llama-cloud 0.1.19__py3-none-any.whl → 0.1.21__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +44 -26
- llama_cloud/resources/files/client.py +18 -4
- llama_cloud/resources/parsing/client.py +8 -0
- llama_cloud/resources/pipelines/client.py +25 -11
- llama_cloud/types/__init__.py +46 -26
- llama_cloud/types/{base_prompt_template.py → data_source_update_dispatcher_config.py} +9 -7
- llama_cloud/types/{node_parser.py → delete_params.py} +7 -9
- llama_cloud/types/document_ingestion_job_params.py +43 -0
- llama_cloud/types/extract_config.py +3 -0
- llama_cloud/types/job_record.py +2 -2
- llama_cloud/types/job_record_parameters.py +111 -0
- llama_cloud/types/{page_splitter_node_parser.py → l_lama_parse_transform_config.py} +5 -10
- llama_cloud/types/legacy_parse_job_config.py +189 -0
- llama_cloud/types/llama_parse_parameters.py +1 -0
- llama_cloud/types/load_files_job_config.py +35 -0
- llama_cloud/types/parse_job_config.py +134 -0
- llama_cloud/types/pipeline.py +4 -4
- llama_cloud/types/pipeline_create.py +2 -2
- llama_cloud/types/pipeline_file_update_dispatcher_config.py +38 -0
- llama_cloud/types/{configured_transformation_item.py → pipeline_file_updater_config.py} +13 -12
- llama_cloud/types/pipeline_managed_ingestion_job_params.py +37 -0
- llama_cloud/types/pipeline_metadata_config.py +36 -0
- llama_cloud/types/pipeline_status.py +17 -0
- llama_cloud/types/prompt_conf.py +1 -0
- llama_cloud/types/supported_llm_model.py +1 -2
- {llama_cloud-0.1.19.dist-info → llama_cloud-0.1.21.dist-info}/METADATA +6 -2
- {llama_cloud-0.1.19.dist-info → llama_cloud-0.1.21.dist-info}/RECORD +29 -29
- {llama_cloud-0.1.19.dist-info → llama_cloud-0.1.21.dist-info}/WHEEL +1 -1
- llama_cloud/types/character_splitter.py +0 -46
- llama_cloud/types/code_splitter.py +0 -50
- llama_cloud/types/configured_transformation_item_component.py +0 -22
- llama_cloud/types/llm.py +0 -60
- llama_cloud/types/markdown_element_node_parser.py +0 -51
- llama_cloud/types/markdown_node_parser.py +0 -52
- llama_cloud/types/pydantic_program_mode.py +0 -41
- llama_cloud/types/sentence_splitter.py +0 -50
- llama_cloud/types/token_text_splitter.py +0 -50
- {llama_cloud-0.1.19.dist-info → llama_cloud-0.1.21.dist-info}/LICENSE +0 -0
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
llama_cloud/__init__.py,sha256=
|
|
1
|
+
llama_cloud/__init__.py,sha256=LY7rGZhiQwpQG72OHDir1GGwPpY18UKTow2wVENeRxs,24071
|
|
2
2
|
llama_cloud/client.py,sha256=L8gEXB8nVlGVgfncfdLaS1j4b-1wExV4TqElUwayvtQ,5759
|
|
3
3
|
llama_cloud/core/__init__.py,sha256=QJS3CJ2TYP2E1Tge0CS6Z7r8LTNzJHQVX1hD3558eP0,519
|
|
4
4
|
llama_cloud/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
|
|
@@ -32,7 +32,7 @@ llama_cloud/resources/embedding_model_configs/types/embedding_model_config_creat
|
|
|
32
32
|
llama_cloud/resources/evals/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
33
33
|
llama_cloud/resources/evals/client.py,sha256=v2AyeQV0hVgC6xoP2gJNgneJMaeXALV1hIeirYGxlPw,3242
|
|
34
34
|
llama_cloud/resources/files/__init__.py,sha256=3B0SNM8EE6PddD5LpxYllci9vflEXy1xjPzhEEd-OUk,293
|
|
35
|
-
llama_cloud/resources/files/client.py,sha256=
|
|
35
|
+
llama_cloud/resources/files/client.py,sha256=oPwDQAkf0zN1mxP_vT6Songp4scOq5k0jcfHo-zfCtY,50560
|
|
36
36
|
llama_cloud/resources/files/types/__init__.py,sha256=EPYENAwkjBWv1MLf8s7R5-RO-cxZ_8NPrqfR4ZoR7jY,418
|
|
37
37
|
llama_cloud/resources/files/types/file_create_from_url_resource_info_value.py,sha256=Wc8wFgujOO5pZvbbh2TMMzpa37GKZd14GYNJ9bdq7BE,214
|
|
38
38
|
llama_cloud/resources/files/types/file_create_permission_info_value.py,sha256=KPCFuEaa8NiB85A5MfdXRAQ0poAUTl7Feg6BTfmdWas,209
|
|
@@ -53,9 +53,9 @@ llama_cloud/resources/llama_extract/types/extract_schema_validate_request_data_s
|
|
|
53
53
|
llama_cloud/resources/organizations/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
54
54
|
llama_cloud/resources/organizations/client.py,sha256=OGSVpkfY5wu8-22IFWVmtbYSDiy0-KqA3Lc1E_jNHvg,55889
|
|
55
55
|
llama_cloud/resources/parsing/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
56
|
-
llama_cloud/resources/parsing/client.py,sha256=
|
|
56
|
+
llama_cloud/resources/parsing/client.py,sha256=QoRN6Zie7jSY3qAhRa6OnCdYg4e62SkunFQ3NJWLWcs,76711
|
|
57
57
|
llama_cloud/resources/pipelines/__init__.py,sha256=Mx7p3jDZRLMltsfywSufam_4AnHvmAfsxtMHVI72e-8,1083
|
|
58
|
-
llama_cloud/resources/pipelines/client.py,sha256=
|
|
58
|
+
llama_cloud/resources/pipelines/client.py,sha256=3sBLSIR5iY-rH5usZUM6dTWjbIEiL62Up15wbsWAzn4,129436
|
|
59
59
|
