llama-cloud 0.1.3__py3-none-any.whl → 0.1.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +64 -0
- llama_cloud/client.py +3 -0
- llama_cloud/resources/__init__.py +22 -1
- llama_cloud/resources/data_sinks/client.py +12 -6
- llama_cloud/resources/embedding_model_configs/__init__.py +23 -0
- llama_cloud/resources/embedding_model_configs/client.py +360 -0
- llama_cloud/resources/embedding_model_configs/types/__init__.py +23 -0
- llama_cloud/resources/embedding_model_configs/types/embedding_model_config_create_embedding_config.py +89 -0
- llama_cloud/resources/files/__init__.py +2 -2
- llama_cloud/resources/files/client.py +265 -34
- llama_cloud/resources/files/types/__init__.py +2 -1
- llama_cloud/resources/files/types/file_create_from_url_resource_info_value.py +7 -0
- llama_cloud/resources/organizations/client.py +65 -0
- llama_cloud/resources/parsing/client.py +157 -0
- llama_cloud/resources/pipelines/client.py +177 -14
- llama_cloud/resources/projects/client.py +71 -0
- llama_cloud/types/__init__.py +48 -0
- llama_cloud/types/base.py +29 -0
- llama_cloud/types/cloud_one_drive_data_source.py +1 -0
- llama_cloud/types/cloud_postgres_vector_store.py +1 -1
- llama_cloud/types/cloud_sharepoint_data_source.py +1 -0
- llama_cloud/types/embedding_model_config.py +43 -0
- llama_cloud/types/embedding_model_config_embedding_config.py +89 -0
- llama_cloud/types/embedding_model_config_update.py +33 -0
- llama_cloud/types/embedding_model_config_update_embedding_config.py +89 -0
- llama_cloud/types/interval_usage_and_plan.py +36 -0
- llama_cloud/types/llama_parse_parameters.py +10 -0
- llama_cloud/types/markdown_node_parser.py +2 -1
- llama_cloud/types/paginated_list_pipeline_files_response.py +35 -0
- llama_cloud/types/pipeline.py +1 -0
- llama_cloud/types/pipeline_create.py +1 -0
- llama_cloud/types/pipeline_file.py +1 -0
- llama_cloud/types/plan.py +40 -0
- llama_cloud/types/usage.py +41 -0
- {llama_cloud-0.1.3.dist-info → llama_cloud-0.1.5.dist-info}/METADATA +1 -2
- {llama_cloud-0.1.3.dist-info → llama_cloud-0.1.5.dist-info}/RECORD +38 -25
- {llama_cloud-0.1.3.dist-info → llama_cloud-0.1.5.dist-info}/WHEEL +1 -1
- {llama_cloud-0.1.3.dist-info → llama_cloud-0.1.5.dist-info}/LICENSE +0 -0
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .embedding_model_config_embedding_config import EmbeddingModelConfigEmbeddingConfig
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class EmbeddingModelConfig(pydantic.BaseModel):
|
|
19
|
+
"""
|
|
20
|
+
Schema for an embedding model config.
|
|
21
|
+
"""
|
|
22
|
+
|
|
23
|
+
id: str = pydantic.Field(description="Unique identifier")
|
|
24
|
+
created_at: typing.Optional[dt.datetime]
|
|
25
|
+
updated_at: typing.Optional[dt.datetime]
|
|
26
|
+
name: str = pydantic.Field(description="The name of the embedding model config.")
|
|
27
|
+
embedding_config: EmbeddingModelConfigEmbeddingConfig = pydantic.Field(
|
|
28
|
+
description="The embedding configuration for the embedding model config."
