llama-cloud 0.1.19__py3-none-any.whl → 0.1.21__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

Files changed (38) hide show
  1. llama_cloud/__init__.py +44 -26
  2. llama_cloud/resources/files/client.py +18 -4
  3. llama_cloud/resources/parsing/client.py +8 -0
  4. llama_cloud/resources/pipelines/client.py +25 -11
  5. llama_cloud/types/__init__.py +46 -26
  6. llama_cloud/types/{base_prompt_template.py → data_source_update_dispatcher_config.py} +9 -7
  7. llama_cloud/types/{node_parser.py → delete_params.py} +7 -9
  8. llama_cloud/types/document_ingestion_job_params.py +43 -0
  9. llama_cloud/types/extract_config.py +3 -0
  10. llama_cloud/types/job_record.py +2 -2
  11. llama_cloud/types/job_record_parameters.py +111 -0
  12. llama_cloud/types/{page_splitter_node_parser.py → l_lama_parse_transform_config.py} +5 -10
  13. llama_cloud/types/legacy_parse_job_config.py +189 -0
  14. llama_cloud/types/llama_parse_parameters.py +1 -0
  15. llama_cloud/types/load_files_job_config.py +35 -0
  16. llama_cloud/types/parse_job_config.py +134 -0
  17. llama_cloud/types/pipeline.py +4 -4
  18. llama_cloud/types/pipeline_create.py +2 -2
  19. llama_cloud/types/pipeline_file_update_dispatcher_config.py +38 -0
  20. llama_cloud/types/{configured_transformation_item.py → pipeline_file_updater_config.py} +13 -12
  21. llama_cloud/types/pipeline_managed_ingestion_job_params.py +37 -0
  22. llama_cloud/types/pipeline_metadata_config.py +36 -0
  23. llama_cloud/types/pipeline_status.py +17 -0
  24. llama_cloud/types/prompt_conf.py +1 -0
  25. llama_cloud/types/supported_llm_model.py +1 -2
  26. {llama_cloud-0.1.19.dist-info → llama_cloud-0.1.21.dist-info}/METADATA +6 -2
  27. {llama_cloud-0.1.19.dist-info → llama_cloud-0.1.21.dist-info}/RECORD +29 -29
  28. {llama_cloud-0.1.19.dist-info → llama_cloud-0.1.21.dist-info}/WHEEL +1 -1
  29. llama_cloud/types/character_splitter.py +0 -46
  30. llama_cloud/types/code_splitter.py +0 -50
  31. llama_cloud/types/configured_transformation_item_component.py +0 -22
  32. llama_cloud/types/llm.py +0 -60
  33. llama_cloud/types/markdown_element_node_parser.py +0 -51
  34. llama_cloud/types/markdown_node_parser.py +0 -52
  35. llama_cloud/types/pydantic_program_mode.py +0 -41
  36. llama_cloud/types/sentence_splitter.py +0 -50
  37. llama_cloud/types/token_text_splitter.py +0 -50
  38. {llama_cloud-0.1.19.dist-info → llama_cloud-0.1.21.dist-info}/LICENSE +0 -0
@@ -0,0 +1,189 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class LegacyParseJobConfig(pydantic.BaseModel):
18
+ """
19
+ Configuration for llamaparse job
20
+ """
21
+
22
+ custom_metadata: typing.Optional[typing.Dict[str, typing.Any]]
23
+ resource_info: typing.Optional[typing.Dict[str, typing.Any]]
24
+ user_id: str = pydantic.Field(alias="userId", description="The user ID.")
25
+ file_name: str = pydantic.Field(alias="fileName", description="The file name.")
26
+ original_file_name: str = pydantic.Field(alias="originalFileName", description="The original file name.")
27
+ file_key: str = pydantic.Field(alias="fileKey", description="The file key.")
28
+ input_url: typing.Optional[str] = pydantic.Field(alias="inputUrl")
29
+ http_proxy: typing.Optional[str] = pydantic.Field(alias="httpProxy")
30
+ fast_mode: typing.Optional[bool] = pydantic.Field(alias="fastMode")
31
+ lang: str = pydantic.Field(description="The language.")
32
+ template: typing.Optional[str] = pydantic.Field(description="The parsing instruction.")
