llama-cloud 0.1.3__py3-none-any.whl → 0.1.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

Files changed (38) hide show
  1. llama_cloud/__init__.py +64 -0
  2. llama_cloud/client.py +3 -0
  3. llama_cloud/resources/__init__.py +22 -1
  4. llama_cloud/resources/data_sinks/client.py +12 -6
  5. llama_cloud/resources/embedding_model_configs/__init__.py +23 -0
  6. llama_cloud/resources/embedding_model_configs/client.py +360 -0
  7. llama_cloud/resources/embedding_model_configs/types/__init__.py +23 -0
  8. llama_cloud/resources/embedding_model_configs/types/embedding_model_config_create_embedding_config.py +89 -0
  9. llama_cloud/resources/files/__init__.py +2 -2
  10. llama_cloud/resources/files/client.py +265 -34
  11. llama_cloud/resources/files/types/__init__.py +2 -1
  12. llama_cloud/resources/files/types/file_create_from_url_resource_info_value.py +7 -0
  13. llama_cloud/resources/organizations/client.py +65 -0
  14. llama_cloud/resources/parsing/client.py +157 -0
  15. llama_cloud/resources/pipelines/client.py +177 -14
  16. llama_cloud/resources/projects/client.py +71 -0
  17. llama_cloud/types/__init__.py +48 -0
  18. llama_cloud/types/base.py +29 -0
  19. llama_cloud/types/cloud_one_drive_data_source.py +1 -0
  20. llama_cloud/types/cloud_postgres_vector_store.py +1 -1
  21. llama_cloud/types/cloud_sharepoint_data_source.py +1 -0
  22. llama_cloud/types/embedding_model_config.py +43 -0
  23. llama_cloud/types/embedding_model_config_embedding_config.py +89 -0
  24. llama_cloud/types/embedding_model_config_update.py +33 -0
  25. llama_cloud/types/embedding_model_config_update_embedding_config.py +89 -0
  26. llama_cloud/types/interval_usage_and_plan.py +36 -0
  27. llama_cloud/types/llama_parse_parameters.py +10 -0
  28. llama_cloud/types/markdown_node_parser.py +2 -1
  29. llama_cloud/types/paginated_list_pipeline_files_response.py +35 -0
  30. llama_cloud/types/pipeline.py +1 -0
  31. llama_cloud/types/pipeline_create.py +1 -0
  32. llama_cloud/types/pipeline_file.py +1 -0
  33. llama_cloud/types/plan.py +40 -0
  34. llama_cloud/types/usage.py +41 -0
  35. {llama_cloud-0.1.3.dist-info → llama_cloud-0.1.5.dist-info}/METADATA +1 -2
  36. {llama_cloud-0.1.3.dist-info → llama_cloud-0.1.5.dist-info}/RECORD +38 -25
  37. {llama_cloud-0.1.3.dist-info → llama_cloud-0.1.5.dist-info}/WHEEL +1 -1
  38. {llama_cloud-0.1.3.dist-info → llama_cloud-0.1.5.dist-info}/LICENSE +0 -0
llama_cloud/__init__.py CHANGED
@@ -64,6 +64,24 @@ from .types import (
64
64
  DataSourceCustomMetadataValue,
65
65
  DataSourceDefinition,
66
66
  ElementSegmentationConfig,
67
+ EmbeddingModelConfig,
68
+ EmbeddingModelConfigEmbeddingConfig,
69
+ EmbeddingModelConfigEmbeddingConfig_AzureEmbedding,
70
+ EmbeddingModelConfigEmbeddingConfig_BedrockEmbedding,
71
+ EmbeddingModelConfigEmbeddingConfig_CohereEmbedding,
72
+ EmbeddingModelConfigEmbeddingConfig_GeminiEmbedding,
73
+ EmbeddingModelConfigEmbeddingConfig_HuggingfaceApiEmbedding,
74
+ EmbeddingModelConfigEmbeddingConfig_OpenaiEmbedding,
75
+ EmbeddingModelConfigEmbeddingConfig_VertexaiEmbedding,
76
+ EmbeddingModelConfigUpdate,
77
+ EmbeddingModelConfigUpdateEmbeddingConfig,
78
+ EmbeddingModelConfigUpdateEmbeddingConfig_AzureEmbedding,
79
+ EmbeddingModelConfigUpdateEmbeddingConfig_BedrockEmbedding,
80
+ EmbeddingModelConfigUpdateEmbeddingConfig_CohereEmbedding,
81
+ EmbeddingModelConfigUpdateEmbeddingConfig_GeminiEmbedding,
82
+ EmbeddingModelConfigUpdateEmbeddingConfig_HuggingfaceApiEmbedding,
83
+ EmbeddingModelConfigUpdateEmbeddingConfig_OpenaiEmbedding,