|
|
29
|
+
)
|
|
30
|
+
project_id: str
|
|
31
|
+
|
|
32
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
33
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
34
|
+
return super().json(**kwargs_with_defaults)
|
|
35
|
+
|
|
36
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
37
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
38
|
+
return super().dict(**kwargs_with_defaults)
|
|
39
|
+
|
|
40
|
+
class Config:
|
|
41
|
+
frozen = True
|
|
42
|
+
smart_union = True
|
|
43
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import typing
|
|
6
|
+
|
|
7
|
+
import typing_extensions
|
|
8
|
+
|
|
9
|
+
from .azure_open_ai_embedding_config import AzureOpenAiEmbeddingConfig
|
|
10
|
+
from .bedrock_embedding_config import BedrockEmbeddingConfig
|
|
11
|
+
from .cohere_embedding_config import CohereEmbeddingConfig
|
|
12
|
+
from .gemini_embedding_config import GeminiEmbeddingConfig
|
|
13
|
+
from .hugging_face_inference_api_embedding_config import HuggingFaceInferenceApiEmbeddingConfig
|
|
14
|
+
from .open_ai_embedding_config import OpenAiEmbeddingConfig
|
|
15
|
+
from .vertex_ai_embedding_config import VertexAiEmbeddingConfig
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class EmbeddingModelConfigEmbeddingConfig_AzureEmbedding(AzureOpenAiEmbeddingConfig):
|
|
19
|
+
type: typing_extensions.Literal["AZURE_EMBEDDING"]
|
|
20
|
+
|
|
21
|
+
class Config:
|
|
22
|
+
frozen = True
|
|
23
|
+
smart_union = True
|
|
24
|
+
allow_population_by_field_name = True
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class EmbeddingModelConfigEmbeddingConfig_BedrockEmbedding(BedrockEmbeddingConfig):
|
|
28
|
+
type: typing_extensions.Literal["BEDROCK_EMBEDDING"]
|
|
29
|
+
|
|
30
|
+
class Config:
|
|
31
|
+
frozen = True
|
|
32
|
+
smart_union = True
|
|
33
|
+
allow_population_by_field_name = True
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class EmbeddingModelConfigEmbeddingConfig_CohereEmbedding(CohereEmbeddingConfig):
|
|
37
|
+
type: typing_extensions.Literal["COHERE_EMBEDDING"]
|
|
38
|
+
|
|
39
|
+
class Config:
|
|
40
|
+
frozen = True
|
|
41
|
+
smart_union = True
|
|
42
|
+
allow_population_by_field_name = True
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class EmbeddingModelConfigEmbeddingConfig_GeminiEmbedding(GeminiEmbeddingConfig):
|
|
46
|
+
type: typing_extensions.Literal["GEMINI_EMBEDDING"]
|
|
47
|
+
|
|
48
|
+
class Config:
|
|
49
|
+
frozen = True
|
|
50
|
+
smart_union = True
|
|
51
|
+
allow_population_by_field_name = True
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class EmbeddingModelConfigEmbeddingConfig_HuggingfaceApiEmbedding(HuggingFaceInferenceApiEmbeddingConfig):
|
|
55
|
+
type: typing_extensions.Literal["HUGGINGFACE_API_EMBEDDING"]
|
|
56
|
+
|
|
57
|
+
class Config:
|
|
58
|
+
frozen = True
|
|
59
|
+
smart_union = True
|
|
60
|
+
allow_population_by_field_name = True
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class EmbeddingModelConfigEmbeddingConfig_OpenaiEmbedding(OpenAiEmbeddingConfig):
|
|
64
|
+
type: typing_extensions.Literal["OPENAI_EMBEDDING"]
|
|
65
|
+
|
|
66
|
+
class Config:
|
|
67
|
+
frozen = True
|
|
68
|
+
smart_union = True
|
|
69
|
+
allow_population_by_field_name = True
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
class EmbeddingModelConfigEmbeddingConfig_VertexaiEmbedding(VertexAiEmbeddingConfig):
|
|
73
|
+
type: typing_extensions.Literal["VERTEXAI_EMBEDDING"]
|
|
74
|
+
|
|
75
|
+
class Config:
|
|
76
|
+
frozen = True
|
|
77
|
+
smart_union = True
|
|
78
|
+
allow_population_by_field_name = True
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
EmbeddingModelConfigEmbeddingConfig = typing.Union[
