llama-cloud 0.0.6__py3-none-any.whl → 0.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

Files changed (42) hide show
  1. llama_cloud/__init__.py +18 -4
  2. llama_cloud/client.py +3 -0
  3. llama_cloud/resources/__init__.py +4 -1
  4. llama_cloud/resources/component_definitions/client.py +18 -18
  5. llama_cloud/resources/data_sinks/client.py +2 -2
  6. llama_cloud/resources/data_sinks/types/data_sink_update_component_one.py +2 -0
  7. llama_cloud/resources/data_sources/client.py +2 -2
  8. llama_cloud/resources/data_sources/types/data_source_update_component_one.py +4 -4
  9. llama_cloud/resources/evals/client.py +12 -12
  10. llama_cloud/resources/extraction/__init__.py +5 -0
  11. llama_cloud/resources/extraction/client.py +648 -0
  12. llama_cloud/resources/extraction/types/__init__.py +5 -0
  13. llama_cloud/resources/extraction/types/extraction_schema_update_data_schema_value.py +7 -0
  14. llama_cloud/resources/files/client.py +8 -8
  15. llama_cloud/resources/parsing/client.py +16 -0
  16. llama_cloud/resources/pipelines/client.py +156 -12
  17. llama_cloud/resources/projects/client.py +24 -24
  18. llama_cloud/types/__init__.py +14 -4
  19. llama_cloud/types/azure_open_ai_embedding.py +3 -0
  20. llama_cloud/types/{cloud_gcs_data_source.py → cloud_azure_ai_search_vector_store.py} +9 -7
  21. llama_cloud/types/{cloud_google_drive_data_source.py → cloud_notion_page_data_source.py} +4 -5
  22. llama_cloud/types/cloud_slack_data_source.py +42 -0
  23. llama_cloud/types/configurable_data_sink_names.py +4 -0
  24. llama_cloud/types/configurable_data_source_names.py +8 -8
  25. llama_cloud/types/data_sink_component_one.py +2 -0
  26. llama_cloud/types/data_sink_create_component_one.py +2 -0
  27. llama_cloud/types/data_source_component_one.py +4 -4
  28. llama_cloud/types/data_source_create_component_one.py +4 -4
  29. llama_cloud/types/eval_dataset_job_record.py +1 -1
  30. llama_cloud/types/extraction_result.py +42 -0
  31. llama_cloud/types/extraction_result_data_value.py +5 -0
  32. llama_cloud/types/extraction_schema.py +44 -0
  33. llama_cloud/types/extraction_schema_data_schema_value.py +7 -0
  34. llama_cloud/types/llama_parse_parameters.py +2 -0
  35. llama_cloud/types/llama_parse_supported_file_extensions.py +124 -0
  36. llama_cloud/types/pipeline.py +0 -4
  37. llama_cloud/types/pipeline_data_source_component_one.py +4 -4
  38. llama_cloud/types/text_node.py +1 -0
  39. {llama_cloud-0.0.6.dist-info → llama_cloud-0.0.8.dist-info}/METADATA +1 -2
  40. {llama_cloud-0.0.6.dist-info → llama_cloud-0.0.8.dist-info}/RECORD +42 -33
  41. {llama_cloud-0.0.6.dist-info → llama_cloud-0.0.8.dist-info}/WHEEL +1 -1
  42. {llama_cloud-0.0.6.dist-info → llama_cloud-0.0.8.dist-info}/LICENSE +0 -0
@@ -14,15 +14,14 @@ except ImportError:
14
14
  import pydantic # type: ignore
15
15
 
16
16
 
17
- class CloudGoogleDriveDataSource(pydantic.BaseModel):
17
+ class CloudNotionPageDataSource(pydantic.BaseModel):
18
18
  """
19
19
  Base component object to capture class names.
20
20
  """
21
21
 