84
+ EmbeddingModelConfigUpdateEmbeddingConfig_VertexaiEmbedding,
67
85
  EvalDataset,
68
86
  EvalDatasetJobParams,
69
87
  EvalDatasetJobRecord,
@@ -90,6 +108,7 @@ from .types import (
90
108
  HuggingFaceInferenceApiEmbeddingToken,
91
109
  IngestionErrorResponse,
92
110
  InputMessage,
111
+ IntervalUsageAndPlan,
93
112
  JobNameMapping,
94
113
  LlamaParseParameters,
95
114
  LlamaParseSupportedFileExtensions,
@@ -123,6 +142,7 @@ from .types import (
123
142
  PageScreenshotNodeWithScore,
124
143
  PageSegmentationConfig,
125
144
  PageSplitterNodeParser,
145
+ PaginatedListPipelineFilesResponse,
126
146
  ParserLanguages,
127
147
  ParsingHistoryItem,
128
148
  ParsingJob,
@@ -167,6 +187,7 @@ from .types import (
167
187
  PipelineTransformConfig_Advanced,
168
188
  PipelineTransformConfig_Auto,
169
189
  PipelineType,
190
+ Plan,
170
191
  PlaygroundSession,
171
192
  Pooling,
172
193
  PresetRetrievalParams,
@@ -192,6 +213,7 @@ from .types import (
192
213
  TokenChunkingConfig,
193
214
  TokenTextSplitter,
194
215
  TransformationCategoryNames,
216
+ Usage,
195
217
  UserOrganization,
196
218
  UserOrganizationCreate,
197
219
  UserOrganizationDelete,
@@ -207,8 +229,17 @@ from .resources import (
207
229
  DataSinkUpdateComponent,
208
230
  DataSourceUpdateComponent,
209
231
  DataSourceUpdateCustomMetadataValue,
232
+ EmbeddingModelConfigCreateEmbeddingConfig,
233
+ EmbeddingModelConfigCreateEmbeddingConfig_AzureEmbedding,
234
+ EmbeddingModelConfigCreateEmbeddingConfig_BedrockEmbedding,
235
+ EmbeddingModelConfigCreateEmbeddingConfig_CohereEmbedding,
236
+ EmbeddingModelConfigCreateEmbeddingConfig_GeminiEmbedding,
237
+ EmbeddingModelConfigCreateEmbeddingConfig_HuggingfaceApiEmbedding,
238
+ EmbeddingModelConfigCreateEmbeddingConfig_OpenaiEmbedding,
239
+ EmbeddingModelConfigCreateEmbeddingConfig_VertexaiEmbedding,
210
240
  ExtractionSchemaCreateDataSchemaValue,
211
241
  ExtractionSchemaUpdateDataSchemaValue,
242
+ FileCreateFromUrlResourceInfoValue,
212
243
  FileCreateResourceInfoValue,
213
244
  PipelineFileUpdateCustomMetadataValue,
214
245
  PipelineUpdateEmbeddingConfig,
@@ -223,6 +254,7 @@ from .resources import (
223
254
  component_definitions,
224
255
  data_sinks,
225
256
  data_sources,
257
+ embedding_model_configs,
226
258
  evals,
227
259
  extraction,
228
260
  files,
@@ -300,6 +332,32 @@ __all__ = [
300
332
  "DataSourceUpdateComponent",
301
333
  "DataSourceUpdateCustomMetadataValue",
302
334
  "ElementSegmentationConfig",
335
+ "EmbeddingModelConfig",
336
+ "EmbeddingModelConfigCreateEmbeddingConfig",
337
+ "EmbeddingModelConfigCreateEmbeddingConfig_AzureEmbedding",
338
+ "EmbeddingModelConfigCreateEmbeddingConfig_BedrockEmbedding",
339
+ "EmbeddingModelConfigCreateEmbeddingConfig_CohereEmbedding",
340
+ "EmbeddingModelConfigCreateEmbeddingConfig_GeminiEmbedding",
341
+ "EmbeddingModelConfigCreateEmbeddingConfig_HuggingfaceApiEmbedding",
342
+ "EmbeddingModelConfigCreateEmbeddingConfig_OpenaiEmbedding",
343
+ "EmbeddingModelConfigCreateEmbeddingConfig_VertexaiEmbedding",
344
+ "EmbeddingModelConfigEmbeddingConfig",
345
+ "EmbeddingModelConfigEmbeddingConfig_AzureEmbedding",
346
+ "EmbeddingModelConfigEmbeddingConfig_BedrockEmbedding",
347
+ "EmbeddingModelConfigEmbeddingConfig_CohereEmbedding",
348
+ "EmbeddingModelConfigEmbeddingConfig_GeminiEmbedding",
349
+ "EmbeddingModelConfigEmbeddingConfig_HuggingfaceApiEmbedding",
350
+ "EmbeddingModelConfigEmbeddingConfig_OpenaiEmbedding",
351
+ "EmbeddingModelConfigEmbeddingConfig_VertexaiEmbedding",