|
|
82
|
+
EmbeddingModelConfigEmbeddingConfig_AzureEmbedding,
|
|
83
|
+
EmbeddingModelConfigEmbeddingConfig_BedrockEmbedding,
|
|
84
|
+
EmbeddingModelConfigEmbeddingConfig_CohereEmbedding,
|
|
85
|
+
EmbeddingModelConfigEmbeddingConfig_GeminiEmbedding,
|
|
86
|
+
EmbeddingModelConfigEmbeddingConfig_HuggingfaceApiEmbedding,
|
|
87
|
+
EmbeddingModelConfigEmbeddingConfig_OpenaiEmbedding,
|
|
88
|
+
EmbeddingModelConfigEmbeddingConfig_VertexaiEmbedding,
|
|
89
|
+
]
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .embedding_model_config_update_embedding_config import EmbeddingModelConfigUpdateEmbeddingConfig
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class EmbeddingModelConfigUpdate(pydantic.BaseModel):
|
|
19
|
+
name: typing.Optional[str]
|
|
20
|
+
embedding_config: typing.Optional[EmbeddingModelConfigUpdateEmbeddingConfig]
|
|
21
|
+
|
|
22
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
23
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
24
|
+
return super().json(**kwargs_with_defaults)
|
|
25
|
+
|
|
26
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
27
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
28
|
+
return super().dict(**kwargs_with_defaults)
|
|
29
|
+
|
|
30
|
+
class Config:
|
|
31
|
+
frozen = True
|
|
32
|
+
smart_union = True
|
|
33
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import typing
|
|
6
|
+
|
|
7
|
+
import typing_extensions
|
|
8
|
+
|
|
9
|
+
from .azure_open_ai_embedding_config import AzureOpenAiEmbeddingConfig
|
|
10
|
+
from .bedrock_embedding_config import BedrockEmbeddingConfig
|
|
11
|
+
from .cohere_embedding_config import CohereEmbeddingConfig
|
|
12
|
+
from .gemini_embedding_config import GeminiEmbeddingConfig
|
|
13
|
+
from .hugging_face_inference_api_embedding_config import HuggingFaceInferenceApiEmbeddingConfig
|
|
14
|
+
from .open_ai_embedding_config import OpenAiEmbeddingConfig
|
|
15
|
+
from .vertex_ai_embedding_config import VertexAiEmbeddingConfig
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class EmbeddingModelConfigUpdateEmbeddingConfig_AzureEmbedding(AzureOpenAiEmbeddingConfig):
|
|
19
|
+
type: typing_extensions.Literal["AZURE_EMBEDDING"]
|
|
20
|
+
|
|
21
|
+
class Config:
|
|
22
|
+
frozen = True
|
|
23
|
+
smart_union = True
|
|
24
|
+
allow_population_by_field_name = True
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class EmbeddingModelConfigUpdateEmbeddingConfig_BedrockEmbedding(BedrockEmbeddingConfig):
|
|
28
|
+
type: typing_extensions.Literal["BEDROCK_EMBEDDING"]
|
|
29
|
+
|
|
30
|
+
class Config:
|
|
31
|
+
frozen = True
|
|
32
|
+
smart_union = True
|
|
33
|
+
allow_population_by_field_name = True
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class EmbeddingModelConfigUpdateEmbeddingConfig_CohereEmbedding(CohereEmbeddingConfig):
|
|
37
|
+
type: typing_extensions.Literal["COHERE_EMBEDDING"]
|
|
38
|
+
|
|
39
|
+
class Config:
|
|
40
|
+
frozen = True
|
|
41
|
+
smart_union = True
|
|
42
|
+
allow_population_by_field_name = True
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class EmbeddingModelConfigUpdateEmbeddingConfig_GeminiEmbedding(GeminiEmbeddingConfig):
|
|
46
|
+
type: typing_extensions.Literal["GEMINI_EMBEDDING"]
|
|
47
|
+
|
|
48
|
+
class Config:
|
|
49
|
+
frozen = True
|
|
50
|
+
smart_union = True
|
|
51
|
+
allow_population_by_field_name = True
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class EmbeddingModelConfigUpdateEmbeddingConfig_HuggingfaceApiEmbedding(HuggingFaceInferenceApiEmbeddingConfig):
|
|
55
|
+
type: typing_extensions.Literal["HUGGINGFACE_API_EMBEDDING"]
|
|
56
|
+
|
|
57
|
+
class Config:
|
|
