
 
3009
3153
  client = AsyncLlamaCloud(
3010
3154
  token="YOUR_TOKEN",
3011
3155
  )
3012
3156
  await client.pipelines.chat(
3013
- pipeline_id="string",
3014
- data=ChatData(
3015
- retrieval_parameters=PresetRetrievalParams(
3016
- search_filters=MetadataFilters(
3017
- filters=[],
3018
- condition=FilterCondition.AND,
3019
- ),
3020
- retrieval_mode=RetrievalMode.CHUNKS,
3021
- ),
3022
- llm_parameters=LlmParameters(
3023
- model_name=SupportedLlmModelNames.GPT_3_5_TURBO,
3024
- ),
3025
- ),
3157
+ pipeline_id="pipeline_id",
3026
3158
  )
3027
3159
  """
3028
3160
  _request: typing.Dict[str, typing.Any] = {}
@@ -3078,7 +3210,7 @@ class AsyncPipelinesClient:
3078
3210
  token="YOUR_TOKEN",
3079
3211
  )
3080
3212
  await client.pipelines.list_pipeline_documents(
3081
- pipeline_id="string",
3213
+ pipeline_id="pipeline_id",
3082
3214
  )
3083
3215
  """
3084
3216
  _response = await self._client_wrapper.httpx_client.request(
@@ -3113,14 +3245,20 @@ class AsyncPipelinesClient:
3113
3245
 
3114
3246
  - request: typing.List[CloudDocumentCreate].
3115
3247
  ---
3248
+ from llama_cloud import CloudDocumentCreate
3116
3249
  from llama_cloud.client import AsyncLlamaCloud
3117
3250
 
3118
3251
  client = AsyncLlamaCloud(
3119
3252
  token="YOUR_TOKEN",
3120
3253
  )
3121
3254
  await client.pipelines.create_batch_pipeline_documents(
3122
- pipeline_id="string",
3123
- request=[],
3255
+ pipeline_id="pipeline_id",
3256
+ request=[
3257
+ CloudDocumentCreate(
3258
+ text="text",
3259
+ metadata={"key": "value"},
3260
+ )
3261
+ ],
3124
3262
  )
3125
3263
  """
3126
3264
  _response = await self._client_wrapper.httpx_client.request(
@@ -3153,14 +3291,20 @@ class AsyncPipelinesClient:
3153
3291
 
3154
3292
  - request: typing.List[CloudDocumentCreate].
3155
3293
  ---
3294
+ from llama_cloud import CloudDocumentCreate
3156
3295
  from llama_cloud.client import AsyncLlamaCloud
3157
3296
 
3158
3297
  client = AsyncLlamaCloud(
3159
3298
  token="YOUR_TOKEN",
3160
3299
  )
3161
3300
  await client.pipelines.upsert_batch_pipeline_documents(
3162
- pipeline_id="string",
3163
- request=[],
3301
+ pipeline_id="pipeline_id",
3302
+ request=[
3303
+ CloudDocumentCreate(
3304
+ text="text",
3305
+ metadata={"key": "value"},
3306
+ )
3307
+ ],
3164
3308
  )
3165
3309
  """
3166
3310
  _response = await self._client_wrapper.httpx_client.request(
@@ -3182,14 +3326,14 @@ class AsyncPipelinesClient:
3182
3326
  raise ApiError(status_code=_response.status_code, body=_response.text)
3183
3327
  raise ApiError(status_code=_response.status_code, body=_response_json)
3184
3328
 
3185
- async def get_pipeline_document(self, pipeline_id: str, document_id: str) -> CloudDocument:
3329
+ async def get_pipeline_document(self, document_id: str, pipeline_id: str) -> CloudDocument:
3186
3330
  """
3187
3331
  Return a single document for a pipeline.
3188
3332
 
3189
3333
  Parameters:
3190
- - pipeline_id: str.
3191
-
3192
3334
  - document_id: str.
3335
+
3336
+ - pipeline_id: str.
3193
3337
  ---
3194
3338
  from llama_cloud.client import AsyncLlamaCloud
3195
3339
 