352
+ "EmbeddingModelConfigUpdate",
353
+ "EmbeddingModelConfigUpdateEmbeddingConfig",
354
+ "EmbeddingModelConfigUpdateEmbeddingConfig_AzureEmbedding",
355
+ "EmbeddingModelConfigUpdateEmbeddingConfig_BedrockEmbedding",
356
+ "EmbeddingModelConfigUpdateEmbeddingConfig_CohereEmbedding",
357
+ "EmbeddingModelConfigUpdateEmbeddingConfig_GeminiEmbedding",
358
+ "EmbeddingModelConfigUpdateEmbeddingConfig_HuggingfaceApiEmbedding",
359
+ "EmbeddingModelConfigUpdateEmbeddingConfig_OpenaiEmbedding",
360
+ "EmbeddingModelConfigUpdateEmbeddingConfig_VertexaiEmbedding",
303
361
  "EvalDataset",
304
362
  "EvalDatasetJobParams",
305
363
  "EvalDatasetJobRecord",
@@ -317,6 +375,7 @@ __all__ = [
317
375
  "ExtractionSchemaDataSchemaValue",
318
376
  "ExtractionSchemaUpdateDataSchemaValue",
319
377
  "File",
378
+ "FileCreateFromUrlResourceInfoValue",
320
379
  "FileCreateResourceInfoValue",
321
380
  "FileResourceInfoValue",
322
381
  "FilterCondition",
@@ -329,6 +388,7 @@ __all__ = [
329
388
  "HuggingFaceInferenceApiEmbeddingToken",
330
389
  "IngestionErrorResponse",
331
390
  "InputMessage",
391
+ "IntervalUsageAndPlan",
332
392
  "JobNameMapping",
333
393
  "LlamaCloudEnvironment",
334
394
  "LlamaParseParameters",
@@ -363,6 +423,7 @@ __all__ = [
363
423
  "PageScreenshotNodeWithScore",
364
424
  "PageSegmentationConfig",
365
425
  "PageSplitterNodeParser",
426
+ "PaginatedListPipelineFilesResponse",
366
427
  "ParserLanguages",
367
428
  "ParsingHistoryItem",
368
429
  "ParsingJob",
@@ -417,6 +478,7 @@ __all__ = [
417
478
  "PipelineUpdateEmbeddingConfig_OpenaiEmbedding",
418
479
  "PipelineUpdateEmbeddingConfig_VertexaiEmbedding",
419
480
  "PipelineUpdateTransformConfig",
481
+ "Plan",
420
482
  "PlaygroundSession",
421
483
  "Pooling",
422
484
  "PresetRetrievalParams",
@@ -443,6 +505,7 @@ __all__ = [
443
505
  "TokenTextSplitter",
444
506
  "TransformationCategoryNames",
445
507
  "UnprocessableEntityError",
508
+ "Usage",
446
509
  "UserOrganization",
447
510
  "UserOrganizationCreate",
448
511
  "UserOrganizationDelete",
@@ -455,6 +518,7 @@ __all__ = [
455
518
  "component_definitions",
456
519
  "data_sinks",
457
520
  "data_sources",
521
+ "embedding_model_configs",
458
522
  "evals",
459
523
  "extraction",
460
524
  "files",
llama_cloud/client.py CHANGED
@@ -9,6 +9,7 @@ from .environment import LlamaCloudEnvironment
9
9
  from .resources.component_definitions.client import AsyncComponentDefinitionsClient, ComponentDefinitionsClient
10
10
  from .resources.data_sinks.client import AsyncDataSinksClient, DataSinksClient
11
11
  from .resources.data_sources.client import AsyncDataSourcesClient, DataSourcesClient
12
+ from .resources.embedding_model_configs.client import AsyncEmbeddingModelConfigsClient, EmbeddingModelConfigsClient
12
13
  from .resources.evals.client import AsyncEvalsClient, EvalsClient
13
14
  from .resources.extraction.client import AsyncExtractionClient, ExtractionClient
14
15
  from .resources.files.client import AsyncFilesClient, FilesClient
@@ -35,6 +36,7 @@ class LlamaCloud:
35
36
  )
36
37
  self.data_sinks = DataSinksClient(client_wrapper=self._client_wrapper)
37
38
  self.data_sources = DataSourcesClient(client_wrapper=self._client_wrapper)
39
+ self.embedding_model_configs = EmbeddingModelConfigsClient(client_wrapper=self._client_wrapper)
38
40
  self.organizations = OrganizationsClient(client_wrapper=self._client_wrapper)
39
41
  self.projects = ProjectsClient(client_wrapper=self._client_wrapper)
40
42