llama_cloud/resources/pipelines/types/__init__.py,sha256=jjaMc0V3K1HZLMYZ6WT4ydMtBCVy-oF5koqTCovbDws,1202
|
|
60
60
|
llama_cloud/resources/pipelines/types/pipeline_file_update_custom_metadata_value.py,sha256=trI48WLxPcAqV9207Q6-3cj1nl4EGlZpw7En56ZsPgg,217
|
|
61
61
|
llama_cloud/resources/pipelines/types/pipeline_update_embedding_config.py,sha256=c8FF64fDrBMX_2RX4uY3CjbNc0Ss_AUJ4Eqs-KeV4Wc,2874
|
|
@@ -68,7 +68,7 @@ llama_cloud/resources/reports/types/__init__.py,sha256=LfwDYrI4RcQu-o42iAe7HkcwH
|
|
|
68
68
|
llama_cloud/resources/reports/types/update_report_plan_api_v_1_reports_report_id_plan_patch_request_action.py,sha256=Qh-MSeRvDBfNb5hoLELivv1pLtrYVf52WVoP7G8V34A,807
|
|
69
69
|
llama_cloud/resources/retrievers/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
|
|
70
70
|
llama_cloud/resources/retrievers/client.py,sha256=T7fu41wXAYUTGh23ZWlKPM4e8zH7mg5MDa8F1GxNYwQ,31502
|
|
71
|
-
llama_cloud/types/__init__.py,sha256=
|
|
71
|
+
llama_cloud/types/__init__.py,sha256=aoxpc2tZxdBkPg2NcmgJYUAuDkE98loZibDrxWSaeLg,28456
|
|
72
72
|
llama_cloud/types/advanced_mode_transform_config.py,sha256=4xCXye0_cPmVS1F8aNTx81sIaEPjQH9kiCCAIoqUzlI,1502
|
|
73
73
|
llama_cloud/types/advanced_mode_transform_config_chunking_config.py,sha256=wYbJnWLpeQDfhmDZz-wJfYzD1iGT5Jcxb9ga3mzUuvk,1983
|
|
74
74
|
llama_cloud/types/advanced_mode_transform_config_segmentation_config.py,sha256=anNGq0F5-IlbIW3kpC8OilzLJnUq5tdIcWHnRnmlYsg,1303
|
|
@@ -81,7 +81,6 @@ llama_cloud/types/base_plan.py,sha256=5DZi20EOciTc5okLAxQDqyGylsW-DflTy14dcvQb2f
|
|
|
81
81
|
llama_cloud/types/base_plan_metronome_plan_type.py,sha256=I3g_dVoWWztbmpWpYmseDqQSbwtlLUl2vS01tfgMjEA,499
|
|
82
82
|
llama_cloud/types/base_plan_name.py,sha256=keHQaw9YV9ghsWnGfnHrLtB4qNz0v4TWX4_MoO3flRM,1926
|
|
83
83
|
llama_cloud/types/base_plan_plan_frequency.py,sha256=idUZlDaSdMrMZ2lQ1ytBWM4QyduIZu6Gt2eLU0LVqH4,684
|
|
84
|
-
llama_cloud/types/base_prompt_template.py,sha256=Cw3887tnytHZ5bJBSlniyU9k5ASidv9VYR86--IbNqo,1248
|
|
85
84
|
llama_cloud/types/batch.py,sha256=C8320qAjzQGYHiAvUOUzYsT9Ba7OYiHfA9T9_H8_wCY,2235
|
|
86
85
|
llama_cloud/types/batch_item.py,sha256=ea0efWurrduelCg3wG4bhQOLiWTH1NJfd7So3j_HEbg,1574
|
|
87
86
|
llama_cloud/types/batch_paginated_list.py,sha256=p25r9oyidy-Cd2D8xt_KLiTn7eMFvAVnzmvXfvKsOsw,1262
|
|
@@ -91,7 +90,6 @@ llama_cloud/types/bedrock_embedding_config.py,sha256=32dMhoA2cLx1jeogDnCl9WPVb83
|
|
|
91
90
|
llama_cloud/types/billing_period.py,sha256=_BvznHPiB101hKeFmP0ZIRkBnGboxNvNgJD0BhegvN4,1002
|
|
92
91
|
llama_cloud/types/box_auth_mechanism.py,sha256=EwEdpWYytw_dRtSElfSMPhh5dxalYH8mGW3UAUpkUfY,502
|
|
93
92
|
llama_cloud/types/character_chunking_config.py,sha256=2ooAnrlVVbKj4nDi_lR66x5E6nWOmj5YDWhSMQD0ubc,1035
|
|
94
|
-
llama_cloud/types/character_splitter.py,sha256=Jm6ie7c9JmMqIqLfAN-96sYvNUaIyLzCPBjNUx29VUw,1896
|
|
95
93
|
llama_cloud/types/chat_app.py,sha256=fLuzYkXLq51C_Y23hoLwfmG-OiT7jlyHt2JGe6-f1IA,1795
|
|
96
94
|
llama_cloud/types/chat_app_response.py,sha256=WSKr1KI9_pGTSstr3I53kZ8qb3y87Q4ulh8fR0C7sSU,1784
|
|
97
95
|
llama_cloud/types/chat_data.py,sha256=ZYqVtjXF6qPGajU4IWZu3InpU54TXJwBFiqxBepylP0,1197
|
|
@@ -114,7 +112,6 @@ llama_cloud/types/cloud_qdrant_vector_store.py,sha256=F-gjNArzwLWmqgPcC-ZxRqSrhT
|
|
|
114
112
|
llama_cloud/types/cloud_s_3_data_source.py,sha256=LG19EMOfIfm14XLbMaUC25BKzdL5u_Mb5GwgF7cB9Kw,1376
|
|
115
113
|
llama_cloud/types/cloud_sharepoint_data_source.py,sha256=iJtlgb4hsj8CP2IJ7TxdK1GOb3MdyKr7_jsOlY3kFiE,1609
|
|
116
114
|
llama_cloud/types/cloud_slack_data_source.py,sha256=tlsNj-hDj1gWmM0Q2A1BeyolfaPg_wfvSlJGTETknAo,1374
|
|
117
|
-
llama_cloud/types/code_splitter.py,sha256=8MJScSxk9LzByufokcWG3AHAnOjUt13VlV2w0SCXTLc,1987
|
|
118
115
|
llama_cloud/types/cohere_embedding.py,sha256=wkv_fVCA1WEroGawzPFExwmiJ75gPfzeeemty7NBlsM,1579
|
|
119
116
|
llama_cloud/types/cohere_embedding_config.py,sha256=c0Kj1wuSsBX9TQ2AondKv5ZtX5PmkivsHj6P0M7tVB4,1142
|
|
120
117
|
llama_cloud/types/composite_retrieval_mode.py,sha256=PtN0vQ90xyAJL4vyGRG4lMNOpnJ__2L1xiwosI9yfms,548
|
|
@@ -125,8 +122,6 @@ llama_cloud/types/configurable_data_sink_names.py,sha256=0Yk9i8hcNXKCcSKpa5KwsCw
|
|
|
125
122
|
llama_cloud/types/configurable_data_source_names.py,sha256=mNW71sSgcVhU3kePAOUgRxeqK1Vo7F_J1xIzmYKPRq0,1971
|
|
126
123
|
llama_cloud/types/configurable_transformation_definition.py,sha256=LDOhI5IDxlLDWM_p_xwCFM7qq1y-aGA8UxN7dnplDlU,1886
|
|
127
124
|
llama_cloud/types/configurable_transformation_names.py,sha256=N_YhY8IuQxsqBteCibaQwEaY0zd6Ncb6jW69d9mjrdU,1898
|
|
128
|
-