33
+ pipeline_id: typing.Optional[str] = pydantic.Field(alias="pipelineId")
34
+ output_bucket: typing.Optional[str] = pydantic.Field(alias="outputBucket")
35
+ file_id: typing.Optional[str] = pydantic.Field(alias="fileId")
36
+ full_file_path: typing.Optional[str] = pydantic.Field(alias="fullFilePath")
37
+ from_l_lama_cloud: typing.Optional[bool] = pydantic.Field(
38
+ alias="fromLLamaCloud", description="Whether the file is from LLama cloud."
39
+ )
40
+ skip_diagonal_text: typing.Optional[bool] = pydantic.Field(
41
+ alias="skipDiagonalText", description="Whether to skip diagonal text."
42
+ )
43
+ preserve_layout_alignment_across_pages: typing.Optional[bool] = pydantic.Field(
44
+ alias="preserveLayoutAlignmentAcrossPages", description="Whether to preserve layout alignment across pages."
45
+ )
46
+ invalidate_cache: bool = pydantic.Field(alias="invalidateCache", description="Whether to invalidate the cache.")
47
+ output_pdf_of_document: typing.Optional[bool] = pydantic.Field(alias="outputPDFOfDocument")
48
+ save_images: typing.Optional[bool] = pydantic.Field(alias="saveImages")
49
+ gpt_4_o: typing.Optional[bool] = pydantic.Field(alias="gpt4o", description="Whether to use GPT4o.")
50
+ open_aiapi_key: str = pydantic.Field(alias="openAIAPIKey", description="The OpenAI API key.")
51
+ do_not_unroll_columns: typing.Optional[bool] = pydantic.Field(
52
+ alias="doNotUnrollColumns", description="Whether to unroll columns."
53
+ )
54
+ spread_sheet_extract_sub_tables: typing.Optional[bool] = pydantic.Field(alias="spreadSheetExtractSubTables")
55
+ extract_layout: typing.Optional[bool] = pydantic.Field(alias="extractLayout")
56
+ html_make_all_elements_visible: typing.Optional[bool] = pydantic.Field(alias="htmlMakeAllElementsVisible")
57
+ html_remove_fixed_elements: typing.Optional[bool] = pydantic.Field(alias="htmlRemoveFixedElements")
58
+ html_remove_navigation_elements: typing.Optional[bool] = pydantic.Field(alias="htmlRemoveNavigationElements")
59
+ guess_xlsx_sheet_name: typing.Optional[bool] = pydantic.Field(
60
+ alias="guessXLSXSheetName", description="Whether to guess the XLSX sheet name when generation output xlsx."
61
+ )
62
+ do_not_cache: typing.Optional[bool] = pydantic.Field(alias="doNotCache", description="Whether to cache.")
63
+ page_separator: typing.Optional[str] = pydantic.Field(alias="pageSeparator")
64
+ bounding_box: typing.Optional[str] = pydantic.Field(alias="boundingBox")
65
+ bbox_top: typing.Optional[float] = pydantic.Field(alias="bboxTop")
66
+ bbox_right: typing.Optional[float] = pydantic.Field(alias="bboxRight")
67
+ bbox_bottom: typing.Optional[float] = pydantic.Field(alias="bboxBottom")
68
+ bbox_left: typing.Optional[float] = pydantic.Field(alias="bboxLeft")
69
+ disable_reconstruction: typing.Optional[bool] = pydantic.Field(alias="disableReconstruction")
70
+ target_pages: typing.Optional[str] = pydantic.Field(alias="targetPages")
71
+ multimodal_pipeline: typing.Optional[bool] = pydantic.Field(alias="multimodalPipeline")
72
+ multimodal_model: typing.Optional[str] = pydantic.Field(alias="multimodalModel")
73
+ model: typing.Optional[str]
74
+ vendor_api_key: typing.Optional[str] = pydantic.Field(alias="vendorAPIKey")
75
+ page_prefix: typing.Optional[str] = pydantic.Field(alias="pagePrefix")
76
+ page_suffix: typing.Optional[str] = pydantic.Field(alias="pageSuffix")
77
+ webhook_url: typing.Optional[str] = pydantic.Field(alias="webhookUrl")
78
+ preset: typing.Optional[str]
79
+ take_screenshot: typing.Optional[bool] = pydantic.Field(
80
+ alias="takeScreenshot", description="Force to capture an image of each pages"
81
+ )
82
+ is_formatting_instruction: typing.Optional[bool] = pydantic.Field(
83
+ alias="isFormattingInstruction", description="Allow the parsing instruction to also format the output."