  self.files = FilesClient(client_wrapper=self._client_wrapper)
@@ -62,6 +64,7 @@ class AsyncLlamaCloud:
62
64
  )
63
65
  self.data_sinks = AsyncDataSinksClient(client_wrapper=self._client_wrapper)
64
66
  self.data_sources = AsyncDataSourcesClient(client_wrapper=self._client_wrapper)
67
+ self.embedding_model_configs = AsyncEmbeddingModelConfigsClient(client_wrapper=self._client_wrapper)
65
68
  self.organizations = AsyncOrganizationsClient(client_wrapper=self._client_wrapper)
66
69
  self.projects = AsyncProjectsClient(client_wrapper=self._client_wrapper)
67
70
  self.files = AsyncFilesClient(client_wrapper=self._client_wrapper)
@@ -4,6 +4,7 @@ from . import (
4
4
  component_definitions,
5
5
  data_sinks,
6
6
  data_sources,
7
+ embedding_model_configs,
7
8
  evals,
8
9
  extraction,
9
10
  files,
@@ -14,8 +15,18 @@ from . import (
14
15
  )
15
16
  from .data_sinks import DataSinkUpdateComponent
16
17
  from .data_sources import DataSourceUpdateComponent, DataSourceUpdateCustomMetadataValue
18
+ from .embedding_model_configs import (
19
+ EmbeddingModelConfigCreateEmbeddingConfig,
20
+ EmbeddingModelConfigCreateEmbeddingConfig_AzureEmbedding,
21
+ EmbeddingModelConfigCreateEmbeddingConfig_BedrockEmbedding,
22
+ EmbeddingModelConfigCreateEmbeddingConfig_CohereEmbedding,
23
+ EmbeddingModelConfigCreateEmbeddingConfig_GeminiEmbedding,
24
+ EmbeddingModelConfigCreateEmbeddingConfig_HuggingfaceApiEmbedding,
25
+ EmbeddingModelConfigCreateEmbeddingConfig_OpenaiEmbedding,
26
+ EmbeddingModelConfigCreateEmbeddingConfig_VertexaiEmbedding,
27
+ )
17
28
  from .extraction import ExtractionSchemaCreateDataSchemaValue, ExtractionSchemaUpdateDataSchemaValue
18
- from .files import FileCreateResourceInfoValue
29
+ from .files import FileCreateFromUrlResourceInfoValue, FileCreateResourceInfoValue
19
30
  from .pipelines import (
20
31
  PipelineFileUpdateCustomMetadataValue,
21
32
  PipelineUpdateEmbeddingConfig,
@@ -33,8 +44,17 @@ __all__ = [
33
44
  "DataSinkUpdateComponent",
34
45
  "DataSourceUpdateComponent",
35
46
  "DataSourceUpdateCustomMetadataValue",
47
+ "EmbeddingModelConfigCreateEmbeddingConfig",
48
+ "EmbeddingModelConfigCreateEmbeddingConfig_AzureEmbedding",
49
+ "EmbeddingModelConfigCreateEmbeddingConfig_BedrockEmbedding",
50
+ "EmbeddingModelConfigCreateEmbeddingConfig_CohereEmbedding",
51
+ "EmbeddingModelConfigCreateEmbeddingConfig_GeminiEmbedding",
52
+ "EmbeddingModelConfigCreateEmbeddingConfig_HuggingfaceApiEmbedding",
53
+ "EmbeddingModelConfigCreateEmbeddingConfig_OpenaiEmbedding",
54
+ "EmbeddingModelConfigCreateEmbeddingConfig_VertexaiEmbedding",
36
55
  "ExtractionSchemaCreateDataSchemaValue",
37
56
  "ExtractionSchemaUpdateDataSchemaValue",
57
+ "FileCreateFromUrlResourceInfoValue",
38
58
  "FileCreateResourceInfoValue",
39
59
  "PipelineFileUpdateCustomMetadataValue",
40
60
  "PipelineUpdateEmbeddingConfig",
@@ -49,6 +69,7 @@ __all__ = [
49
69
  "component_definitions",
50
70
  "data_sinks",
51
71
  "data_sources",
72
+ "embedding_model_configs",
52
73
  "evals",
53
74
  "extraction",
54
75
  "files",
@@ -31,13 +31,16 @@ class DataSinksClient:
31
31
  def __init__(self, *, client_wrapper: SyncClientWrapper):
32
32
  self._client_wrapper = client_wrapper
33
33
 
34
- def list_data_sinks(self, *, project_id: typing.Optional[str] = None) -> typing.List[DataSink]:
34
+ def list_data_sinks(
35
+ self, *, project_id: typing.Optional[str] = None, organization_id: typing.Optional[str] = None
36
+ ) -> typing.List[DataSink]:
35
37
  """
36
38
  List data sinks for a given project.