58
|
+
frozen = True
|
|
59
|
+
smart_union = True
|
|
60
|
+
allow_population_by_field_name = True
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class EmbeddingModelConfigUpdateEmbeddingConfig_OpenaiEmbedding(OpenAiEmbeddingConfig):
|
|
64
|
+
type: typing_extensions.Literal["OPENAI_EMBEDDING"]
|
|
65
|
+
|
|
66
|
+
class Config:
|
|
67
|
+
frozen = True
|
|
68
|
+
smart_union = True
|
|
69
|
+
allow_population_by_field_name = True
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
class EmbeddingModelConfigUpdateEmbeddingConfig_VertexaiEmbedding(VertexAiEmbeddingConfig):
|
|
73
|
+
type: typing_extensions.Literal["VERTEXAI_EMBEDDING"]
|
|
74
|
+
|
|
75
|
+
class Config:
|
|
76
|
+
frozen = True
|
|
77
|
+
smart_union = True
|
|
78
|
+
allow_population_by_field_name = True
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
EmbeddingModelConfigUpdateEmbeddingConfig = typing.Union[
|
|
82
|
+
EmbeddingModelConfigUpdateEmbeddingConfig_AzureEmbedding,
|
|
83
|
+
EmbeddingModelConfigUpdateEmbeddingConfig_BedrockEmbedding,
|
|
84
|
+
EmbeddingModelConfigUpdateEmbeddingConfig_CohereEmbedding,
|
|
85
|
+
EmbeddingModelConfigUpdateEmbeddingConfig_GeminiEmbedding,
|
|
86
|
+
EmbeddingModelConfigUpdateEmbeddingConfig_HuggingfaceApiEmbedding,
|
|
87
|
+
EmbeddingModelConfigUpdateEmbeddingConfig_OpenaiEmbedding,
|
|
88
|
+
EmbeddingModelConfigUpdateEmbeddingConfig_VertexaiEmbedding,
|
|
89
|
+
]
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .plan import Plan
|
|
8
|
+
from .usage import Usage
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
import pydantic
|
|
12
|
+
if pydantic.__version__.startswith("1."):
|
|
13
|
+
raise ImportError
|
|
14
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
15
|
+
except ImportError:
|
|
16
|
+
import pydantic # type: ignore
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class IntervalUsageAndPlan(pydantic.BaseModel):
|
|
20
|
+
start_window: typing.Optional[dt.datetime]
|
|
21
|
+
end_window: typing.Optional[dt.datetime]
|
|
22
|
+
plan: typing.Optional[Plan]
|
|
23
|
+
usage: typing.Optional[Usage]
|
|
24
|
+
|
|
25
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
26
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
27
|
+
return super().json(**kwargs_with_defaults)
|
|
28
|
+
|
|
29
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
30
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
+
return super().dict(**kwargs_with_defaults)
|
|
32
|
+
|
|
33
|
+
class Config:
|
|
34
|
+
frozen = True
|
|
35
|
+
smart_union = True
|
|
36
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -25,6 +25,7 @@ class LlamaParseParameters(pydantic.BaseModel):
|
|
|
25
25
|
disable_ocr: typing.Optional[bool]
|
|
26
26
|
annotate_links: typing.Optional[bool]
|
|
27
27
|
disable_reconstruction: typing.Optional[bool]
|
|
28
|
+
disable_image_extraction: typing.Optional[bool]
|
|
28
29
|
invalidate_cache: typing.Optional[bool]
|
|
29
30
|
do_not_cache: typing.Optional[bool]
|
|
30
31
|
fast_mode: typing.Optional[bool]
|
|
@@ -32,6 +33,7 @@ class LlamaParseParameters(pydantic.BaseModel):
|
|
|
32
33
|
gpt_4_o_mode: typing.Optional[bool] = pydantic.Field(alias="gpt4o_mode")
|
|
33
34
|
gpt_4_o_api_key: typing.Optional[str] = pydantic.Field(alias="gpt4o_api_key")
|
|
34
35
|
do_not_unroll_columns: typing.Optional[bool]
|
|
36
|
+
guess_xlsx_sheet_name: typing.Optional[bool]
|
|
35
37
|
page_separator: typing.Optional[str]
|
|
36
38
|
bounding_box: typing.Optional[str]
|
|
37
39
|
target_pages: typing.Optional[str]
|
|
@@ -47,10 +49,18 @@ class LlamaParseParameters(pydantic.BaseModel):
|
|
|
47
49
|
continuous_mode: typing.Optional[bool]
|
|
48
50
|