84
+ )
85
+ premium_mode: typing.Optional[bool] = pydantic.Field(
86
+ alias="premiumMode", description="Whether to use premiumMode pipeline."
87
+ )
88
+ continuous_mode: typing.Optional[bool] = pydantic.Field(
89
+ alias="continuousMode", description="Whether to use continuousMode pipeline."
90
+ )
91
+ disable_ocr: typing.Optional[bool] = pydantic.Field(
92
+ alias="disableOcr",
93
+ description="Disable the OCR on the document. LlamaParse will only extract the copyable text from the document",
94
+ )
95
+ disable_image_extraction: typing.Optional[bool] = pydantic.Field(
96
+ alias="disableImageExtraction",
97
+ description="Disable the image extraction from the document. LlamaParse will not extract any image from the document.",
98
+ )
99
+ annotate_links: typing.Optional[bool] = pydantic.Field(
100
+ alias="annotateLinks",
101
+ description="Annotate links in markdown. LlamaParse will try to add links from document into the markdown.",
102
+ )
103
+ adaptive_long_table: typing.Optional[bool] = pydantic.Field(
104
+ alias="adaptiveLongTable",
105
+ description="Adaptive long table. LlamaParse will try to detect long table and adapt the output.",
106
+ )
107
+ compact_markdown_table: typing.Optional[bool] = pydantic.Field(
108
+ alias="compactMarkdownTable",
109
+ description="Compact markdown table. LlamaParse will compact the markdown table to not include too many spaces.",
110
+ )
111
+ input_s_3_path: typing.Optional[str] = pydantic.Field(alias="inputS3Path")
112
+ input_s_3_region: typing.Optional[str] = pydantic.Field(alias="inputS3Region")
113
+ output_s_3_path_prefix: typing.Optional[str] = pydantic.Field(alias="outputS3PathPrefix")
114
+ output_s_3_region: typing.Optional[str] = pydantic.Field(alias="outputS3Region")
115
+ project_id: typing.Optional[str] = pydantic.Field(alias="projectId")
116
+ azure_open_ai_deployment_name: typing.Optional[str] = pydantic.Field(alias="azureOpenAiDeploymentName")
117
+ azure_open_ai_endpoint: typing.Optional[str] = pydantic.Field(alias="azureOpenAiEndpoint")
118
+ azure_open_ai_api_version: typing.Optional[str] = pydantic.Field(alias="azureOpenAiApiVersion")
119
+ azure_open_ai_key: typing.Optional[str] = pydantic.Field(alias="azureOpenAiKey")
120
+ auto_mode: typing.Optional[bool] = pydantic.Field(alias="autoMode", description="Whether to use auto mode.")
121
+ auto_mode_trigger_on_table_in_page: typing.Optional[bool] = pydantic.Field(
122
+ alias="autoModeTriggerOnTableInPage", description="Whether to trigger on table in page."
123
+ )
124
+ auto_mode_trigger_on_image_in_page: typing.Optional[bool] = pydantic.Field(
125
+ alias="autoModeTriggerOnImageInPage", description="Whether to trigger on image in page."
126
+ )
127
+ auto_mode_trigger_on_regexp_in_page: typing.Optional[str] = pydantic.Field(alias="autoModeTriggerOnRegexpInPage")
128
+ auto_mode_trigger_on_text_in_page: typing.Optional[str] = pydantic.Field(alias="autoModeTriggerOnTextInPage")
129
+ auto_mode_configuration_json: typing.Optional[str] = pydantic.Field(alias="autoModeConfigurationJSON")
130
+ structured_output: typing.Optional[bool] = pydantic.Field(
131
+ alias="structuredOutput", description="Whether to use structured output."
132
+ )
133
+ structured_output_json_schema: typing.Optional[str] = pydantic.Field(alias="structuredOutputJSONSchema")
134
+ structured_output_json_schema_name: typing.Optional[str] = pydantic.Field(alias="structuredOutputJSONSchemaName")
135
+ max_pages: typing.Optional[int] = pydantic.Field(alias="maxPages")
136
+ extract_charts: typing.Optional[bool] = pydantic.Field(
137
+ alias="extractCharts", description="Extract charts from the document."