37
- If project_id is not provided, uses the default project.
38
39
 
39
40
  Parameters:
40
41
  - project_id: typing.Optional[str].
42
+
43
+ - organization_id: typing.Optional[str].
41
44
  ---
42
45
  from llama_cloud.client import LlamaCloud
43
46
 
@@ -49,7 +52,7 @@ class DataSinksClient:
49
52
  _response = self._client_wrapper.httpx_client.request(
50
53
  "GET",
51
54
  urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/data-sinks"),
52
- params=remove_none_from_dict({"project_id": project_id}),
55
+ params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
53
56
  headers=self._client_wrapper.get_headers(),
54
57
  timeout=60,
55
58
  )
@@ -282,13 +285,16 @@ class AsyncDataSinksClient:
282
285
  def __init__(self, *, client_wrapper: AsyncClientWrapper):
283
286
  self._client_wrapper = client_wrapper
284
287
 
285
- async def list_data_sinks(self, *, project_id: typing.Optional[str] = None) -> typing.List[DataSink]:
288
+ async def list_data_sinks(
289
+ self, *, project_id: typing.Optional[str] = None, organization_id: typing.Optional[str] = None
290
+ ) -> typing.List[DataSink]:
286
291
  """
287
292
  List data sinks for a given project.
288
- If project_id is not provided, uses the default project.
289
293
 
290
294
  Parameters:
291
295
  - project_id: typing.Optional[str].
296
+
297
+ - organization_id: typing.Optional[str].
292
298
  ---
293
299
  from llama_cloud.client import AsyncLlamaCloud
294
300
 
@@ -300,7 +306,7 @@ class AsyncDataSinksClient:
300
306
  _response = await self._client_wrapper.httpx_client.request(
301
307
  "GET",
302
308
  urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/data-sinks"),
303
- params=remove_none_from_dict({"project_id": project_id}),
309
+ params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
304
310
  headers=self._client_wrapper.get_headers(),
305
311
  timeout=60,
306
312
  )
@@ -0,0 +1,23 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ from .types import (
4
+ EmbeddingModelConfigCreateEmbeddingConfig,
5
+ EmbeddingModelConfigCreateEmbeddingConfig_AzureEmbedding,
6
+ EmbeddingModelConfigCreateEmbeddingConfig_BedrockEmbedding,
7
+ EmbeddingModelConfigCreateEmbeddingConfig_CohereEmbedding,
8
+ EmbeddingModelConfigCreateEmbeddingConfig_GeminiEmbedding,
9
+ EmbeddingModelConfigCreateEmbeddingConfig_HuggingfaceApiEmbedding,
10
+ EmbeddingModelConfigCreateEmbeddingConfig_OpenaiEmbedding,
11
+ EmbeddingModelConfigCreateEmbeddingConfig_VertexaiEmbedding,
12
+ )
13
+
14
+ __all__ = [
15
+ "EmbeddingModelConfigCreateEmbeddingConfig",
16
+ "EmbeddingModelConfigCreateEmbeddingConfig_AzureEmbedding",
17
+ "EmbeddingModelConfigCreateEmbeddingConfig_BedrockEmbedding",
18
+ "EmbeddingModelConfigCreateEmbeddingConfig_CohereEmbedding",
19
+ "EmbeddingModelConfigCreateEmbeddingConfig_GeminiEmbedding",
20
+ "EmbeddingModelConfigCreateEmbeddingConfig_HuggingfaceApiEmbedding",
21
+ "EmbeddingModelConfigCreateEmbeddingConfig_OpenaiEmbedding",
22
+ "EmbeddingModelConfigCreateEmbeddingConfig_VertexaiEmbedding",
23
+ ]
@@ -0,0 +1,360 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+ import urllib.parse
5
+ from json.decoder import JSONDecodeError
6
+
7
+ from ...core.api_error import ApiError
8
+ from ...core.client_wrapper import AsyncClientWrapper, SyncClientWrapper
9
+ from ...core.jsonable_encoder import jsonable_encoder
10
+ from ...core.remove_none_from_dict import remove_none_from_dict
11
+ from ...errors.unprocessable_entity_error import UnprocessableEntityError
12
+ from ...types.embedding_model_config import EmbeddingModelConfig
13
+ from ...types.embedding_model_config_update import EmbeddingModelConfigUpdate
14
+ from ...types.http_validation_error import HttpValidationError
15
+ from .types.embedding_model_config_create_embedding_config import EmbeddingModelConfigCreateEmbeddingConfig
16
+
17
+ try:
18
+ import pydantic
19
+ if pydantic.__version__.startswith("1."):
20
+ raise ImportError
21
+ import pydantic.v1 as pydantic # type: ignore
22
+ except ImportError:
23
+ import pydantic # type: ignore
24
+
25
+ # this is used as the default value for optional parameters
26
+ OMIT = typing.cast(typing.Any, ...)
