llama-cloud 0.0.6__py3-none-any.whl → 0.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

Files changed (42) hide show
  1. llama_cloud/__init__.py +18 -4
  2. llama_cloud/client.py +3 -0
  3. llama_cloud/resources/__init__.py +4 -1
  4. llama_cloud/resources/component_definitions/client.py +18 -18
  5. llama_cloud/resources/data_sinks/client.py +2 -2
  6. llama_cloud/resources/data_sinks/types/data_sink_update_component_one.py +2 -0
  7. llama_cloud/resources/data_sources/client.py +2 -2
  8. llama_cloud/resources/data_sources/types/data_source_update_component_one.py +4 -4
  9. llama_cloud/resources/evals/client.py +12 -12
  10. llama_cloud/resources/extraction/__init__.py +5 -0
  11. llama_cloud/resources/extraction/client.py +648 -0
  12. llama_cloud/resources/extraction/types/__init__.py +5 -0
  13. llama_cloud/resources/extraction/types/extraction_schema_update_data_schema_value.py +7 -0
  14. llama_cloud/resources/files/client.py +8 -8
  15. llama_cloud/resources/parsing/client.py +16 -0
  16. llama_cloud/resources/pipelines/client.py +156 -12
  17. llama_cloud/resources/projects/client.py +24 -24
  18. llama_cloud/types/__init__.py +14 -4
  19. llama_cloud/types/azure_open_ai_embedding.py +3 -0
  20. llama_cloud/types/{cloud_gcs_data_source.py → cloud_azure_ai_search_vector_store.py} +9 -7
  21. llama_cloud/types/{cloud_google_drive_data_source.py → cloud_notion_page_data_source.py} +4 -5
  22. llama_cloud/types/cloud_slack_data_source.py +42 -0
  23. llama_cloud/types/configurable_data_sink_names.py +4 -0
  24. llama_cloud/types/configurable_data_source_names.py +8 -8
  25. llama_cloud/types/data_sink_component_one.py +2 -0
  26. llama_cloud/types/data_sink_create_component_one.py +2 -0
  27. llama_cloud/types/data_source_component_one.py +4 -4
  28. llama_cloud/types/data_source_create_component_one.py +4 -4
  29. llama_cloud/types/eval_dataset_job_record.py +1 -1
  30. llama_cloud/types/extraction_result.py +42 -0
  31. llama_cloud/types/extraction_result_data_value.py +5 -0
  32. llama_cloud/types/extraction_schema.py +44 -0
  33. llama_cloud/types/extraction_schema_data_schema_value.py +7 -0
  34. llama_cloud/types/llama_parse_parameters.py +2 -0
  35. llama_cloud/types/llama_parse_supported_file_extensions.py +124 -0
  36. llama_cloud/types/pipeline.py +0 -4
  37. llama_cloud/types/pipeline_data_source_component_one.py +4 -4
  38. llama_cloud/types/text_node.py +1 -0
  39. {llama_cloud-0.0.6.dist-info → llama_cloud-0.0.8.dist-info}/METADATA +1 -2
  40. {llama_cloud-0.0.6.dist-info → llama_cloud-0.0.8.dist-info}/RECORD +42 -33
  41. {llama_cloud-0.0.6.dist-info → llama_cloud-0.0.8.dist-info}/WHEEL +1 -1
  42. {llama_cloud-0.0.6.dist-info → llama_cloud-0.0.8.dist-info}/LICENSE +0 -0
@@ -31,7 +31,7 @@ class FilesClient:
31
31
  def __init__(self, *, client_wrapper: SyncClientWrapper):
32
32
  self._client_wrapper = client_wrapper
33
33
 
34
- def read_file(self, id: str, *, project_id: typing.Optional[str] = None) -> File:
34
+ def get_file(self, id: str, *, project_id: typing.Optional[str] = None) -> File:
35
35
  """
36
36
  Read File metadata objects.
37
37
 