138
+ )
139
+ formatting_instruction: typing.Optional[str] = pydantic.Field(alias="formattingInstruction")
140
+ complemental_formatting_instruction: typing.Optional[str] = pydantic.Field(
141
+ alias="complementalFormattingInstruction"
142
+ )
143
+ content_guideline_instruction: typing.Optional[str] = pydantic.Field(alias="contentGuidelineInstruction")
144
+ job_timeout_in_seconds: typing.Optional[float] = pydantic.Field(alias="jobTimeoutInSeconds")
145
+ job_timeout_extra_time_per_page_in_seconds: typing.Optional[float] = pydantic.Field(
146
+ alias="jobTimeoutExtraTimePerPageInSeconds"
147
+ )
148
+ strict_mode_image_extraction: typing.Optional[bool] = pydantic.Field(
149
+ alias="strictModeImageExtraction",
150
+ description="If true, the job will fail when we are not able to extract an image from a document.",
151
+ )
152
+ strict_mode_image_ocr: typing.Optional[bool] = pydantic.Field(
153
+ alias="strictModeImageOCR",
154
+ description="If true, the job will fail when we are not able to OCR an image from a document.",
155
+ )
156
+ strict_mode_reconstruction: typing.Optional[bool] = pydantic.Field(
157
+ alias="strictModeReconstruction",
158
+ description="If true, the job will fail when we are not able to transform a page to Markdown in a document.",
159
+ )
160
+ strict_mode_buggy_font: typing.Optional[bool] = pydantic.Field(
161
+ alias="strictModeBuggyFont",
162
+ description="If true, the job will fail when we are not able to extract a glyph from the document due to buggy font.",
163
+ )
164
+ ignore_document_elements_for_layout_detection: typing.Optional[bool] = pydantic.Field(
165
+ alias="ignoreDocumentElementsForLayoutDetection",
166
+ description="If true, the job will ignore document element for layout detection, and instead just rely on a visual model, only apply to layout detection.",
167
+ )
168
+ output_tables_as_html: typing.Optional[bool] = pydantic.Field(
169
+ alias="outputTablesAsHTML",
170
+ description="If true, the job will output tables as HTML in the markdown output, useful for merged cells.",
171
+ )
172
+ parse_mode: typing.Optional[str] = pydantic.Field(alias="parseMode")
173
+ system_prompt: typing.Optional[str] = pydantic.Field(alias="systemPrompt")
174
+ system_prompt_append: typing.Optional[str] = pydantic.Field(alias="systemPromptAppend")
175
+ user_prompt: typing.Optional[str] = pydantic.Field(alias="userPrompt")
176
+
177
+ def json(self, **kwargs: typing.Any) -> str:
178
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
179
+ return super().json(**kwargs_with_defaults)
180
+
181
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
182
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
183
+ return super().dict(**kwargs_with_defaults)
184
+
185
+ class Config:
186
+ frozen = True
187
+ smart_union = True
188
+ allow_population_by_field_name = True
189
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -79,6 +79,7 @@ class LlamaParseParameters(pydantic.BaseModel):
79
79
  auto_mode_trigger_on_text_in_page: typing.Optional[str]
80
80
  auto_mode_trigger_on_table_in_page: typing.Optional[bool]
81
81
  auto_mode_trigger_on_image_in_page: typing.Optional[bool]
82
+ auto_mode_configuration_json: typing.Optional[str]
82
83
  structured_output: typing.Optional[bool]
83
84
  structured_output_json_schema: typing.Optional[str]
84
85
  structured_output_json_schema_name: typing.Optional[str]
@@ -0,0 +1,35 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class LoadFilesJobConfig(pydantic.BaseModel):
18
+ """
19
+ Schema for the parameters of a load files job.