22
- folder_id: str = pydantic.Field(description="The ID of the Google Drive folder to read from.")
23
- service_account_key: typing.Dict[str, typing.Any] = pydantic.Field(
24
- description="The service account key JSON to use for authentication."
25
- )
22
+ integration_token: str = pydantic.Field(description="The integration token to use for authentication.")
23
+ database_ids: typing.Optional[str] = pydantic.Field(description="The Notion Database Id to read content from.")
24
+ page_ids: typing.Optional[str] = pydantic.Field(description="The Page ID's of the Notion to read from.")
26
25
  class_name: typing.Optional[str]
27
26
 
28
27
  def json(self, **kwargs: typing.Any) -> str:
@@ -0,0 +1,42 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class CloudSlackDataSource(pydantic.BaseModel):
18
+ """
19
+ Base component object to capture class names.
20
+ """
21
+
22
+ slack_token: str = pydantic.Field(description="Slack Bot Token.")
23
+ channel_ids: typing.Optional[str] = pydantic.Field(description="Slack Channel.")
24
+ latest_date: typing.Optional[str] = pydantic.Field(description="Latest date.")
25
+ earliest_date: typing.Optional[str] = pydantic.Field(description="Earliest date.")
26
+ earliest_date_timestamp: typing.Optional[float] = pydantic.Field(description="Earliest date timestamp.")
27
+ latest_date_timestamp: typing.Optional[float] = pydantic.Field(description="Latest date timestamp.")
28
+ channel_patterns: typing.Optional[str] = pydantic.Field(description="Slack Channel name pattern.")
29
+ class_name: typing.Optional[str]
30
+
31
+ def json(self, **kwargs: typing.Any) -> str:
32
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
33
+ return super().json(**kwargs_with_defaults)
34
+
35
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
36
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
37
+ return super().dict(**kwargs_with_defaults)
38
+
39
+ class Config:
40
+ frozen = True
41
+ smart_union = True
42
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -16,6 +16,7 @@ class ConfigurableDataSinkNames(str, enum.Enum):
16
16
  POSTGRES = "POSTGRES"
17
17
  QDRANT = "QDRANT"
18
18
  WEAVIATE = "WEAVIATE"
19
+ AZUREAI_SEARCH = "AZUREAI_SEARCH"
19
20
 
20
21
  def visit(
21
22
  self,
@@ -24,6 +25,7 @@ class ConfigurableDataSinkNames(str, enum.Enum):
24
25
  postgres: typing.Callable[[], T_Result],
25
26
  qdrant: typing.Callable[[], T_Result],
26
27
  weaviate: typing.Callable[[], T_Result],
28
+ azureai_search: typing.Callable[[], T_Result],
27
29
  ) -> T_Result:
28
30
  if self is ConfigurableDataSinkNames.CHROMA:
29
31
  return chroma()
@@ -35,3 +37,5 @@ class ConfigurableDataSinkNames(str, enum.Enum):
35
37
  return qdrant()
36
38
  if self is ConfigurableDataSinkNames.WEAVIATE:
37
39
  return weaviate()
40
+ if self is ConfigurableDataSinkNames.AZUREAI_SEARCH:
41
+ return azureai_search()
@@ -13,29 +13,29 @@ class ConfigurableDataSourceNames(str, enum.Enum):
13
13
 
14
14
  S_3 = "S3"
15
15
  AZURE_STORAGE_BLOB = "AZURE_STORAGE_BLOB"
16
- GCS = "GCS"
17
- GOOGLE_DRIVE = "GOOGLE_DRIVE"
18
16
  MICROSOFT_ONEDRIVE = "MICROSOFT_ONEDRIVE"
19
17
  MICROSOFT_SHAREPOINT = "MICROSOFT_SHAREPOINT"
18
+ SLACK = "SLACK"
19
+ NOTION_PAGE = "NOTION_PAGE"
20
20
 