@@ -45,7 +45,7 @@ class FilesClient:
45
45
  client = LlamaCloud(
46
46
  token="YOUR_TOKEN",
47
47
  )
48
- client.files.read_file(
48
+ client.files.get_file(
49
49
  id="string",
50
50
  )
51
51
  """
@@ -101,7 +101,7 @@ class FilesClient:
101
101
  raise ApiError(status_code=_response.status_code, body=_response.text)
102
102
  raise ApiError(status_code=_response.status_code, body=_response_json)
103
103
 
104
- def read_files(self, *, project_id: typing.Optional[str] = None) -> typing.List[File]:
104
+ def list_files(self, *, project_id: typing.Optional[str] = None) -> typing.List[File]:
105
105
  """
106
106
  Read File metadata objects.
107
107
 
@@ -113,7 +113,7 @@ class FilesClient:
113
113
  client = LlamaCloud(
114
114
  token="YOUR_TOKEN",
115
115
  )
116
- client.files.read_files()
116
+ client.files.list_files()
117
117
  """
118
118
  _response = self._client_wrapper.httpx_client.request(
119
119
  "GET",
@@ -293,7 +293,7 @@ class AsyncFilesClient:
293
293
  def __init__(self, *, client_wrapper: AsyncClientWrapper):
294
294
  self._client_wrapper = client_wrapper
295
295
 
296
- async def read_file(self, id: str, *, project_id: typing.Optional[str] = None) -> File:
296
+ async def get_file(self, id: str, *, project_id: typing.Optional[str] = None) -> File:
297
297
  """
298
298
  Read File metadata objects.
299
299
 
@@ -307,7 +307,7 @@ class AsyncFilesClient:
307
307
  client = AsyncLlamaCloud(
308
308
  token="YOUR_TOKEN",
309
309
  )
310
- await client.files.read_file(
310
+ await client.files.get_file(
311
311
  id="string",
312
312
  )
313
313
  """
@@ -363,7 +363,7 @@ class AsyncFilesClient:
363
363
  raise ApiError(status_code=_response.status_code, body=_response.text)
364
364
  raise ApiError(status_code=_response.status_code, body=_response_json)
365
365
 
366
- async def read_files(self, *, project_id: typing.Optional[str] = None) -> typing.List[File]:
366
+ async def list_files(self, *, project_id: typing.Optional[str] = None) -> typing.List[File]:
367
367
  """
368
368
  Read File metadata objects.
369
369
 
@@ -375,7 +375,7 @@ class AsyncFilesClient:
375
375
  client = AsyncLlamaCloud(
376
376
  token="YOUR_TOKEN",
377
377
  )
378
- await client.files.read_files()
378
+ await client.files.list_files()
379
379
  """
380
380
  _response = await self._client_wrapper.httpx_client.request(
381
381
  "GET",
@@ -111,6 +111,8 @@ class ParsingClient:
111
111
  gpt_4_o_api_key: str,
112
112
  do_not_unroll_columns: bool,
113
113
  page_separator: str,
114
+ bounding_box: str,
115
+ target_pages: str,
114
116
  file: typing.IO,
115
117
  ) -> ParsingJob:
116
118
  """
@@ -137,6 +139,10 @@ class ParsingClient:
137
139
 
138
140
  - page_separator: str.
139
141
 
142
+ - bounding_box: str.
143
+
144
+ - target_pages: str.
145
+
140
146
  - file: typing.IO.
141
147
  """
142
148
  _response = self._client_wrapper.httpx_client.request(
@@ -154,6 +160,8 @@ class ParsingClient:
154
160
  "gpt4o_api_key": gpt_4_o_api_key,
155
161
  "do_not_unroll_columns": do_not_unroll_columns,
156
162
  "page_separator": page_separator,
163
+ "bounding_box": bounding_box,
164
+ "target_pages": target_pages,
157
165
  }
158
166
  ),
159
167
  files={"file": file},
@@ -576,6 +584,8 @@ class AsyncParsingClient:
576
584
  gpt_4_o_api_key: str,
577
585
  do_not_unroll_columns: bool,
578
586
  page_separator: str,
587
+ bounding_box: str,
588
+ target_pages: str,
579
589
  file: typing.IO,
580
590
  ) -> ParsingJob:
581
591
  """
@@ -602,6 +612,10 @@ class AsyncParsingClient:
602
612
 