20
+ """
21
+
22
+ file_ids: typing.Optional[typing.List[str]]
23
+
24
+ def json(self, **kwargs: typing.Any) -> str:
25
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
26
+ return super().json(**kwargs_with_defaults)
27
+
28
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
29
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
30
+ return super().dict(**kwargs_with_defaults)
31
+
32
+ class Config:
33
+ frozen = True
34
+ smart_union = True
35
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,134 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .fail_page_mode import FailPageMode
8
+ from .parser_languages import ParserLanguages
9
+ from .parsing_mode import ParsingMode
10
+
11
+ try:
12
+ import pydantic
13
+ if pydantic.__version__.startswith("1."):
14
+ raise ImportError
15
+ import pydantic.v1 as pydantic # type: ignore
16
+ except ImportError:
17
+ import pydantic # type: ignore
18
+
19
+
20
+ class ParseJobConfig(pydantic.BaseModel):
21
+ """
22
+ Configuration for llamaparse job
23
+ """
24
+
25
+ custom_metadata: typing.Optional[typing.Dict[str, typing.Any]]
26
+ resource_info: typing.Optional[typing.Dict[str, typing.Any]]
27
+ languages: typing.Optional[typing.List[ParserLanguages]]
28
+ parsing_instruction: typing.Optional[str]
29
+ disable_ocr: typing.Optional[bool]
30
+ annotate_links: typing.Optional[bool]
31
+ adaptive_long_table: typing.Optional[bool]
32
+ compact_markdown_table: typing.Optional[bool]
33
+ disable_reconstruction: typing.Optional[bool]
34
+ disable_image_extraction: typing.Optional[bool]
35
+ invalidate_cache: typing.Optional[bool]
36
+ output_pdf_of_document: typing.Optional[bool]
37
+ do_not_cache: typing.Optional[bool]
38
+ fast_mode: typing.Optional[bool]
39
+ skip_diagonal_text: typing.Optional[bool]
40
+ preserve_layout_alignment_across_pages: typing.Optional[bool]
41
+ gpt_4_o_mode: typing.Optional[bool] = pydantic.Field(alias="gpt4o_mode")
42
+ gpt_4_o_api_key: typing.Optional[str] = pydantic.Field(alias="gpt4o_api_key")
43
+ do_not_unroll_columns: typing.Optional[bool]
44
+ extract_layout: typing.Optional[bool]
45
+ html_make_all_elements_visible: typing.Optional[bool]
46
+ html_remove_navigation_elements: typing.Optional[bool]
47
+ html_remove_fixed_elements: typing.Optional[bool]
48
+ guess_xlsx_sheet_name: typing.Optional[bool]
49
+ page_separator: typing.Optional[str]
50
+ bounding_box: typing.Optional[str]
51
+ bbox_top: typing.Optional[float]
52
+ bbox_right: typing.Optional[float]
53
+ bbox_bottom: typing.Optional[float]
54
+ bbox_left: typing.Optional[float]
55
+ target_pages: typing.Optional[str]
56
+ use_vendor_multimodal_model: typing.Optional[bool]
57
+ vendor_multimodal_model_name: typing.Optional[str]
58
+ model: typing.Optional[str]
59
+ vendor_multimodal_api_key: typing.Optional[str]
60
+ page_prefix: typing.Optional[str]
61
+ page_suffix: typing.Optional[str]
62
+ webhook_url: typing.Optional[str]
63
+ preset: typing.Optional[str]
64
+ take_screenshot: typing.Optional[bool]
65
+ is_formatting_instruction: typing.Optional[bool]
66
+ premium_mode: typing.Optional[bool]
67
+ continuous_mode: typing.Optional[bool]
68
+ input_s_3_path: typing.Optional[str] = pydantic.Field(alias="input_s3_path")
69
+ input_s_3_region: typing.Optional[str] = pydantic.Field(alias="input_s3_region")
70
+ output_s_3_path_prefix: typing.Optional[str] = pydantic.Field(alias="output_s3_path_prefix")
71
+ output_s_3_region: typing.Optional[str] = pydantic.Field(alias="output_s3_region")
72
+ project_id: typing.Optional[str]
73
+ azure_openai_deployment_name: typing.Optional[str]
74
+ azure_openai_endpoint: typing.Optional[str]
75
+ azure_openai_api_version: typing.Optional[str]
76
+ azure_openai_key: typing.Optional[str]
77
+ input_url: typing.Optional[str]
78
+ http_proxy: typing.Optional[str]
79
+ auto_mode: typing.Optional[bool]
80
+ auto_mode_trigger_on_regexp_in_page: typing.Optional[str]
81
+ auto_mode_trigger_on_text_in_page: typing.Optional[str]
82
+ auto_mode_trigger_on_table_in_page: typing.Optional[bool]
83
+ auto_mode_trigger_on_image_in_page: typing.Optional[bool]
84
+ auto_mode_configuration_json: typing.Optional[str]
85
+ structured_output: typing.Optional[bool]
86
+ structured_output_json_schema: typing.Optional[str]
87
+ structured_output_json_schema_name: typing.Optional[str]
88
+ max_pages: typing.Optional[int]
89
+ max_pages_enforced: typing.Optional[int]
90
+ extract_charts: typing.Optional[bool]
91
+ formatting_instruction: typing.Optional[str]
92
+ complemental_formatting_instruction: typing.Optional[str]
93
+ content_guideline_instruction: typing.Optional[str]
94
+ spreadsheet_extract_sub_tables: typing.Optional[bool]
95
+ job_timeout_in_seconds: typing.Optional[float]