21
21
  def visit(
22
22
  self,
23
23
  s_3: typing.Callable[[], T_Result],
24
24
  azure_storage_blob: typing.Callable[[], T_Result],
25
- gcs: typing.Callable[[], T_Result],
26
- google_drive: typing.Callable[[], T_Result],
27
25
  microsoft_onedrive: typing.Callable[[], T_Result],
28
26
  microsoft_sharepoint: typing.Callable[[], T_Result],
27
+ slack: typing.Callable[[], T_Result],
28
+ notion_page: typing.Callable[[], T_Result],
29
29
  ) -> T_Result:
30
30
  if self is ConfigurableDataSourceNames.S_3:
31
31
  return s_3()
32
32
  if self is ConfigurableDataSourceNames.AZURE_STORAGE_BLOB:
33
33
  return azure_storage_blob()
34
- if self is ConfigurableDataSourceNames.GCS:
35
- return gcs()
36
- if self is ConfigurableDataSourceNames.GOOGLE_DRIVE:
37
- return google_drive()
38
34
  if self is ConfigurableDataSourceNames.MICROSOFT_ONEDRIVE:
39
35
  return microsoft_onedrive()
40
36
  if self is ConfigurableDataSourceNames.MICROSOFT_SHAREPOINT:
41
37
  return microsoft_sharepoint()
38
+ if self is ConfigurableDataSourceNames.SLACK:
39
+ return slack()
40
+ if self is ConfigurableDataSourceNames.NOTION_PAGE:
41
+ return notion_page()
@@ -2,6 +2,7 @@
2
2
 
3
3
  import typing
4
4
 
5
+ from .cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
5
6
  from .cloud_chroma_vector_store import CloudChromaVectorStore
6
7
  from .cloud_pinecone_vector_store import CloudPineconeVectorStore
7
8
  from .cloud_postgres_vector_store import CloudPostgresVectorStore
@@ -14,4 +15,5 @@ DataSinkComponentOne = typing.Union[
14
15
  CloudPostgresVectorStore,
15
16
  CloudQdrantVectorStore,
16
17
  CloudWeaviateVectorStore,
18
+ CloudAzureAiSearchVectorStore,
17
19
  ]
@@ -2,6 +2,7 @@
2
2
 
3
3
  import typing
4
4
 
5
+ from .cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
5
6
  from .cloud_chroma_vector_store import CloudChromaVectorStore
6
7
  from .cloud_pinecone_vector_store import CloudPineconeVectorStore
7
8
  from .cloud_postgres_vector_store import CloudPostgresVectorStore
@@ -14,4 +15,5 @@ DataSinkCreateComponentOne = typing.Union[
14
15
  CloudPostgresVectorStore,
15
16
  CloudQdrantVectorStore,
16
17
  CloudWeaviateVectorStore,
18
+ CloudAzureAiSearchVectorStore,
17
19
  ]
@@ -3,17 +3,17 @@
3
3
  import typing
4
4
 
5
5
  from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
6
- from .cloud_gcs_data_source import CloudGcsDataSource
7
- from .cloud_google_drive_data_source import CloudGoogleDriveDataSource
6
+ from .cloud_notion_page_data_source import CloudNotionPageDataSource
8
7
  from .cloud_one_drive_data_source import CloudOneDriveDataSource
9
8
  from .cloud_s_3_data_source import CloudS3DataSource
10
9
  from .cloud_sharepoint_data_source import CloudSharepointDataSource
10
+ from .cloud_slack_data_source import CloudSlackDataSource
11
11
 
12
12
  DataSourceComponentOne = typing.Union[
13
13
  CloudS3DataSource,
14
14
  CloudAzStorageBlobDataSource,
15
- CloudGcsDataSource,
16
- CloudGoogleDriveDataSource,
17
15
  CloudOneDriveDataSource,
18
16
  CloudSharepointDataSource,
17
+ CloudSlackDataSource,
18
+ CloudNotionPageDataSource,
19
19
  ]
@@ -3,17 +3,17 @@
3
3
  import typing
4
4
 