llama_cloud/types/configured_transformation_item.py,sha256=9caK5ZOKgGCZc6ynJJIWwpxpScKHOHkZwHFlsBy-Fog,1826
|
|
129
|
-
llama_cloud/types/configured_transformation_item_component.py,sha256=VEwtkbnImKGtzaSaIb9q46xu7ZPZliqK7oMh_-ftiq8,712
|
|
130
125
|
llama_cloud/types/credit_type.py,sha256=nwSRKDWgHk_msdWitctqtyeZwj5EFd6VLto6NF2yCd4,971
|
|
131
126
|
llama_cloud/types/data_sink.py,sha256=PeexYHHoD8WkVp9WsFtfC-AIWszcgeJUprG1bwC8WsQ,1498
|
|
132
127
|
llama_cloud/types/data_sink_component.py,sha256=uvuxLY3MPDpv_bkT0y-tHSZVPRSHCkDBDHVff-036Dg,749
|
|
@@ -140,6 +135,9 @@ llama_cloud/types/data_source_create_component.py,sha256=-P4FGv9Xg951n-77_bb-2_C
|
|
|
140
135
|
llama_cloud/types/data_source_create_custom_metadata_value.py,sha256=ejSsQNbszYQaUWFh9r9kQpHf88qbhuRv1SI9J_MOSC0,215
|
|
141
136
|
llama_cloud/types/data_source_custom_metadata_value.py,sha256=pTZn5yjZYmuOhsLABFJOKZblZUkRqo1CqLAuP5tKji4,209
|
|
142
137
|
llama_cloud/types/data_source_definition.py,sha256=HlSlTxzYcQJOSo_2OSroAE8vAr-otDvTNBSEkA54vL8,1575
|
|
138
|
+
llama_cloud/types/data_source_update_dispatcher_config.py,sha256=Sh6HhXfEV2Z6PYhkYQucs2MxyKVpL3UPV-I4cbf--bA,1242
|
|
139
|
+
llama_cloud/types/delete_params.py,sha256=1snPrd3WO9C1bKf0WdMslE2HQMF0yYLI3U7N53cmurM,1285
|
|
140
|
+
llama_cloud/types/document_ingestion_job_params.py,sha256=33xTAl-K-m1j_Ufkj7w2GaYg9EUH5Hwsjn869X-fWMk,1524
|
|
143
141
|
llama_cloud/types/edit_suggestion.py,sha256=uzXSZYJiU3FaNN-TvEd3EXdaXvjQIe7Mf4kntKkyB2I,1202
|
|
144
142
|
llama_cloud/types/edit_suggestion_blocks_item.py,sha256=ojTk4lh0IHmrWP5wLPTIlsc2jAUDoHvdjJ5sm2uMut0,236
|
|
145
143
|
llama_cloud/types/element_segmentation_config.py,sha256=QOBk8YFrgK0I2m3caqV5bpYaGXbk0fMSjZ4hUPZXZDI,959
|
|
@@ -150,7 +148,7 @@ llama_cloud/types/embedding_model_config_update_embedding_config.py,sha256=mrXFx
|
|
|
150
148
|
llama_cloud/types/eval_execution_params.py,sha256=ntVaJh5SMZMPL4QLUiihVjUlg2SKbrezvbMKGlrF66Q,1369
|
|
151
149
|
llama_cloud/types/extract_agent.py,sha256=T98IOueut4M52Qm7hqcUOcWFFDhZ-ye0OFdXgfFGtS4,1763
|
|
152
150
|
llama_cloud/types/extract_agent_data_schema_value.py,sha256=UaDQ2KjajLDccW7F4NKdfpefeTJrr1hl0c95WRETYkM,201
|
|
153
|
-
llama_cloud/types/extract_config.py,sha256=
|
|
151
|
+
llama_cloud/types/extract_config.py,sha256=YZgNJpH1n6N-Lx9cIeuijT9xk1F6SeKjn4526wAtljc,1745
|
|
154
152
|
llama_cloud/types/extract_job.py,sha256=Yx4fDdCdylAji2LPTwqflVpz1o9slpj9tTLS93-1tzU,1431
|
|
155
153
|
llama_cloud/types/extract_job_create.py,sha256=UK1mBIKyflo7e6m1MxMN95pLscj67jH_yvs8EvmBXqU,1545
|
|
156
154
|
llama_cloud/types/extract_job_create_data_schema_override.py,sha256=vuiJ2lGJjbXEnvFKzVnKyvgwhMXPg1Pb5GZne2DrB60,330
|
|
@@ -191,27 +189,27 @@ llama_cloud/types/ingestion_error_response.py,sha256=8u0cyT44dnpkNeUKemTvJMUqi_W
|
|
|
191
189
|
llama_cloud/types/input_message.py,sha256=Ym6-tX6CMWKuHfxRtyM2y16kqSS3BzHged9rFRFkX0g,1346
|
|
192
190
|
llama_cloud/types/job_name_mapping.py,sha256=2dQFQlVHoeSlkyEKSEJv0M3PzJf7hMvkuABj3vMY7ys,1617
|
|
193
191
|
llama_cloud/types/job_names.py,sha256=WacongwoJygg_gCyYjPsOVv3cmVtRaX633JNgFxy-d8,3915
|
|
194
|
-
llama_cloud/types/job_record.py,sha256=
|
|
192
|
+
llama_cloud/types/job_record.py,sha256=7hdDPZU11EG8g6_9iq6vy-zqLEryeC7i8fZ-CkUB_xQ,2084
|
|
193
|
+
llama_cloud/types/job_record_parameters.py,sha256=Oqxp5y0owPfjLc_NR7AYE8P3zM2PJo36N9olbyNl7AA,3425
|
|
195
194
|
llama_cloud/types/job_record_with_usage_metrics.py,sha256=iNV2do5TB_0e3PoOz_DJyAaM6Cn9G8KG-dGPGgEs5SY,1198
|
|
195
|
+
llama_cloud/types/l_lama_parse_transform_config.py,sha256=YQRJZvKh1Ee2FUyW_N0nqYJoW599qBgH3JCH9SH6YLo,1249
|
|
196
|
+
llama_cloud/types/legacy_parse_job_config.py,sha256=kVBdiSLraI9rKQOPf0Ci9RtbNLkco0byBJC42uE_PCI,11698
|
|
196
197
|
llama_cloud/types/llama_extract_settings.py,sha256=IQFxtKa4GtHKc9w-fLwsH0LSKDWzR9_vZ_cTFJ9cGBI,2288
|
|
197
198
|
llama_cloud/types/llama_index_core_base_llms_types_chat_message.py,sha256=NelHo-T-ebVMhRKsqE_xV8AJW4c7o6lS0uEQnPsmTwg,1365
|
|
198
199
|
llama_cloud/types/llama_index_core_base_llms_types_chat_message_blocks_item.py,sha256=JTU5EDoZB_1vcUixiWDCEbCj3-09GhYC3RDDSc0aqBU,1216
|
|
199
|
-
llama_cloud/types/llama_parse_parameters.py,sha256=
|
|
200
|
+
llama_cloud/types/llama_parse_parameters.py,sha256=DNhVZm3YQ_3xZiz7WUrwH7E6jqW2fZ7YGFsdfsYalUk,5773
|
|
200
201
|
llama_cloud/types/llama_parse_supported_file_extensions.py,sha256=B_0N3f8Aq59W9FbsH50mGBUiyWTIXQjHFl739uAyaQw,11207
|
|
201
|
-
llama_cloud/types/llm.py,sha256=7iIItVPjURp4u5xxJDAFIefUdhUKwIuA245WXilJPXE,2234
|
|
202
202
|