96
+ job_timeout_extra_time_per_page_in_seconds: typing.Optional[float]
97
+ strict_mode_image_extraction: typing.Optional[bool]
98
+ strict_mode_image_ocr: typing.Optional[bool]
99
+ strict_mode_reconstruction: typing.Optional[bool]
100
+ strict_mode_buggy_font: typing.Optional[bool]
101
+ save_images: typing.Optional[bool]
102
+ ignore_document_elements_for_layout_detection: typing.Optional[bool]
103
+ output_tables_as_html: typing.Optional[bool] = pydantic.Field(alias="output_tables_as_HTML")
104
+ internal_is_screenshot_job: typing.Optional[bool]
105
+ parse_mode: typing.Optional[ParsingMode]
106
+ system_prompt: typing.Optional[str]
107
+ system_prompt_append: typing.Optional[str]
108
+ user_prompt: typing.Optional[str]
109
+ page_error_tolerance: typing.Optional[float]
110
+ replace_failed_page_mode: typing.Optional[FailPageMode]
111
+ replace_failed_page_with_error_message_prefix: typing.Optional[str]
112
+ replace_failed_page_with_error_message_suffix: typing.Optional[str]
113
+ markdown_table_multiline_header_separator: typing.Optional[str]
114
+ file_name: str = pydantic.Field(description="The file name.")
115
+ original_file_name: str = pydantic.Field(description="The original file name.")
116
+ file_key: str = pydantic.Field(description="The file key.")
117
+ lang: str = pydantic.Field(description="The language.")
118
+ output_bucket: typing.Optional[str] = pydantic.Field(alias="outputBucket")
119
+ file_id: typing.Optional[str]
120
+ pipeline_id: typing.Optional[str]
121
+
122
+ def json(self, **kwargs: typing.Any) -> str:
123
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
124
+ return super().json(**kwargs_with_defaults)
125
+
126
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
127
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
128
+ return super().dict(**kwargs_with_defaults)
129
+
130
+ class Config:
131
+ frozen = True
132
+ smart_union = True
133
+ allow_population_by_field_name = True
134
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -4,12 +4,13 @@ import datetime as dt
4
4
  import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
- from .configured_transformation_item import ConfiguredTransformationItem
8
7
  from .data_sink import DataSink
9
8
  from .eval_execution_params import EvalExecutionParams
10
9
  from .llama_parse_parameters import LlamaParseParameters
11
10
  from .pipeline_configuration_hashes import PipelineConfigurationHashes
12
11
  from .pipeline_embedding_config import PipelineEmbeddingConfig
12
+ from .pipeline_metadata_config import PipelineMetadataConfig
13
+ from .pipeline_status import PipelineStatus
13
14
  from .pipeline_transform_config import PipelineTransformConfig
14
15
  from .pipeline_type import PipelineType
15
16
  from .preset_retrieval_params import PresetRetrievalParams
@@ -39,9 +40,6 @@ class Pipeline(pydantic.BaseModel):
39
40
  )
40
41
  managed_pipeline_id: typing.Optional[str]
41
42
  embedding_config: PipelineEmbeddingConfig
42
- configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]] = pydantic.Field(
43
- description="Deprecated don't use it, List of configured transformations."
44
- )
45
43
  config_hash: typing.Optional[PipelineConfigurationHashes]
46
44
  transform_config: typing.Optional[PipelineTransformConfig] = pydantic.Field(
47
45
  description="Configuration for the transformation."
@@ -54,6 +52,8 @@ class Pipeline(pydantic.BaseModel):
54
52
  )
55
53
  llama_parse_parameters: typing.Optional[LlamaParseParameters]
56
54
  data_sink: typing.Optional[DataSink]
55
+ status: typing.Optional[PipelineStatus]
56
+ metadata_config: typing.Optional[PipelineMetadataConfig]
57
57
 
58
58
  def json(self, **kwargs: typing.Any) -> str:
59
59
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -4,12 +4,12 @@ import datetime as dt
4
4
  import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
- from .configured_transformation_item import ConfiguredTransformationItem
8
7
  from .data_sink_create import DataSinkCreate
9
8
  from .eval_execution_params import EvalExecutionParams
10
9
  from .llama_parse_parameters import LlamaParseParameters
11
10
  from .pipeline_create_embedding_config import PipelineCreateEmbeddingConfig
12
11
  from .pipeline_create_transform_config import PipelineCreateTransformConfig
12
+ from .pipeline_metadata_config import PipelineMetadataConfig
13
13
  from .pipeline_type import PipelineType
14
14
  from .preset_retrieval_params import PresetRetrievalParams
15
15
 
@@ -31,7 +31,6 @@ class PipelineCreate(pydantic.BaseModel):
31
31
  transform_config: typing.Optional[PipelineCreateTransformConfig] = pydantic.Field(
32
32
  description="Configuration for the transformation."