5
5
  from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
6
- from .cloud_gcs_data_source import CloudGcsDataSource
7
- from .cloud_google_drive_data_source import CloudGoogleDriveDataSource
6
+ from .cloud_notion_page_data_source import CloudNotionPageDataSource
8
7
  from .cloud_one_drive_data_source import CloudOneDriveDataSource
9
8
  from .cloud_s_3_data_source import CloudS3DataSource
10
9
  from .cloud_sharepoint_data_source import CloudSharepointDataSource
10
+ from .cloud_slack_data_source import CloudSlackDataSource
11
11
 
12
12
  DataSourceCreateComponentOne = typing.Union[
13
13
  CloudS3DataSource,
14
14
  CloudAzStorageBlobDataSource,
15
- CloudGcsDataSource,
16
- CloudGoogleDriveDataSource,
17
15
  CloudOneDriveDataSource,
18
16
  CloudSharepointDataSource,
17
+ CloudSlackDataSource,
18
+ CloudNotionPageDataSource,
19
19
  ]
@@ -38,13 +38,13 @@ class EvalDatasetJobRecord(pydantic.BaseModel):
38
38
  description="The correlation ID for this job. Used for tracking the job across services."
39
39
  )
40
40
  parent_job_execution_id: typing.Optional[str] = pydantic.Field(description="The ID of the parent job execution.")
41
+ created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
41
42
  id: typing.Optional[str] = pydantic.Field(description="Unique identifier")
42
43
  status: StatusEnum
43
44
  error_message: typing.Optional[str]
44
45
  attempts: typing.Optional[int] = pydantic.Field(description="The number of times this job has been attempted")
45
46
  started_at: typing.Optional[dt.datetime]
46
47
  ended_at: typing.Optional[dt.datetime]
47
- created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
48
48
  updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
49
49
  data: typing.Optional[Base] = pydantic.Field(description="Additional metadata for the job execution.")
50
50
 
@@ -0,0 +1,42 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .extraction_result_data_value import ExtractionResultDataValue
8
+ from .file import File
9
+
10
+ try:
11
+ import pydantic
12
+ if pydantic.__version__.startswith("1."):
13
+ raise ImportError
14
+ import pydantic.v1 as pydantic # type: ignore
15
+ except ImportError:
16
+ import pydantic # type: ignore
17
+
18
+
19
+ class ExtractionResult(pydantic.BaseModel):
20
+ """
21
+ Schema for an extraction result.
22
+ """
23
+
24
+ id: str = pydantic.Field(description="Unique identifier")
25
+ created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
26
+ updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
27
+ schema_id: str = pydantic.Field(description="The id of the schema")
28
+ data: typing.Dict[str, ExtractionResultDataValue] = pydantic.Field(description="The data extracted from the file")
29
+ file: File = pydantic.Field(description="The file that the extract was extracted from")
30
+
31
+ def json(self, **kwargs: typing.Any) -> str:
32
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
33
+ return super().json(**kwargs_with_defaults)
34
+
35
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
36
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
37
+ return super().dict(**kwargs_with_defaults)
38
+
39
+ class Config:
40
+ frozen = True
41
+ smart_union = True
42
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ ExtractionResultDataValue = typing.Union[typing.Dict[str, typing.Any], typing.List[typing.Any], str, int, float, bool]
@@ -0,0 +1,44 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .extraction_schema_data_schema_value import ExtractionSchemaDataSchemaValue
8
+
9
+ try:
10
+ import pydantic
11
+ if pydantic.__version__.startswith("1."):
12
+ raise ImportError
13
+ import pydantic.v1 as pydantic # type: ignore
14
+ except ImportError:
15
+ import pydantic # type: ignore
16
+
17
+
18
+ class ExtractionSchema(pydantic.BaseModel):
19
+ """
20
+ Schema for extraction schema.
21
+ """
22
+
23
+ id: str = pydantic.Field(description="Unique identifier")
24
+ created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
25
+ updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
26
+ name: str = pydantic.Field(description="The name of the extraction schema")
27
+ project_id: str = pydantic.Field(description="The ID of the project that the extraction schema belongs to")
28
+ data_schema: typing.Dict[str, ExtractionSchemaDataSchemaValue] = pydantic.Field(
29
+ description="The schema of the data"
30
+ )
31
+ openai_api_key: str = pydantic.Field(description="The API key for the OpenAI API")
32
+
33
+ def json(self, **kwargs: typing.Any) -> str:
34
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
35
+ return super().json(**kwargs_with_defaults)
36
+
37
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
38
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
39
+ return super().dict(**kwargs_with_defaults)
40
+
41
+ class Config:
42
+ frozen = True
43
+ smart_union = True
44
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,7 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ ExtractionSchemaDataSchemaValue = typing.Union[
6
+ typing.Dict[str, typing.Any], typing.List[typing.Any], str, int, float, bool
7
+ ]
@@ -31,6 +31,8 @@ class LlamaParseParameters(pydantic.BaseModel):
31
31
  gpt_4_o_api_key: typing.Optional[str] = pydantic.Field(alias="gpt4o_api_key")
32
32
  do_not_unroll_columns: typing.Optional[bool]
33
33
  page_separator: typing.Optional[str]
34
+ bounding_box: typing.Optional[str]
35
+ target_pages: typing.Optional[str]
34
36
 