27
+
28
+
29
+ class EmbeddingModelConfigsClient:
30
+ def __init__(self, *, client_wrapper: SyncClientWrapper):
31
+ self._client_wrapper = client_wrapper
32
+
33
+ def list_embedding_model_configs(self, *, project_id: str) -> typing.List[EmbeddingModelConfig]:
34
+ """
35
+ Parameters:
36
+ - project_id: str.
37
+ ---
38
+ from llama_cloud.client import LlamaCloud
39
+
40
+ client = LlamaCloud(
41
+ token="YOUR_TOKEN",
42
+ )
43
+ client.embedding_model_configs.list_embedding_model_configs(
44
+ project_id="string",
45
+ )
46
+ """
47
+ _response = self._client_wrapper.httpx_client.request(
48
+ "GET",
49
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/embedding-model-configs"),
50
+ params=remove_none_from_dict({"project_id": project_id}),
51
+ headers=self._client_wrapper.get_headers(),
52
+ timeout=60,
53
+ )
54
+ if 200 <= _response.status_code < 300:
55
+ return pydantic.parse_obj_as(typing.List[EmbeddingModelConfig], _response.json()) # type: ignore
56
+ if _response.status_code == 422:
57
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
58
+ try:
59
+ _response_json = _response.json()
60
+ except JSONDecodeError:
61
+ raise ApiError(status_code=_response.status_code, body=_response.text)
62
+ raise ApiError(status_code=_response.status_code, body=_response_json)
63
+
64
+ def create_embedding_model_config(
65
+ self, *, project_id: str, name: str, embedding_config: EmbeddingModelConfigCreateEmbeddingConfig
66
+ ) -> typing.Any:
67
+ """
68
+ Create a new embedding model configuration within a specified project.
69
+
70
+ Parameters:
71
+ - project_id: str.
72
+
73
+ - name: str. The name of the embedding model config.
74
+
75
+ - embedding_config: EmbeddingModelConfigCreateEmbeddingConfig. The embedding configuration for the embedding model config.
76
+ """
77
+ _response = self._client_wrapper.httpx_client.request(
78
+ "POST",
79
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/embedding-model-configs"),
80
+ params=remove_none_from_dict({"project_id": project_id}),
81
+ json=jsonable_encoder({"name": name, "embedding_config": embedding_config}),
82
+ headers=self._client_wrapper.get_headers(),
83
+ timeout=60,
84
+ )
85
+ if 200 <= _response.status_code < 300:
86
+ return pydantic.parse_obj_as(typing.Any, _response.json()) # type: ignore
87
+ if _response.status_code == 422:
88
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
89
+ try:
90
+ _response_json = _response.json()
91
+ except JSONDecodeError:
92
+ raise ApiError(status_code=_response.status_code, body=_response.text)
93
+ raise ApiError(status_code=_response.status_code, body=_response_json)
94
+
95
+ def upsert_embedding_model_config(
96
+ self,
97
+ *,
98
+ project_id: typing.Optional[str] = None,
99
+ organization_id: typing.Optional[str] = None,
100
+ request: EmbeddingModelConfigUpdate,
101
+ ) -> EmbeddingModelConfig:
102
+ """
103
+ Upserts an embedding model config.
104
+ Updates if an embedding model config with the same name and project_id already exists. Otherwise, creates a new embedding model config.
105
+
106
+ Parameters:
107
+ - project_id: typing.Optional[str].
108
+
109
+ - organization_id: typing.Optional[str].
110
+
111
+ - request: EmbeddingModelConfigUpdate.
112
+ """
113
+ _response = self._client_wrapper.httpx_client.request(
114
+ "PUT",
115
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/embedding-model-configs"),
116
+ params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
117
+ json=jsonable_encoder(request),
118
+ headers=self._client_wrapper.get_headers(),
119
+ timeout=60,
120
+ )
121
+ if 200 <= _response.status_code < 300:
122
+ return pydantic.parse_obj_as(EmbeddingModelConfig, _response.json()) # type: ignore
123
+ if _response.status_code == 422:
124
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
125
+ try:
126
+ _response_json = _response.json()
127
+ except JSONDecodeError:
128
+ raise ApiError(status_code=_response.status_code, body=_response.text)
129
+ raise ApiError(status_code=_response.status_code, body=_response_json)
130
+
131
+ def update_embedding_model_config(
132
+ self, embedding_model_config_id: str, *, request: EmbeddingModelConfigUpdate
133
+ ) -> EmbeddingModelConfig:
134
+ """
135
+ Update an embedding model config by ID.