33
33
  )
34
- configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]]
35
34
  data_sink_id: typing.Optional[str]
36
35
  embedding_model_config_id: typing.Optional[str]
37
36
  data_sink: typing.Optional[DataSinkCreate]
@@ -45,6 +44,7 @@ class PipelineCreate(pydantic.BaseModel):
45
44
  description="Settings that can be configured for how to use LlamaParse to parse files within a LlamaCloud pipeline."
46
45
  )
47
46
  status: typing.Optional[str]
47
+ metadata_config: typing.Optional[PipelineMetadataConfig]
48
48
  name: str
49
49
  pipeline_type: typing.Optional[PipelineType] = pydantic.Field(
50
50
  description="Type of pipeline. Either PLAYGROUND or MANAGED."
@@ -0,0 +1,38 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .delete_params import DeleteParams
8
+
9
+ try:
10
+ import pydantic
11
+ if pydantic.__version__.startswith("1."):
12
+ raise ImportError
13
+ import pydantic.v1 as pydantic # type: ignore
14
+ except ImportError:
15
+ import pydantic # type: ignore
16
+
17
+
18
+ class PipelineFileUpdateDispatcherConfig(pydantic.BaseModel):
19
+ """
20
+ Schema for the parameters of a load files job.
21
+ """
22
+
23
+ pipeline_file_ids: typing.Optional[typing.List[str]]
24
+ should_delete: typing.Optional[bool]
25
+ delete_info: typing.Optional[DeleteParams]
26
+
27
+ def json(self, **kwargs: typing.Any) -> str:
28
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
29
+ return super().json(**kwargs_with_defaults)
30
+
31
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
32
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
33
+ return super().dict(**kwargs_with_defaults)
34
+
35
+ class Config:
36
+ frozen = True
37
+ smart_union = True
38
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -4,8 +4,7 @@ import datetime as dt
4
4
  import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
- from .configurable_transformation_names import ConfigurableTransformationNames
8
- from .configured_transformation_item_component import ConfiguredTransformationItemComponent
7
+ from .delete_params import DeleteParams
9
8
 
10
9
  try:
11
10
  import pydantic
@@ -16,20 +15,22 @@ except ImportError:
16
15
  import pydantic # type: ignore
17
16
 
18
17
 
19
- class ConfiguredTransformationItem(pydantic.BaseModel):
18
+ class PipelineFileUpdaterConfig(pydantic.BaseModel):
20
19
  """
21
- Configured transformations for pipelines.
22
-
23
- Similar to ConfigurableTransformation but includes a few
24
- more fields that are useful to the platform.
20
+ Schema for the parameters of a load files job.
25
21
  """
26
22
 
27
- id: typing.Optional[str]
28
- configurable_transformation_type: ConfigurableTransformationNames = pydantic.Field(
29
- description="Name for the type of transformation this is (e.g. SIMPLE_NODE_PARSER). Can also be an enum instance of llama_index.ingestion.transformations.ConfigurableTransformations. This will be converted to ConfigurableTransformationNames."
23
+ custom_metadata: typing.Optional[typing.Dict[str, typing.Any]]
24
+ resource_info: typing.Optional[typing.Dict[str, typing.Any]]
25
+ should_delete: typing.Optional[bool]
26
+ should_parse: typing.Optional[bool]
27
+ delete_info: typing.Optional[DeleteParams]
28
+ is_new_file: typing.Optional[bool] = pydantic.Field(description="Whether the file is new")
29
+ data_source_project_file_changed: typing.Optional[bool] = pydantic.Field(
30
+ description="Whether the data source project file has changed"
30
31
  )
31
- component: ConfiguredTransformationItemComponent = pydantic.Field(
32
- description="Component that implements the transformation"
32
+ should_migrate_pipeline_file_to_external_file_id: typing.Optional[bool] = pydantic.Field(
33
+ description="Whether to migrate the pipeline file to the external file id"
33
34
  )
34
35
 
35
36
  def json(self, **kwargs: typing.Any) -> str:
@@ -0,0 +1,37 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .delete_params import DeleteParams
8
+
9
+ try:
10
+ import pydantic
11
+ if pydantic.__version__.startswith("1."):
12
+ raise ImportError
13
+ import pydantic.v1 as pydantic # type: ignore
14
+ except ImportError:
15
+ import pydantic # type: ignore
16
+
17
+
18
+ class PipelineManagedIngestionJobParams(pydantic.BaseModel):
19
+ """
20
+ Schema for the parameters of a managed pipeline ingestion job.