35
37
  def json(self, **kwargs: typing.Any) -> str:
36
38
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -47,6 +47,37 @@ class LlamaParseSupportedFileExtensions(str, enum.Enum):
47
47
  EPUB = ".epub"
48
48
  HTML = ".html"
49
49
  HTM = ".htm"
50
+ XLS = ".xls"
51
+ XLSX = ".xlsx"
52
+ XLSM = ".xlsm"
53
+ XLSB = ".xlsb"
54
+ XLW = ".xlw"
55
+ CSV = ".csv"
56
+ DIF = ".dif"
57
+ SYLK = ".sylk"
58
+ SLK = ".slk"
59
+ PRN = ".prn"
60
+ NUMBERS = ".numbers"
61
+ ET = ".et"
62
+ ODS = ".ods"
63
+ FODS = ".fods"
64
+ UOS_1 = ".uos1"
65
+ UOS_2 = ".uos2"
66
+ DBF = ".dbf"
67
+ WK_1 = ".wk1"
68
+ WK_2 = ".wk2"
69
+ WK_3 = ".wk3"
70
+ WK_4 = ".wk4"
71
+ WKS = ".wks"
72
+ WQ_1 = ".wq1"
73
+ WQ_2 = ".wq2"
74
+ WB_1 = ".wb1"
75
+ WB_2 = ".wb2"
76
+ WB_3 = ".wb3"
77
+ QPW = ".qpw"
78
+ XLR = ".xlr"
79
+ ETH = ".eth"
80
+ TSV = ".tsv"
50
81
 