136
+
137
+ Parameters:
138
+ - embedding_model_config_id: str.
139
+
140
+ - request: EmbeddingModelConfigUpdate.
141
+ """
142
+ _response = self._client_wrapper.httpx_client.request(
143
+ "PUT",
144
+ urllib.parse.urljoin(
145
+ f"{self._client_wrapper.get_base_url()}/", f"api/v1/embedding-model-configs/{embedding_model_config_id}"
146
+ ),
147
+ json=jsonable_encoder(request),
148
+ headers=self._client_wrapper.get_headers(),
149
+ timeout=60,
150
+ )
151
+ if 200 <= _response.status_code < 300:
152
+ return pydantic.parse_obj_as(EmbeddingModelConfig, _response.json()) # type: ignore
153
+ if _response.status_code == 422:
154
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
155
+ try:
156
+ _response_json = _response.json()
157
+ except JSONDecodeError:
158
+ raise ApiError(status_code=_response.status_code, body=_response.text)
159
+ raise ApiError(status_code=_response.status_code, body=_response_json)
160
+
161
+ def delete_embedding_model_config(self, embedding_model_config_id: str) -> None:
162
+ """
163
+ Delete an embedding model config by ID.
164
+
165
+ Parameters:
166
+ - embedding_model_config_id: str.
167
+ ---
168
+ from llama_cloud.client import LlamaCloud
169
+
170
+ client = LlamaCloud(
171
+ token="YOUR_TOKEN",
172
+ )
173
+ client.embedding_model_configs.delete_embedding_model_config(
174
+ embedding_model_config_id="string",
175
+ )
176
+ """
177
+ _response = self._client_wrapper.httpx_client.request(
178
+ "DELETE",
179
+ urllib.parse.urljoin(
180
+ f"{self._client_wrapper.get_base_url()}/", f"api/v1/embedding-model-configs/{embedding_model_config_id}"
181
+ ),
182
+ headers=self._client_wrapper.get_headers(),
183
+ timeout=60,
184
+ )
185
+ if 200 <= _response.status_code < 300:
186
+ return
187
+ if _response.status_code == 422:
188
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
189
+ try:
190
+ _response_json = _response.json()
191
+ except JSONDecodeError:
192
+ raise ApiError(status_code=_response.status_code, body=_response.text)
193
+ raise ApiError(status_code=_response.status_code, body=_response_json)
194
+
195
+
196
+ class AsyncEmbeddingModelConfigsClient:
197
+ def __init__(self, *, client_wrapper: AsyncClientWrapper):
198
+ self._client_wrapper = client_wrapper
199
+
200
+ async def list_embedding_model_configs(self, *, project_id: str) -> typing.List[EmbeddingModelConfig]:
201
+ """
202
+ Parameters:
203
+ - project_id: str.
204
+ ---
205
+ from llama_cloud.client import AsyncLlamaCloud
206
+
207
+ client = AsyncLlamaCloud(
208
+ token="YOUR_TOKEN",
209
+ )
210
+ await client.embedding_model_configs.list_embedding_model_configs(
211
+ project_id="string",
212
+ )
213
+ """
214
+ _response = await self._client_wrapper.httpx_client.request(
215
+ "GET",
216
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/embedding-model-configs"),
217
+ params=remove_none_from_dict({"project_id": project_id}),
218
+ headers=self._client_wrapper.get_headers(),
219
+ timeout=60,
220
+ )
221
+ if 200 <= _response.status_code < 300:
222
+ return pydantic.parse_obj_as(typing.List[EmbeddingModelConfig], _response.json()) # type: ignore
223
+ if _response.status_code == 422:
224
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
225
+ try:
226
+ _response_json = _response.json()
227
+ except JSONDecodeError:
228
+ raise ApiError(status_code=_response.status_code, body=_response.text)
229
+ raise ApiError(status_code=_response.status_code, body=_response_json)
230
+
231
+ async def create_embedding_model_config(
232
+ self, *, project_id: str, name: str, embedding_config: EmbeddingModelConfigCreateEmbeddingConfig
233
+ ) -> typing.Any:
234
+ """
235
+ Create a new embedding model configuration within a specified project.
236
+
237
+ Parameters:
238
+ - project_id: str.
239
+
240
+ - name: str. The name of the embedding model config.
241
+
242
+ - embedding_config: EmbeddingModelConfigCreateEmbeddingConfig. The embedding configuration for the embedding model config.