llama_cloud/types/llm_model_data.py,sha256=6rrycqGwlK3LZ2S-WtgmeomithdLhDCgwBBZQ5KLaso,1300
|
|
203
203
|
llama_cloud/types/llm_parameters.py,sha256=RTKYt09lm9a1MlnBfYuTP2x_Ww4byUNNc1TqIel5O1Y,1377
|
|
204
|
+
llama_cloud/types/load_files_job_config.py,sha256=R5sFgFmV__0mqLUuD7dkFoBJHG2ZLw5px9zRapvYcpE,1069
|
|
204
205
|
llama_cloud/types/managed_ingestion_status.py,sha256=3KVlcurpEBOPAesBUS5pSYLoQVIyZUlr90Mmv-uALHE,1290
|
|
205
206
|
llama_cloud/types/managed_ingestion_status_response.py,sha256=rdNpjNbQswF-6JG1e-EU374TP6Pjlxl0p7HJyNmuxTI,1373
|
|
206
|
-
llama_cloud/types/markdown_element_node_parser.py,sha256=NUqdU8BmyfSFK2rV6hCrvP6U1iB6aqZCVsvHWJQ49xU,1964
|
|
207
|
-
llama_cloud/types/markdown_node_parser.py,sha256=GchDnlADMRiYREFOO6o_3LoiCXwUrrhms2CQkbP8sMo,1924
|
|
208
207
|
llama_cloud/types/message_annotation.py,sha256=n4F9w4LxwmGvgXDk6E8YPTMu_g0yEjZhZ_eNFXdS_bc,1017
|
|
209
208
|
llama_cloud/types/message_role.py,sha256=9MpXT9drR33TyT1-NiqB3uGbuxvWwtoOdSmKQE9HmJI,1359
|
|
210
209
|
llama_cloud/types/metadata_filter.py,sha256=dVdXY6i0aCkvJrs7ncQt4-S8jmBF9bBSp2VuWrmAVfI,1440
|
|
211
210
|
llama_cloud/types/metadata_filter_value.py,sha256=ij721gXNI7zbgsuDl9-AqBcXg2WDuVZhYS5F5YqekEs,188
|
|
212
211
|
llama_cloud/types/metadata_filters.py,sha256=uSf6sB4oQu6WzMPNFG6Tc4euqEiYcj_X14Y5JWt9xVE,1315
|
|
213
212
|
llama_cloud/types/metadata_filters_filters_item.py,sha256=e8KhD2q6Qc2_aK6r5CvyxC0oWVYO4F4vBIcB9eMEPPM,246
|
|
214
|
-
llama_cloud/types/node_parser.py,sha256=rqZTQ_9GnCHOvSpXuAZoezxQCOgxHo-hmQv0s7pnEFc,1380
|
|
215
213
|
llama_cloud/types/node_relationship.py,sha256=2e2PqWm0LOTiImvtsyiuaAPNIl0BItjSrQZTJv65GRA,1209
|
|
216
214
|
llama_cloud/types/none_chunking_config.py,sha256=D062t314Vp-s4n9h8wNgsYfElI4PonPKmihvjEmaqdA,952
|
|
217
215
|
llama_cloud/types/none_segmentation_config.py,sha256=j3jUA6E8uFtwDMEu4TFG3Q4ZGCGiuUfUW9AMO1NNqXU,956
|
|
@@ -224,12 +222,12 @@ llama_cloud/types/page_figure_metadata.py,sha256=iIg6_f2SwJg6UcQo9X4MoSm_ygxnIBm
|
|
|
224
222
|
llama_cloud/types/page_screenshot_metadata.py,sha256=lobrq0AsOr8sDwMgA9ytop8lRmRFvJW2oiql3yLvbjM,1328
|
|
225
223
|
llama_cloud/types/page_screenshot_node_with_score.py,sha256=EdqoXbmARCz1DV14E2saCPshIeII709uM4cLwxw_mkM,1232
|
|
226
224
|
llama_cloud/types/page_segmentation_config.py,sha256=VH8uuxnubnJak1gSpS64OoMueHidhsDB-2eq2tVHbag,998
|
|
227
|
-
llama_cloud/types/page_splitter_node_parser.py,sha256=rQgS1CDk18UKA0r9OPvjdtM570jzFArdLCTxYAtZny8,1424
|
|
228
225
|
llama_cloud/types/paginated_extract_runs_response.py,sha256=NNeVcgBm0mYTAsumwQBO_YrxvkgUqwsvZo3xs8QjVCc,1423
|
|
229
226
|
llama_cloud/types/paginated_jobs_history_with_metrics.py,sha256=Bxy6N0x0FARJhgwNKKPkNpXx8YLRHvth23G14f5Fuk4,1136
|
|
230
227
|
llama_cloud/types/paginated_list_cloud_documents_response.py,sha256=MsjS0SWlT0syELDck4x2sxxR3_NC1e6QTdepgVmK9aY,1341
|
|
231
228
|
llama_cloud/types/paginated_list_pipeline_files_response.py,sha256=2TKR2oHSQRyLMqWz1qQBSIvz-ZJb8U_94367lwOJ2S4,1317
|
|
232
229
|
llama_cloud/types/paginated_report_response.py,sha256=o79QhQi9r0HZZrhvRlA6WGjxtyPuxN0xONhwXSwxtcs,1104
|
|
230
|
+
llama_cloud/types/parse_job_config.py,sha256=KLBhRRGziH4eU2sZgab24c8-L9b8M9on1Dg0nVnObGc,6254
|
|
233
231
|
llama_cloud/types/parse_plan_level.py,sha256=GBkDS19qfHseBa17EXfuTPNT4GNv5alyPrWEvWji3GY,528
|
|
234
232
|
llama_cloud/types/parser_languages.py,sha256=Ps3IlaSt6tyxEI657N3-vZL96r2puk8wsf31cWnO-SI,10840
|
|
235
233
|
llama_cloud/types/parsing_history_item.py,sha256=_MVzf43t84PbmjOzsMLZ_NBoyiisigLWz-fr0ZxU63g,1183
|
|
@@ -244,9 +242,9 @@ llama_cloud/types/permission.py,sha256=LjhZdo0oLvk7ZVIF1d6Qja--AKH5Ri0naUhuJvZS6
|
|
|
244
242
|
llama_cloud/types/pg_vector_distance_method.py,sha256=U81o0ARjPR-HuFcVspHiJUrjIDJo3jLhB46vkITDu7M,1203
|
|
245
243
|
llama_cloud/types/pg_vector_hnsw_settings.py,sha256=-RE59xUgHwNEyAwRYmOQ8SHeAqkSYBfCAROw7QomxUU,1758
|
|
246
244
|
llama_cloud/types/pg_vector_vector_type.py,sha256=VwOohN566zw42UMlnuKTJopYJypsSnzWjCFmKRoU-bo,952
|
|
247
|
-
llama_cloud/types/pipeline.py,sha256=
|
|
245
|
+
llama_cloud/types/pipeline.py,sha256=4m1NIqTtG2DItvW69SWW3NjZPBL848VEW69Qbt2B7uo,2728
|
|
248
246
|
llama_cloud/types/pipeline_configuration_hashes.py,sha256=7_MbOcPWV6iyMflJeXoo9vLzD04E5WM7YxYp4ls0jQs,1169
|
|
249
|
-
llama_cloud/types/pipeline_create.py,sha256=
|
|
247
|
+
llama_cloud/types/pipeline_create.py,sha256=kF9lOu4Kgwgg26Kj3VsAeHoi59jga6ka4oYkIzVy25M,2645
|
|
250
248
|
llama_cloud/types/pipeline_create_embedding_config.py,sha256=PQqmVBFUyZXYKKBmVQF2zPsGp1L6rje6g3RtXEcdfc8,2811
|
|
251
249
|