51
82
  def visit(
52
83
  self,
@@ -86,6 +117,37 @@ class LlamaParseSupportedFileExtensions(str, enum.Enum):
86
117
  epub: typing.Callable[[], T_Result],
87
118
  html: typing.Callable[[], T_Result],
88
119
  htm: typing.Callable[[], T_Result],
120
+ xls: typing.Callable[[], T_Result],
121
+ xlsx: typing.Callable[[], T_Result],
122
+ xlsm: typing.Callable[[], T_Result],
123
+ xlsb: typing.Callable[[], T_Result],
124
+ xlw: typing.Callable[[], T_Result],
125
+ csv: typing.Callable[[], T_Result],
126
+ dif: typing.Callable[[], T_Result],
127
+ sylk: typing.Callable[[], T_Result],
128
+ slk: typing.Callable[[], T_Result],
129
+ prn: typing.Callable[[], T_Result],
130
+ numbers: typing.Callable[[], T_Result],
131
+ et: typing.Callable[[], T_Result],
132
+ ods: typing.Callable[[], T_Result],
133
+ fods: typing.Callable[[], T_Result],
134
+ uos_1: typing.Callable[[], T_Result],
135
+ uos_2: typing.Callable[[], T_Result],
136
+ dbf: typing.Callable[[], T_Result],
137
+ wk_1: typing.Callable[[], T_Result],
138
+ wk_2: typing.Callable[[], T_Result],
139
+ wk_3: typing.Callable[[], T_Result],
140
+ wk_4: typing.Callable[[], T_Result],
141
+ wks: typing.Callable[[], T_Result],
142
+ wq_1: typing.Callable[[], T_Result],
143
+ wq_2: typing.Callable[[], T_Result],
144
+ wb_1: typing.Callable[[], T_Result],
145
+ wb_2: typing.Callable[[], T_Result],
146
+ wb_3: typing.Callable[[], T_Result],
147
+ qpw: typing.Callable[[], T_Result],
148
+ xlr: typing.Callable[[], T_Result],
149
+ eth: typing.Callable[[], T_Result],
150
+ tsv: typing.Callable[[], T_Result],
89
151
  ) -> T_Result:
90
152
  if self is LlamaParseSupportedFileExtensions.PDF:
91
153
  return pdf()
@@ -159,3 +221,65 @@ class LlamaParseSupportedFileExtensions(str, enum.Enum):
159
221
  return html()
160
222
  if self is LlamaParseSupportedFileExtensions.HTM:
161
223
  return htm()
224
+ if self is LlamaParseSupportedFileExtensions.XLS:
225
+ return xls()
226
+ if self is LlamaParseSupportedFileExtensions.XLSX:
227
+ return xlsx()
228
+ if self is LlamaParseSupportedFileExtensions.XLSM:
229
+ return xlsm()
230
+ if self is LlamaParseSupportedFileExtensions.XLSB:
231
+ return xlsb()
232
+ if self is LlamaParseSupportedFileExtensions.XLW:
233
+ return xlw()
234
+ if self is LlamaParseSupportedFileExtensions.CSV:
235
+ return csv()
236
+ if self is LlamaParseSupportedFileExtensions.DIF:
237
+ return dif()
238
+ if self is LlamaParseSupportedFileExtensions.SYLK:
239
+ return sylk()
240
+ if self is LlamaParseSupportedFileExtensions.SLK:
241
+ return slk()
242
+ if self is LlamaParseSupportedFileExtensions.PRN:
243
+ return prn()
244
+ if self is LlamaParseSupportedFileExtensions.NUMBERS:
245
+ return numbers()
246
+ if self is LlamaParseSupportedFileExtensions.ET:
247
+ return et()
248
+ if self is LlamaParseSupportedFileExtensions.ODS:
249
+ return ods()
250
+ if self is LlamaParseSupportedFileExtensions.FODS:
251
+ return fods()
252
+ if self is LlamaParseSupportedFileExtensions.UOS_1:
253
+ return uos_1()
254
+ if self is LlamaParseSupportedFileExtensions.UOS_2:
255
+ return uos_2()
256
+ if self is LlamaParseSupportedFileExtensions.DBF:
257
+ return dbf()
258
+ if self is LlamaParseSupportedFileExtensions.WK_1:
259
+ return wk_1()
260
+ if self is LlamaParseSupportedFileExtensions.WK_2:
261
+ return wk_2()
262
+ if self is LlamaParseSupportedFileExtensions.WK_3:
263
+ return wk_3()
264
+ if self is LlamaParseSupportedFileExtensions.WK_4:
265
+ return wk_4()
266
+ if self is LlamaParseSupportedFileExtensions.WKS:
267
+ return wks()
268
+ if self is LlamaParseSupportedFileExtensions.WQ_1:
269
+ return wq_1()
270
+ if self is LlamaParseSupportedFileExtensions.WQ_2:
271
+ return wq_2()
272
+ if self is LlamaParseSupportedFileExtensions.WB_1:
273
+ return wb_1()
274
+ if self is LlamaParseSupportedFileExtensions.WB_2:
275
+ return wb_2()
276
+ if self is LlamaParseSupportedFileExtensions.WB_3:
277
+ return wb_3()
278
+ if self is LlamaParseSupportedFileExtensions.QPW:
279
+ return qpw()
280
+ if self is LlamaParseSupportedFileExtensions.XLR:
281
+ return xlr()
282
+ if self is LlamaParseSupportedFileExtensions.ETH:
283
+ return eth()
284
+ if self is LlamaParseSupportedFileExtensions.TSV:
285
+ return tsv()
@@ -8,7 +8,6 @@ from .configured_transformation_item import ConfiguredTransformationItem
8
8
  from .data_sink import DataSink
9
9
  from .eval_execution_params import EvalExecutionParams
10
10
  from .llama_parse_parameters import LlamaParseParameters
11
- from .managed_ingestion_status import ManagedIngestionStatus
12
11
  from .pipeline_type import PipelineType
13
12
  from .preset_retrieval_params import PresetRetrievalParams
14
13
 