s_3_input_path: typing.Optional[str] = pydantic.Field(alias="s3_input_path")
|
|
49
51
|
s_3_output_path_prefix: typing.Optional[str] = pydantic.Field(alias="s3_output_path_prefix")
|
|
52
|
+
project_id: typing.Optional[str]
|
|
50
53
|
azure_openai_deployment_name: typing.Optional[str]
|
|
51
54
|
azure_openai_endpoint: typing.Optional[str]
|
|
52
55
|
azure_openai_api_version: typing.Optional[str]
|
|
53
56
|
azure_openai_key: typing.Optional[str]
|
|
57
|
+
input_url: typing.Optional[str]
|
|
58
|
+
http_proxy: typing.Optional[str]
|
|
59
|
+
auto_mode: typing.Optional[bool]
|
|
60
|
+
auto_mode_trigger_on_regexp_in_page: typing.Optional[str]
|
|
61
|
+
auto_mode_trigger_on_text_in_page: typing.Optional[str]
|
|
62
|
+
auto_mode_trigger_on_table_in_page: typing.Optional[bool]
|
|
63
|
+
auto_mode_trigger_on_image_in_page: typing.Optional[bool]
|
|
54
64
|
|
|
55
65
|
def json(self, **kwargs: typing.Any) -> str:
|
|
56
66
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -18,7 +18,8 @@ class MarkdownNodeParser(pydantic.BaseModel):
|
|
|
18
18
|
"""
|
|
19
19
|
Markdown node parser.
|
|
20
20
|
|
|
21
|
-
Splits a document into Nodes using
|
|
21
|
+
Splits a document into Nodes using Markdown header-based splitting logic.
|
|
22
|
+
Each node contains its text content and the path of headers leading to it.
|
|
22
23
|
|
|
23
24
|
Args:
|
|
24
25
|
include_metadata (bool): whether to include metadata in nodes
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .pipeline_file import PipelineFile
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic
|
|
11
|
+
if pydantic.__version__.startswith("1."):
|
|
12
|
+
raise ImportError
|
|
13
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
14
|
+
except ImportError:
|
|
15
|
+
import pydantic # type: ignore
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class PaginatedListPipelineFilesResponse(pydantic.BaseModel):
|
|
19
|
+
files: typing.List[PipelineFile] = pydantic.Field(description="The files to list")
|
|
20
|
+
limit: int = pydantic.Field(description="The limit of the files")
|
|
21
|
+
offset: int = pydantic.Field(description="The offset of the files")
|
|
22
|
+
total_count: int = pydantic.Field(description="The total number of files")
|
|
23
|
+
|
|
24
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
25
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
26
|
+
return super().json(**kwargs_with_defaults)
|
|
27
|
+
|
|
28
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
29
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
30
|
+
return super().dict(**kwargs_with_defaults)
|
|
31
|
+
|
|
32
|
+
class Config:
|
|
33
|
+
frozen = True
|
|
34
|
+
smart_union = True
|
|
35
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
llama_cloud/types/pipeline.py
CHANGED
|
@@ -33,6 +33,7 @@ class Pipeline(pydantic.BaseModel):
|
|
|
33
33
|
updated_at: typing.Optional[dt.datetime]
|
|
34
34
|
name: str
|
|
35
35
|
project_id: str
|
|
36
|
+
embedding_model_config_id: typing.Optional[str]
|
|
36
37
|
pipeline_type: typing.Optional[PipelineType] = pydantic.Field(
|
|
37
38
|
description="Type of pipeline. Either PLAYGROUND or MANAGED."
|
|
38
39
|
)
|
|
@@ -33,6 +33,7 @@ class PipelineCreate(pydantic.BaseModel):
|
|
|
33
33
|
)
|
|
34
34
|
configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]]
|
|
35
35
|
data_sink_id: typing.Optional[str]
|
|
36
|
+
embedding_model_config_id: typing.Optional[str]
|
|
36
37
|
data_sink: typing.Optional[DataSinkCreate]
|
|
37
38
|
preset_retrieval_parameters: typing.Optional[PresetRetrievalParams] = pydantic.Field(
|
|
38
39
|
description="Preset retrieval parameters for the pipeline."