llama_cloud/types/pipeline_create_transform_config.py,sha256=HP6tzLsw_pomK1Ye2PYCS_XDZK_TMgg22mz17_zYKFg,303
|
|
252
250
|
llama_cloud/types/pipeline_data_source.py,sha256=g8coq6ohp09TtqzvB3_A8Nzery3J5knIfxGWzUtozmg,2381
|
|
@@ -264,6 +262,11 @@ llama_cloud/types/pipeline_file_custom_metadata_value.py,sha256=ClFphYDNlHxeyLF5
|
|
|
264
262
|
llama_cloud/types/pipeline_file_permission_info_value.py,sha256=a9yfg5n9po0-4ljGx8DtJoeLBwWFpaEk9ZQUN195BXg,211
|
|
265
263
|
llama_cloud/types/pipeline_file_resource_info_value.py,sha256=s3uFGQNwlUEr-X4TJZkW_kMBvX3h1sXRJoYlJRvHSDc,209
|
|
266
264
|
llama_cloud/types/pipeline_file_status.py,sha256=7AJOlwqZVcsk6aPF6Q-x7UzjdzdBj4FeXAZ4m35Bb5M,1003
|
|
265
|
+
llama_cloud/types/pipeline_file_update_dispatcher_config.py,sha256=PiJ1brbKGyq07GmD2VouFfm_Y3KShiyhBXJkwFJsKXw,1222
|
|
266
|
+
llama_cloud/types/pipeline_file_updater_config.py,sha256=KMHBYpH3fYDQaDVvxVgckosiWz0Dl3v5dC53Cgnmtb8,1761
|
|
267
|
+
llama_cloud/types/pipeline_managed_ingestion_job_params.py,sha256=ahliOe6YnLI-upIq1v5HZd9p8xH6pPdkh2M_n_zM9TA,1180
|
|
268
|
+
llama_cloud/types/pipeline_metadata_config.py,sha256=yMnPu6FnhagjuJ_rQ756WbIvVG5dzyXT1fmCYUAmCS0,1291
|
|
269
|
+
llama_cloud/types/pipeline_status.py,sha256=aC340nhfuPSrFVZOH_DhgYHWe985J3WNHrwvUtjXTRA,481
|
|
267
270
|
llama_cloud/types/pipeline_transform_config.py,sha256=zMr-ePLKGjbaScxbAHaSwYBL7rrNibVlnn0cbgElDfU,824
|
|
268
271
|
llama_cloud/types/pipeline_type.py,sha256=tTqrhxHP5xd7W2dQGD0e5FOv886nwJssyaVlXpWrtRo,551
|
|
269
272
|
llama_cloud/types/plan_limits.py,sha256=WAbDbRl8gsQxvhmuVB0YT8mry-0uKg6c66uivyppdQU,2056
|
|
@@ -276,8 +279,7 @@ llama_cloud/types/progress_event.py,sha256=Bk73A8geTVaq0ze5pMnbkAmx7FSOHQIixYCpC
|
|
|
276
279
|
llama_cloud/types/progress_event_status.py,sha256=yb4RAXwOKU6Bi7iyYy-3lwhF6_mLz0ZFyGjxIdaByoE,893
|
|
277
280
|
llama_cloud/types/project.py,sha256=4NNh_ZAjEkoWl5st6b1jsPVf_SYKtUTB6rS1701G4IQ,1441
|
|
278
281
|
llama_cloud/types/project_create.py,sha256=GxGmsXGJM-cHrvPFLktEkj9JtNsSdFae7-HPZFB4er0,1014
|
|
279
|
-
llama_cloud/types/prompt_conf.py,sha256=
|
|
280
|
-
llama_cloud/types/pydantic_program_mode.py,sha256=QfvpqR7TqyNuOxo78Sr58VOu7KDSBrHJM4XXBB0F5z0,1202
|
|
282
|
+
llama_cloud/types/prompt_conf.py,sha256=hh8I3jxk3K6e5QZoBCLqszohMYtk73PERYoL36lLmTk,1660
|
|
281
283
|
llama_cloud/types/re_rank_config.py,sha256=mxRWwrC5BLg3DP1yEyRwW2lIpv5BuXZfTy8f4RbcOp0,1262
|
|
282
284
|
llama_cloud/types/re_ranker_type.py,sha256=qYItMEHrf80ePBp7gNGBSL67mkTIsqco92WJaJiYweo,1123
|
|
283
285
|
llama_cloud/types/recurring_credit_grant.py,sha256=19qI3p5k1mQ1Qoo-gCQU02Aa42XpEsmwxPF1F88F-Yg,1517
|
|
@@ -307,18 +309,16 @@ llama_cloud/types/role.py,sha256=SCi2TyFbc68RJuNB-OdcP8ut03Uv5zPZk84QMmf17w8,138
|
|
|
307
309
|
llama_cloud/types/schema_relax_mode.py,sha256=v4or6dYTvWvBBNtEd2ZSaUAb1706I0Zuh-Xztm-zx_0,635
|
|
308
310
|
llama_cloud/types/semantic_chunking_config.py,sha256=dFDniTVWpRc7UcmVFvljUoyL5Ztd-l-YrHII7U-yM-k,1053
|
|
309
311
|
llama_cloud/types/sentence_chunking_config.py,sha256=NA9xidK5ICxJPkEMQZWNcsV0Hw9Co_bzRWeYe4uSh9I,1116
|
|
310
|
-
llama_cloud/types/sentence_splitter.py,sha256=GbC3KE20Nd85uzO4bqJttjqJhQ_1co2gKnSQxzfOAiM,2140
|
|
311
312
|
llama_cloud/types/status_enum.py,sha256=cUBIlys89E8PUzmVqqawu7qTDF0aRqBwiijOmRDPvx0,1018
|
|
312
313
|
llama_cloud/types/struct_mode.py,sha256=ROicwjXfFmgVU8_xSVxJlnFUzRNKG5VIEF1wYg9uOPU,1020
|
|
313
314
|
llama_cloud/types/struct_parse_conf.py,sha256=kKmxsfllbXlRVVDmJtL3Uto9B340row00mYXCzF5tX4,2245
|
|
314
|
-
llama_cloud/types/supported_llm_model.py,sha256=
|
|
315
|
+
llama_cloud/types/supported_llm_model.py,sha256=hubSopFICVNEegbJbtbpK6zRHwFPwUNtrw_NAw_3bfg,1380
|
|
315
316
|
llama_cloud/types/supported_llm_model_names.py,sha256=xZhgu4NcxnA61vmQsxDFgPSRjWtczcXOoCKrtwOBWqc,2161
|
|
316
317
|
llama_cloud/types/text_block.py,sha256=X154sQkSyposXuRcEWNp_tWcDQ-AI6q_-MfJUN5exP8,958
|
|
317
318
|
llama_cloud/types/text_node.py,sha256=Tq3QmuKC5cIHvC9wAtvhsXl1g2sACs2yJwQ0Uko8GSU,2846
|
|
318
319
|
llama_cloud/types/text_node_relationships_value.py,sha256=qmXURTk1Xg7ZDzRSSV1uDEel0AXRLohND5ioezibHY0,217
|
|
319
320
|
llama_cloud/types/text_node_with_score.py,sha256=k-KYWO_mgJBvO6xUfOD5W6v1Ku9E586_HsvDoQbLfuQ,1229
|
|
320
321
|
llama_cloud/types/token_chunking_config.py,sha256=XNvnTsNd--YOMQ_Ad8hoqhYgQftqkBHKVn6i7nJnMqs,1067
|
|
321
|
-
llama_cloud/types/token_text_splitter.py,sha256=0o3dml94ub5KLy3E5MjxfK4IwVAn0-VTE4zVWG1fUZE,2048
|
|
322
322
|
llama_cloud/types/transformation_category_names.py,sha256=Wb7NBB0f-tEtfEZQis-iKy71SUKmmHFcXf6XLn6g0XU,545
|