21
+ """
22
+
23
+ should_delete: typing.Optional[bool]
24
+ delete_info: typing.Optional[DeleteParams]
25
+
26
+ def json(self, **kwargs: typing.Any) -> str:
27
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
28
+ return super().json(**kwargs_with_defaults)
29
+
30
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
31
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
32
+ return super().dict(**kwargs_with_defaults)
33
+
34
+ class Config:
35
+ frozen = True
36
+ smart_union = True
37
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,36 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class PipelineMetadataConfig(pydantic.BaseModel):
18
+ excluded_embed_metadata_keys: typing.Optional[typing.List[str]] = pydantic.Field(
19
+ description="List of metadata keys to exclude from embeddings"
20
+ )
21
+ excluded_llm_metadata_keys: typing.Optional[typing.List[str]] = pydantic.Field(
22
+ description="List of metadata keys to exclude from LLM during retrieval"
23
+ )
24
+
25
+ def json(self, **kwargs: typing.Any) -> str:
26
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
27
+ return super().json(**kwargs_with_defaults)
28
+
29
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
30
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
31
+ return super().dict(**kwargs_with_defaults)
32
+
33
+ class Config:
34
+ frozen = True
35
+ smart_union = True
36
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,17 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import enum
4
+ import typing
5
+
6
+ T_Result = typing.TypeVar("T_Result")
7
+
8
+
9
+ class PipelineStatus(str, enum.Enum):
10
+ CREATED = "CREATED"
11
+ DELETING = "DELETING"
12
+
13
+ def visit(self, created: typing.Callable[[], T_Result], deleting: typing.Callable[[], T_Result]) -> T_Result:
14
+ if self is PipelineStatus.CREATED:
15
+ return created()
16
+ if self is PipelineStatus.DELETING:
17
+ return deleting()
@@ -22,6 +22,7 @@ class PromptConf(pydantic.BaseModel):
22
22
  cite_sources_prompt: typing.Optional[typing.Dict[str, str]] = pydantic.Field(
23
23
  description="The prompt to use for citing sources."
24
24
  )
25
+ scratchpad_prompt: typing.Optional[str] = pydantic.Field(description="The prompt to use for scratchpad.")
25
26
 
26
27
  def json(self, **kwargs: typing.Any) -> str:
27
28
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -5,7 +5,6 @@ import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from .llm_model_data import LlmModelData
8
- from .supported_llm_model_names import SupportedLlmModelNames
9
8
 
10
9
  try:
11
10
  import pydantic
@@ -21,7 +20,7 @@ class SupportedLlmModel(pydantic.BaseModel):
21
20
  Response Schema for a supported eval LLM model.
22
21
  """
23
22
 
24
- name: SupportedLlmModelNames = pydantic.Field(description="The name of the supported LLM model.")
23
+ name: str = pydantic.Field(description="The name of the supported LLM model.")
25
24
  enabled: typing.Optional[bool] = pydantic.Field(
26
25
  description="Whether the LLM model is enabled for use in LlamaCloud."
27
26
  )
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.3
2
2
  Name: llama-cloud
3
- Version: 0.1.19
3
+ Version: 0.1.21
4
4
  Summary:
5
5
  License: MIT
6
6
  Author: Logan Markewich
@@ -27,3 +27,7 @@ To publish:
27
27
  - update the version in `pyproject.toml`
28
28
  - run `poetry publish --build`
29
29
 
30
+ Setup credentials:
31
+ - run `poetry config pypi-token.pypi <my-token>`
32
+ - Get token form PyPi once logged in with credentials in [1Password](https://start.1password.com/open/i?a=32SA66TZ3JCRXOCMASLSDCT5TI&v=lhv7hvb5o46cwo257c3hviqkle&i=yvslwei7jtf6tgqamzcdantqi4&h=llamaindex.1password.com)
33
+