243
+ """
244
+ _response = await self._client_wrapper.httpx_client.request(
245
+ "POST",
246
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/embedding-model-configs"),
247
+ params=remove_none_from_dict({"project_id": project_id}),
248
+ json=jsonable_encoder({"name": name, "embedding_config": embedding_config}),
249
+ headers=self._client_wrapper.get_headers(),
250
+ timeout=60,
251
+ )
252
+ if 200 <= _response.status_code < 300:
253
+ return pydantic.parse_obj_as(typing.Any, _response.json()) # type: ignore
254
+ if _response.status_code == 422:
255
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
256
+ try:
257
+ _response_json = _response.json()
258
+ except JSONDecodeError:
259
+ raise ApiError(status_code=_response.status_code, body=_response.text)
260
+ raise ApiError(status_code=_response.status_code, body=_response_json)
261
+
262
+ async def upsert_embedding_model_config(
263
+ self,
264
+ *,
265
+ project_id: typing.Optional[str] = None,
266
+ organization_id: typing.Optional[str] = None,
267
+ request: EmbeddingModelConfigUpdate,
268
+ ) -> EmbeddingModelConfig:
269
+ """
270
+ Upserts an embedding model config.
271
+ Updates if an embedding model config with the same name and project_id already exists. Otherwise, creates a new embedding model config.
272
+
273
+ Parameters:
274
+ - project_id: typing.Optional[str].
275
+
276
+ - organization_id: typing.Optional[str].
277
+
278
+ - request: EmbeddingModelConfigUpdate.
279
+ """
280
+ _response = await self._client_wrapper.httpx_client.request(
281
+ "PUT",
282
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/embedding-model-configs"),
283
+ params=remove_none_from_dict({"project_id": project_id, "organization_id": organization_id}),
284
+ json=jsonable_encoder(request),
285
+ headers=self._client_wrapper.get_headers(),
286
+ timeout=60,
287
+ )
288
+ if 200 <= _response.status_code < 300:
289
+ return pydantic.parse_obj_as(EmbeddingModelConfig, _response.json()) # type: ignore
290
+ if _response.status_code == 422:
291
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
292
+ try:
293
+ _response_json = _response.json()
294
+ except JSONDecodeError:
295
+ raise ApiError(status_code=_response.status_code, body=_response.text)
296
+ raise ApiError(status_code=_response.status_code, body=_response_json)
297
+
298
+ async def update_embedding_model_config(
299
+ self, embedding_model_config_id: str, *, request: EmbeddingModelConfigUpdate
300
+ ) -> EmbeddingModelConfig:
301
+ """
302
+ Update an embedding model config by ID.
303
+
304
+ Parameters:
305
+ - embedding_model_config_id: str.
306
+
307
+ - request: EmbeddingModelConfigUpdate.
308
+ """
309
+ _response = await self._client_wrapper.httpx_client.request(
310
+ "PUT",
311
+ urllib.parse.urljoin(
312
+ f"{self._client_wrapper.get_base_url()}/", f"api/v1/embedding-model-configs/{embedding_model_config_id}"
313
+ ),
314
+ json=jsonable_encoder(request),
315
+ headers=self._client_wrapper.get_headers(),
316
+ timeout=60,
317
+ )
318
+ if 200 <= _response.status_code < 300:
319
+ return pydantic.parse_obj_as(EmbeddingModelConfig, _response.json()) # type: ignore
320
+ if _response.status_code == 422:
321
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
322
+ try:
323
+ _response_json = _response.json()
324
+ except JSONDecodeError:
325
+ raise ApiError(status_code=_response.status_code, body=_response.text)
326
+ raise ApiError(status_code=_response.status_code, body=_response_json)
327
+
328
+ async def delete_embedding_model_config(self, embedding_model_config_id: str) -> None:
329
+ """
330
+ Delete an embedding model config by ID.
331
+
332
+ Parameters:
333
+ - embedding_model_config_id: str.
334
+ ---
335
+ from llama_cloud.client import AsyncLlamaCloud
336
+
337
+ client = AsyncLlamaCloud(
338
+ token="YOUR_TOKEN",
339
+ )
340
+ await client.embedding_model_configs.delete_embedding_model_config(
341
+ embedding_model_config_id="string",
342
+ )
343
+ """
344
+ _response = await self._client_wrapper.httpx_client.request(
345
+ "DELETE",
346
+ urllib.parse.urljoin(
347
+ f"{self._client_wrapper.get_base_url()}/", f"api/v1/embedding-model-configs/{embedding_model_config_id}"
348
+ ),
349
+ headers=self._client_wrapper.get_headers(),
350
+ timeout=60,
351
+ )
352
+ if 200 <= _response.status_code < 300:
353
+ return
354
+ if _response.status_code == 422:
355
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
356
+ try:
357
+ _response_json = _response.json()
358
+ except JSONDecodeError:
359
+ raise ApiError(status_code=_response.status_code, body=_response.text)
360
+ raise ApiError(status_code=_response.status_code, body=_response_json)