|
323
323
|
llama_cloud/types/usage_and_plan.py,sha256=bclc7TE7CTBu7RLiTHG426dziyj--I8m5NVu86I2AV4,1065
|
|
324
324
|
llama_cloud/types/usage_metric_response.py,sha256=ukvtNZLeLacv-5F0-GQ5wTBZOPUPEjAeurgYPc4s7nA,1047
|
|
@@ -334,7 +334,7 @@ llama_cloud/types/validation_error_loc_item.py,sha256=LAtjCHIllWRBFXvAZ5QZpp7CPX
|
|
|
334
334
|
llama_cloud/types/vertex_ai_embedding_config.py,sha256=DvQk2xMJFmo54MEXTzoM4KSADyhGm_ygmFyx6wIcQdw,1159
|
|
335
335
|
llama_cloud/types/vertex_embedding_mode.py,sha256=yY23FjuWU_DkXjBb3JoKV4SCMqel2BaIMltDqGnIowU,1217
|
|
336
336
|
llama_cloud/types/vertex_text_embedding.py,sha256=-C4fNCYfFl36ATdBMGFVPpiHIKxjk0KB1ERA2Ec20aU,1932
|
|
337
|
-
llama_cloud-0.1.
|
|
338
|
-
llama_cloud-0.1.
|
|
339
|
-
llama_cloud-0.1.
|
|
340
|
-
llama_cloud-0.1.
|
|
337
|
+
llama_cloud-0.1.21.dist-info/LICENSE,sha256=_iNqtPcw1Ue7dZKwOwgPtbegMUkWVy15hC7bffAdNmY,1067
|
|
338
|
+
llama_cloud-0.1.21.dist-info/METADATA,sha256=AyJOHUBeiTz4oFSdEaOFUWUPp_bqoiVsX-B3erArGTc,1194
|
|
339
|
+
llama_cloud-0.1.21.dist-info/WHEEL,sha256=IYZQI976HJqqOpQU6PHkJ8fb3tMNBFjg-Cn-pwAbaFM,88
|
|
340
|
+
llama_cloud-0.1.21.dist-info/RECORD,,
|
|
@@ -1,46 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
|
|
8
|
-
try:
|
|
9
|
-
import pydantic
|
|
10
|
-
if pydantic.__version__.startswith("1."):
|
|
11
|
-
raise ImportError
|
|
12
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
-
except ImportError:
|
|
14
|
-
import pydantic # type: ignore
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class CharacterSplitter(pydantic.BaseModel):
|
|
18
|
-
"""
|
|
19
|
-
A splitter that splits text into characters.
|
|
20
|
-
"""
|
|
21
|
-
|
|
22
|
-
include_metadata: typing.Optional[bool] = pydantic.Field(
|
|
23
|
-
description="Whether or not to consider metadata when splitting."
|
|
24
|
-
)
|
|
25
|
-
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
26
|
-
callback_manager: typing.Optional[typing.Any]
|
|
27
|
-
id_func: typing.Optional[str]
|
|
28
|
-
chunk_size: typing.Optional[int] = pydantic.Field(description="The token chunk size for each chunk.")
|
|
29
|
-
chunk_overlap: typing.Optional[int] = pydantic.Field(description="The token overlap of each chunk when splitting.")
|
|
30
|
-
separator: typing.Optional[str] = pydantic.Field(description="Default separator for splitting into words")
|
|
31
|
-
paragraph_separator: typing.Optional[str] = pydantic.Field(description="Separator between paragraphs.")
|
|
32
|
-
secondary_chunking_regex: typing.Optional[str]
|
|
33
|
-
class_name: typing.Optional[str]
|
|
34
|
-
|
|
35
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
36
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
37
|
-
return super().json(**kwargs_with_defaults)
|
|
38
|
-
|
|
39
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
40
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
41
|
-
return super().dict(**kwargs_with_defaults)
|
|
42
|
-
|
|
43
|
-
class Config:
|
|
44
|
-
frozen = True
|
|
45
|
-
smart_union = True
|
|
46
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,50 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
|
|
8
|
-
try:
|
|
9
|
-
import pydantic
|
|
10
|
-
if pydantic.__version__.startswith("1."):
|
|
11
|
-
raise ImportError
|
|
12
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
-
except ImportError:
|
|
14
|
-
import pydantic # type: ignore
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class CodeSplitter(pydantic.BaseModel):
|
|
18
|
-
"""
|
|
19
|
-
Split code using a AST parser.
|
|
20
|
-
|
|
21
|
-
Thank you to Kevin Lu / SweepAI for suggesting this elegant code splitting solution.
|
|
22
|
-
https://docs.sweep.dev/blogs/chunking-2m-files
|
|
23
|
-
"""
|
|
24
|
-
|
|
25
|
-
include_metadata: typing.Optional[bool] = pydantic.Field(
|
|
26
|
-
description="Whether or not to consider metadata when splitting."
|
|
27
|
-
)
|
|
28
|
-
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
29
|
-
callback_manager: typing.Optional[typing.Any]
|
|
30
|
-
id_func: typing.Optional[str]
|
|
31
|
-
language: str = pydantic.Field(description="The programming language of the code being split.")
|
|
32
|
-
chunk_lines: typing.Optional[int] = pydantic.Field(description="The number of lines to include in each chunk.")
|
|
33
|
-
chunk_lines_overlap: typing.Optional[int] = pydantic.Field(
|
|
34
|
-
description="How many lines of code each chunk overlaps with."
|
|
35
|
-
)
|
|
36
|
-
max_chars: typing.Optional[int] = pydantic.Field(description="Maximum number of characters per chunk.")