|
|
@@ -36,6 +36,7 @@ class PipelineFile(pydantic.BaseModel):
|
|
|
36
36
|
pipeline_id: str = pydantic.Field(description="The ID of the pipeline that the file is associated with")
|
|
37
37
|
custom_metadata: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileCustomMetadataValue]]]
|
|
38
38
|
config_hash: typing.Optional[typing.Dict[str, typing.Optional[PipelineFileConfigHashValue]]]
|
|
39
|
+
indexed_page_count: typing.Optional[int]
|
|
39
40
|
|
|
40
41
|
def json(self, **kwargs: typing.Any) -> str:
|
|
41
42
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic
|
|
10
|
+
if pydantic.__version__.startswith("1."):
|
|
11
|
+
raise ImportError
|
|
12
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
+
except ImportError:
|
|
14
|
+
import pydantic # type: ignore
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class Plan(pydantic.BaseModel):
|
|
18
|
+
total_users: typing.Optional[int]
|
|
19
|
+
total_indexes: typing.Optional[int]
|
|
20
|
+
total_indexed_pages: typing.Optional[int]
|
|
21
|
+
credits: typing.Optional[int]
|
|
22
|
+
has_payment_method: typing.Optional[bool]
|
|
23
|
+
free: typing.Optional[bool] = pydantic.Field(description="If is a free plan")
|
|
24
|
+
allowed_index: typing.Optional[bool] = pydantic.Field(description="If is allowed to use indexes")
|
|
25
|
+
allowed_external_index: typing.Optional[bool] = pydantic.Field(
|
|
26
|
+
description="If is allowed to use external data sources or sinks in indexes"
|
|
27
|
+
)
|
|
28
|
+
|
|
29
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
30
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
+
return super().json(**kwargs_with_defaults)
|
|
32
|
+
|
|
33
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
34
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
35
|
+
return super().dict(**kwargs_with_defaults)
|
|
36
|
+
|
|
37
|
+
class Config:
|
|
38
|
+
frozen = True
|
|
39
|
+
smart_union = True
|
|
40
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic
|
|
10
|
+
if pydantic.__version__.startswith("1."):
|
|
11
|
+
raise ImportError
|
|
12
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
+
except ImportError:
|
|
14
|
+
import pydantic # type: ignore
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class Usage(pydantic.BaseModel):
|
|
18
|
+
"""
|
|
19
|
+
Response model; use UsageSubmission for tracking
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
total_users: typing.Optional[int]
|
|
23
|
+
total_indexes: typing.Optional[int]
|
|
24
|
+
total_indexed_pages: typing.Optional[int]
|
|
25
|
+
extract_pages: typing.Optional[int]
|
|
26
|
+
parse_pages: typing.Optional[int]
|
|
27
|
+
index_pages: typing.Optional[int]
|
|
28
|
+
credits: typing.Optional[int]
|
|
29
|
+
|
|
30
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
31
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
32
|
+
return super().json(**kwargs_with_defaults)
|
|
33
|
+
|
|
34
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
35
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
36
|
+
return super().dict(**kwargs_with_defaults)
|
|
37
|
+
|
|
38
|
+
class Config:
|
|
39
|
+
frozen = True
|
|
40
|
+
smart_union = True
|
|
41
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: llama-cloud
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.5
|
|
4
4
|
Summary:
|
|
5
5
|
License: MIT
|
|
6
6
|
Author: Logan Markewich
|
|
@@ -12,7 +12,6 @@ Classifier: Programming Language :: Python :: 3.8
|
|
|
12
12
|
Classifier: Programming Language :: Python :: 3.9
|
|
13
13
|
Classifier: Programming Language :: Python :: 3.10
|
|
14
14
|
Classifier: Programming Language :: Python :: 3.11
|
|
15
|
-
Classifier: Programming Language :: Python :: 3.12
|
|
16
15
|
Requires-Dist: httpx (>=0.20.0)
|
|
17
16
|
Requires-Dist: pydantic (>=1.10)
|
|
18
17
|
Description-Content-Type: text/markdown
|