@@ -3197,8 +3341,8 @@ class AsyncPipelinesClient:
3197
3341
  token="YOUR_TOKEN",
3198
3342
  )
3199
3343
  await client.pipelines.get_pipeline_document(
3200
- pipeline_id="string",
3201
- document_id="string",
3344
+ document_id="document_id",
3345
+ pipeline_id="pipeline_id",
3202
3346
  )
3203
3347
  """
3204
3348
  _response = await self._client_wrapper.httpx_client.request(
@@ -3219,14 +3363,14 @@ class AsyncPipelinesClient:
3219
3363
  raise ApiError(status_code=_response.status_code, body=_response.text)
3220
3364
  raise ApiError(status_code=_response.status_code, body=_response_json)
3221
3365
 
3222
- async def delete_pipeline_document(self, pipeline_id: str, document_id: str) -> None:
3366
+ async def delete_pipeline_document(self, document_id: str, pipeline_id: str) -> None:
3223
3367
  """
3224
3368
  Delete a document for a pipeline.
3225
3369
 
3226
3370
  Parameters:
3227
- - pipeline_id: str.
3228
-
3229
3371
  - document_id: str.
3372
+
3373
+ - pipeline_id: str.
3230
3374
  ---
3231
3375
  from llama_cloud.client import AsyncLlamaCloud
3232
3376
 
@@ -3234,8 +3378,8 @@ class AsyncPipelinesClient:
3234
3378
  token="YOUR_TOKEN",
3235
3379
  )
3236
3380
  await client.pipelines.delete_pipeline_document(
3237
- pipeline_id="string",
3238
- document_id="string",
3381
+ document_id="document_id",
3382
+ pipeline_id="pipeline_id",
3239
3383
  )
3240
3384
  """
3241
3385
  _response = await self._client_wrapper.httpx_client.request(
@@ -3256,14 +3400,14 @@ class AsyncPipelinesClient:
3256
3400
  raise ApiError(status_code=_response.status_code, body=_response.text)
3257
3401
  raise ApiError(status_code=_response.status_code, body=_response_json)
3258
3402
 
3259
- async def get_pipeline_document_status(self, pipeline_id: str, document_id: str) -> ManagedIngestionStatusResponse:
3403
+ async def get_pipeline_document_status(self, document_id: str, pipeline_id: str) -> ManagedIngestionStatusResponse:
3260
3404
  """
3261
3405
  Return a single document for a pipeline.
3262
3406
 
3263
3407
  Parameters:
3264
- - pipeline_id: str.
3265
-
3266
3408
  - document_id: str.
3409
+
3410
+ - pipeline_id: str.
3267
3411
  ---
3268
3412
  from llama_cloud.client import AsyncLlamaCloud
3269
3413
 
@@ -3271,8 +3415,8 @@ class AsyncPipelinesClient:
3271
3415
  token="YOUR_TOKEN",
3272
3416
  )
3273
3417
  await client.pipelines.get_pipeline_document_status(
3274
- pipeline_id="string",
3275
- document_id="string",
3418
+ document_id="document_id",
3419
+ pipeline_id="pipeline_id",
3276
3420
  )
3277
3421
  """
3278
3422
  _response = await self._client_wrapper.httpx_client.request(
@@ -3294,14 +3438,14 @@ class AsyncPipelinesClient:
3294
3438
  raise ApiError(status_code=_response.status_code, body=_response.text)
3295
3439
  raise ApiError(status_code=_response.status_code, body=_response_json)
3296
3440
 
3297
- async def list_pipeline_document_chunks(self, pipeline_id: str, document_id: str) -> typing.List[TextNode]:
3441
+ async def list_pipeline_document_chunks(self, document_id: str, pipeline_id: str) -> typing.List[TextNode]:
3298
3442
  """
3299
3443
  Return a list of chunks for a pipeline document.
3300
3444
 
3301
3445
  Parameters:
3302
- - pipeline_id: str.
3303
-
3304
3446
  - document_id: str.
3447
+
3448
+ - pipeline_id: str.
3305
3449
  ---
3306
3450
  from llama_cloud.client import AsyncLlamaCloud
3307
3451
 
@@ -3309,8 +3453,8 @@ class AsyncPipelinesClient:
3309
3453
  token="YOUR_TOKEN",
3310
3454
  )
3311
3455
  await client.pipelines.list_pipeline_document_chunks(
3312
- pipeline_id="string",
3313
- document_id="string",
3456
+ document_id="document_id",
3457
+ pipeline_id="pipeline_id",
3314
3458
  )
3315
3459
  """
3316
3460
  _response = await self._client_wrapper.httpx_client.request(