|
|
37
|
-
class_name: typing.Optional[str]
|
|
38
|
-
|
|
39
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
40
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
41
|
-
return super().json(**kwargs_with_defaults)
|
|
42
|
-
|
|
43
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
44
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
45
|
-
return super().dict(**kwargs_with_defaults)
|
|
46
|
-
|
|
47
|
-
class Config:
|
|
48
|
-
frozen = True
|
|
49
|
-
smart_union = True
|
|
50
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,22 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import typing
|
|
4
|
-
|
|
5
|
-
from .character_splitter import CharacterSplitter
|
|
6
|
-
from .code_splitter import CodeSplitter
|
|
7
|
-
from .markdown_element_node_parser import MarkdownElementNodeParser
|
|
8
|
-
from .markdown_node_parser import MarkdownNodeParser
|
|
9
|
-
from .page_splitter_node_parser import PageSplitterNodeParser
|
|
10
|
-
from .sentence_splitter import SentenceSplitter
|
|
11
|
-
from .token_text_splitter import TokenTextSplitter
|
|
12
|
-
|
|
13
|
-
ConfiguredTransformationItemComponent = typing.Union[
|
|
14
|
-
typing.Dict[str, typing.Any],
|
|
15
|
-
CharacterSplitter,
|
|
16
|
-
PageSplitterNodeParser,
|
|
17
|
-
CodeSplitter,
|
|
18
|
-
SentenceSplitter,
|
|
19
|
-
TokenTextSplitter,
|
|
20
|
-
MarkdownNodeParser,
|
|
21
|
-
MarkdownElementNodeParser,
|
|
22
|
-
]
|
llama_cloud/types/llm.py
DELETED
|
@@ -1,60 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .base_prompt_template import BasePromptTemplate
|
|
8
|
-
from .pydantic_program_mode import PydanticProgramMode
|
|
9
|
-
|
|
10
|
-
try:
|
|
11
|
-
import pydantic
|
|
12
|
-
if pydantic.__version__.startswith("1."):
|
|
13
|
-
raise ImportError
|
|
14
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
15
|
-
except ImportError:
|
|
16
|
-
import pydantic # type: ignore
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
class Llm(pydantic.BaseModel):
|
|
20
|
-
"""
|
|
21
|
-
The LLM class is the main class for interacting with language models.
|
|
22
|
-
|
|
23
|
-
Attributes:
|
|
24
|
-
system_prompt (Optional[str]):
|
|
25
|
-
System prompt for LLM calls.
|
|
26
|
-
messages_to_prompt (Callable):
|
|
27
|
-
Function to convert a list of messages to an LLM prompt.
|
|
28
|
-
completion_to_prompt (Callable):
|
|
29
|
-
Function to convert a completion to an LLM prompt.
|
|
30
|
-
output_parser (Optional[BaseOutputParser]):
|
|
31
|
-
Output parser to parse, validate, and correct errors programmatically.
|
|
32
|
-
pydantic_program_mode (PydanticProgramMode):
|
|
33
|
-
Pydantic program mode to use for structured prediction.
|
|
34
|
-
"""
|
|
35
|
-
|
|
36
|
-
callback_manager: typing.Optional[typing.Any]
|
|
37
|
-
system_prompt: typing.Optional[str]
|
|
38
|
-
messages_to_prompt: typing.Optional[str] = pydantic.Field(
|
|
39
|
-
description="Function to convert a list of messages to an LLM prompt."
|
|
40
|
-
)
|
|
41
|
-
completion_to_prompt: typing.Optional[str] = pydantic.Field(
|
|
42
|
-
description="Function to convert a completion to an LLM prompt."
|
|
43
|
-
)
|
|
44
|
-
output_parser: typing.Optional[typing.Any]
|
|
45
|
-
pydantic_program_mode: typing.Optional[PydanticProgramMode]
|
|
46
|
-
query_wrapper_prompt: typing.Optional[BasePromptTemplate]
|
|
47
|
-
class_name: typing.Optional[str]
|
|
48
|
-
|
|
49
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
50
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
51
|
-
return super().json(**kwargs_with_defaults)
|
|
52
|
-
|
|
53
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
54
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
55
|
-
return super().dict(**kwargs_with_defaults)
|
|
56
|
-
|
|
57
|
-
class Config:
|
|
58
|
-
frozen = True
|
|
59
|
-
smart_union = True
|
|
60
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,51 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .llm import Llm
|
|
8
|
-
from .node_parser import NodeParser
|
|
9
|
-
|
|
10
|
-
try:
|
|
11
|
-
import pydantic
|
|
12
|
-
if pydantic.__version__.startswith("1."):
|
|
13
|
-
raise ImportError
|
|
14
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
15
|
-
except ImportError:
|
|
16
|
-
import pydantic # type: ignore
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
class MarkdownElementNodeParser(pydantic.BaseModel):
|
|
20
|
-
"""
|
|
21
|
-
Markdown element node parser.
|
|
22
|
-
|
|
23
|
-
Splits a markdown document into Text Nodes and Index Nodes corresponding to embedded objects
|
|
24
|
-
(e.g. tables).
|
|
25
|
-
"""
|
|
26
|
-
|
|
27
|
-
include_metadata: typing.Optional[bool] = pydantic.Field(
|
|
28
|
-
description="Whether or not to consider metadata when splitting."
|
|
29
|
-
)
|
|
30
|
-
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
31
|
-
callback_manager: typing.Optional[typing.Any]
|
|
32
|
-
id_func: typing.Optional[str]
|
|
33
|
-
llm: typing.Optional[Llm]
|
|
34
|
-
summary_query_str: typing.Optional[str] = pydantic.Field(description="Query string to use for summarization.")
|
|
35
|
-
num_workers: typing.Optional[int] = pydantic.Field(description="Num of workers for async jobs.")
|
|
36
|
-
show_progress: typing.Optional[bool] = pydantic.Field(description="Whether to show progress.")
|
|
37
|
-
nested_node_parser: typing.Optional[NodeParser]
|
|
38
|
-
class_name: typing.Optional[str]
|
|
39
|
-
|
|
40
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
41
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
42
|
-
return super().json(**kwargs_with_defaults)
|
|
43
|
-
|
|
44
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
45
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
46
|
-
return super().dict(**kwargs_with_defaults)
|
|
47
|
-
|
|
48
|
-
class Config:
|
|
49
|
-
frozen = True
|
|
50
|
-
smart_union = True
|
|
51
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,52 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
|
|
8
|
-
try:
|
|
9
|
-
import pydantic
|
|
10
|
-
if pydantic.__version__.startswith("1."):
|
|
11
|
-
raise ImportError
|
|
12
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
-
except ImportError:
|
|
14
|
-
import pydantic # type: ignore
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class MarkdownNodeParser(pydantic.BaseModel):
|
|
18
|
-
"""
|
|
19
|
-
Markdown node parser.
|
|
20
|
-
|
|
21
|
-
Splits a document into Nodes using Markdown header-based splitting logic.
|
|
22
|
-
Each node contains its text content and the path of headers leading to it.
|
|
23
|
-
|
|
24
|
-
Args:
|
|
25
|
-
include_metadata (bool): whether to include metadata in nodes
|
|
26
|
-
include_prev_next_rel (bool): whether to include prev/next relationships
|
|
27
|
-
header_path_separator (str): separator char used for section header path metadata
|
|
28
|
-
"""
|
|
29
|
-
|
|
30
|
-
include_metadata: typing.Optional[bool] = pydantic.Field(
|
|
31
|
-
description="Whether or not to consider metadata when splitting."
|
|
32
|
-
)
|
|
33
|
-
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
34
|
-
callback_manager: typing.Optional[typing.Any]
|
|
35
|
-
id_func: typing.Optional[str]
|
|
36
|
-
header_path_separator: typing.Optional[str] = pydantic.Field(
|
|
37
|
-
description="Separator char used for section header path metadata."