@@ -50,9 +49,6 @@ class Pipeline(pydantic.BaseModel):
50
49
  llama_parse_parameters: typing.Optional[LlamaParseParameters] = pydantic.Field(
51
50
  description="Settings that can be configured for how to use LlamaParse to parse files within a LlamaCloud pipeline."
52
51
  )
53
- managed_ingestion_status: typing.Optional[ManagedIngestionStatus] = pydantic.Field(
54
- description="Status of Managed Ingestion."
55
- )
56
52
  data_sink: typing.Optional[DataSink] = pydantic.Field(
57
53
  description="The data sink for the pipeline. If None, the pipeline will use the fully managed data sink."
58
54
  )
@@ -3,17 +3,17 @@
3
3
  import typing
4
4
 
5
5
  from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
6
- from .cloud_gcs_data_source import CloudGcsDataSource
7
- from .cloud_google_drive_data_source import CloudGoogleDriveDataSource
6
+ from .cloud_notion_page_data_source import CloudNotionPageDataSource
8
7
  from .cloud_one_drive_data_source import CloudOneDriveDataSource
9
8
  from .cloud_s_3_data_source import CloudS3DataSource
10
9
  from .cloud_sharepoint_data_source import CloudSharepointDataSource
10
+ from .cloud_slack_data_source import CloudSlackDataSource
11
11
 
12
12
  PipelineDataSourceComponentOne = typing.Union[
13
13
  CloudS3DataSource,
14
14
  CloudAzStorageBlobDataSource,
15
- CloudGcsDataSource,
16
- CloudGoogleDriveDataSource,
17
15
  CloudOneDriveDataSource,
18
16
  CloudSharepointDataSource,
17
+ CloudSlackDataSource,
18
+ CloudNotionPageDataSource,
19
19
  ]
@@ -37,6 +37,7 @@ class TextNode(pydantic.BaseModel):
37
37
  description="A mapping of relationships to other node information."
38
38
  )
39
39
  text: typing.Optional[str] = pydantic.Field(description="Text content of the node.")
40
+ mimetype: typing.Optional[str] = pydantic.Field(description="MIME type of the node content.")
40
41
  start_char_idx: typing.Optional[int] = pydantic.Field(description="Start char index of the node.")
41
42
  end_char_idx: typing.Optional[int] = pydantic.Field(description="End char index of the node.")
42
43
  text_template: typing.Optional[str] = pydantic.Field(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: llama-cloud
3
- Version: 0.0.6
3
+ Version: 0.0.8
4
4
  Summary:
5
5
  Author: Logan Markewich
6
6
  Author-email: logan@runllama.ai
@@ -10,7 +10,6 @@ Classifier: Programming Language :: Python :: 3.8
10
10
  Classifier: Programming Language :: Python :: 3.9
11
11
  Classifier: Programming Language :: Python :: 3.10
12
12
  Classifier: Programming Language :: Python :: 3.11
13
- Classifier: Programming Language :: Python :: 3.12
14
13
  Requires-Dist: httpx (>=0.20.0)
15
14
  Requires-Dist: pydantic (>=1.10)
16
15
  Description-Content-Type: text/markdown