|
|
38
|
-
)
|
|
39
|
-
class_name: typing.Optional[str]
|
|
40
|
-
|
|
41
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
42
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
43
|
-
return super().json(**kwargs_with_defaults)
|
|
44
|
-
|
|
45
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
46
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
47
|
-
return super().dict(**kwargs_with_defaults)
|
|
48
|
-
|
|
49
|
-
class Config:
|
|
50
|
-
frozen = True
|
|
51
|
-
smart_union = True
|
|
52
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,41 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import enum
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
T_Result = typing.TypeVar("T_Result")
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
class PydanticProgramMode(str, enum.Enum):
|
|
10
|
-
"""
|
|
11
|
-
Pydantic program mode.
|
|
12
|
-
"""
|
|
13
|
-
|
|
14
|
-
DEFAULT = "default"
|
|
15
|
-
OPENAI = "openai"
|
|
16
|
-
LLM = "llm"
|
|
17
|
-
FUNCTION = "function"
|
|
18
|
-
GUIDANCE = "guidance"
|
|
19
|
-
LM_FORMAT_ENFORCER = "lm-format-enforcer"
|
|
20
|
-
|
|
21
|
-
def visit(
|
|
22
|
-
self,
|
|
23
|
-
default: typing.Callable[[], T_Result],
|
|
24
|
-
openai: typing.Callable[[], T_Result],
|
|
25
|
-
llm: typing.Callable[[], T_Result],
|
|
26
|
-
function: typing.Callable[[], T_Result],
|
|
27
|
-
guidance: typing.Callable[[], T_Result],
|
|
28
|
-
lm_format_enforcer: typing.Callable[[], T_Result],
|
|
29
|
-
) -> T_Result:
|
|
30
|
-
if self is PydanticProgramMode.DEFAULT:
|
|
31
|
-
return default()
|
|
32
|
-
if self is PydanticProgramMode.OPENAI:
|
|
33
|
-
return openai()
|
|
34
|
-
if self is PydanticProgramMode.LLM:
|
|
35
|
-
return llm()
|
|
36
|
-
if self is PydanticProgramMode.FUNCTION:
|
|
37
|
-
return function()
|
|
38
|
-
if self is PydanticProgramMode.GUIDANCE:
|
|
39
|
-
return guidance()
|
|
40
|
-
if self is PydanticProgramMode.LM_FORMAT_ENFORCER:
|
|
41
|
-
return lm_format_enforcer()
|
|
@@ -1,50 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
|
|
8
|
-
try:
|
|
9
|
-
import pydantic
|
|
10
|
-
if pydantic.__version__.startswith("1."):
|
|
11
|
-
raise ImportError
|
|
12
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
-
except ImportError:
|
|
14
|
-
import pydantic # type: ignore
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class SentenceSplitter(pydantic.BaseModel):
|
|
18
|
-
"""
|
|
19
|
-
Parse text with a preference for complete sentences.
|
|
20
|
-
|
|
21
|
-
In general, this class tries to keep sentences and paragraphs together. Therefore
|
|
22
|
-
compared to the original TokenTextSplitter, there are less likely to be
|
|
23
|
-
hanging sentences or parts of sentences at the end of the node chunk.
|
|
24
|
-
"""
|
|
25
|
-
|
|
26
|
-
include_metadata: typing.Optional[bool] = pydantic.Field(
|
|
27
|
-
description="Whether or not to consider metadata when splitting."
|
|
28
|
-
)
|
|
29
|
-
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
30
|
-
callback_manager: typing.Optional[typing.Any]
|
|
31
|
-
id_func: typing.Optional[str]
|
|
32
|
-
chunk_size: typing.Optional[int] = pydantic.Field(description="The token chunk size for each chunk.")
|
|
33
|
-
chunk_overlap: typing.Optional[int] = pydantic.Field(description="The token overlap of each chunk when splitting.")
|
|
34
|
-
separator: typing.Optional[str] = pydantic.Field(description="Default separator for splitting into words")
|
|
35
|
-
paragraph_separator: typing.Optional[str] = pydantic.Field(description="Separator between paragraphs.")
|
|
36
|
-
secondary_chunking_regex: typing.Optional[str]
|
|
37
|
-
class_name: typing.Optional[str]
|
|
38
|
-
|
|
39
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
40
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
41
|
-
return super().json(**kwargs_with_defaults)
|
|
42
|
-
|
|
43
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
44
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
45
|
-
return super().dict(**kwargs_with_defaults)
|
|
46
|
-
|
|
47
|
-
class Config:
|
|
48
|
-
frozen = True
|
|
49
|
-
smart_union = True
|
|
50
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -1,50 +0,0 @@
|
|
|
1
|
-
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
-
|
|
3
|
-
import datetime as dt
|
|
4
|
-
import typing
|
|
5
|
-
|
|
6
|
-
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
|
|
8
|
-
try:
|
|
9
|
-
import pydantic
|
|
10
|
-
if pydantic.__version__.startswith("1."):
|
|
11
|
-
raise ImportError
|
|
12
|
-
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
-
except ImportError:
|
|
14
|
-
import pydantic # type: ignore
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class TokenTextSplitter(pydantic.BaseModel):
|
|
18
|
-
"""
|
|
19
|
-
Implementation of splitting text that looks at word tokens.
|
|
20
|
-
"""
|
|
21
|
-
|
|
22
|
-
include_metadata: typing.Optional[bool] = pydantic.Field(
|
|
23
|
-
description="Whether or not to consider metadata when splitting."
|
|
24
|
-
)
|
|
25
|
-
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
26
|
-
callback_manager: typing.Optional[typing.Any]
|
|
27
|
-
id_func: typing.Optional[str]
|
|
28
|
-
chunk_size: typing.Optional[int] = pydantic.Field(description="The token chunk size for each chunk.")
|
|
29
|
-
chunk_overlap: typing.Optional[int] = pydantic.Field(description="The token overlap of each chunk when splitting.")
|
|
30
|
-
separator: typing.Optional[str] = pydantic.Field(description="Default separator for splitting into words")
|
|
31
|
-
backup_separators: typing.Optional[typing.List[typing.Any]] = pydantic.Field(
|
|
32
|
-
description="Additional separators for splitting."
|
|
33
|
-
)
|
|
34
|
-
keep_whitespaces: typing.Optional[bool] = pydantic.Field(
|
|
35
|
-
description="Whether to keep leading/trailing whitespaces in the chunk."
|
|
36
|
-
)
|
|
37
|
-
class_name: typing.Optional[str]
|
|
38
|
-
|
|
39
|
-
def json(self, **kwargs: typing.Any) -> str:
|
|
40
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
41
|
-
return super().json(**kwargs_with_defaults)
|
|
42
|
-
|
|
43
|
-
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
44
|
-
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
45
|
-
return super().dict(**kwargs_with_defaults)
|
|
46
|
-
|
|
47
|
-
class Config:
|
|
48
|
-
frozen = True
|
|
49
|
-
smart_union = True
|
|
50
|
-
json_encoders = {dt.datetime: serialize_datetime}
|
|
File without changes
|