603
613
  - page_separator: str.
604
614
 
615
+ - bounding_box: str.
616
+
617
+ - target_pages: str.
618
+
605
619
  - file: typing.IO.
606
620
  """
607
621
  _response = await self._client_wrapper.httpx_client.request(
@@ -619,6 +633,8 @@ class AsyncParsingClient:
619
633
  "gpt4o_api_key": gpt_4_o_api_key,
620
634
  "do_not_unroll_columns": do_not_unroll_columns,
621
635
  "page_separator": page_separator,
636
+ "bounding_box": bounding_box,
637
+ "target_pages": target_pages,
622
638
  }
623
639
  ),
624
640
  files={"file": file},
@@ -644,25 +644,38 @@ class PipelinesClient:
644
644
  raise ApiError(status_code=_response.status_code, body=_response.text)
645
645
  raise ApiError(status_code=_response.status_code, body=_response_json)
646
646
 
647
- def get_files_for_pipeline(self, pipeline_id: str) -> typing.List[PipelineFile]:
647
+ def list_pipeline_files(
648
+ self,
649
+ pipeline_id: str,
650
+ *,
651
+ data_source_id: typing.Optional[str] = None,
652
+ only_manually_uploaded: typing.Optional[bool] = None,
653
+ ) -> typing.List[PipelineFile]:
648
654
  """
649
655
  Get files for a pipeline.
650
656
 
651
657
  Parameters:
652
658
  - pipeline_id: str.
659
+
660
+ - data_source_id: typing.Optional[str].
661
+
662
+ - only_manually_uploaded: typing.Optional[bool].
653
663
  ---
654
664
  from llama_cloud.client import LlamaCloud
655
665
 
656
666
  client = LlamaCloud(
657
667
  token="YOUR_TOKEN",
658
668
  )
659
- client.pipelines.get_files_for_pipeline(
669
+ client.pipelines.list_pipeline_files(
660
670
  pipeline_id="string",
661
671
  )
662
672
  """
663
673
  _response = self._client_wrapper.httpx_client.request(
664
674
  "GET",
665
675
  urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/pipelines/{pipeline_id}/files"),
676
+ params=remove_none_from_dict(
677
+ {"data_source_id": data_source_id, "only_manually_uploaded": only_manually_uploaded}
678
+ ),
666
679
  headers=self._client_wrapper.get_headers(),
667
680
  timeout=60,
668
681
  )
@@ -837,7 +850,66 @@ class PipelinesClient:
837
850
  raise ApiError(status_code=_response.status_code, body=_response.text)
838
851
  raise ApiError(status_code=_response.status_code, body=_response_json)
839
852
 
840
- def get_pipeline_data_sources(self, pipeline_id: str) -> typing.List[PipelineDataSource]:
853
+ def import_pipeline_metadata(self, pipeline_id: str, *, upload_file: typing.IO) -> typing.Dict[str, str]:
854
+ """
855
+ Import metadata for a pipeline.
856
+
857
+ Parameters:
858
+ - pipeline_id: str.
859
+
860
+ - upload_file: typing.IO.
861
+ """
862
+ _response = self._client_wrapper.httpx_client.request(
863
+ "PUT",
864
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/pipelines/{pipeline_id}/metadata"),
865
+ data=jsonable_encoder({}),
866
+ files={"upload_file": upload_file},
867
+ headers=self._client_wrapper.get_headers(),
868
+ timeout=60,
869
+ )
870
+ if 200 <= _response.status_code < 300:
871
+ return pydantic.parse_obj_as(typing.Dict[str, str], _response.json()) # type: ignore
872
+ if _response.status_code == 422:
873
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
874
+ try:
875
+ _response_json = _response.json()
876
+ except JSONDecodeError:
877
+ raise ApiError(status_code=_response.status_code, body=_response.text)
878
+ raise ApiError(status_code=_response.status_code, body=_response_json)
879
+
880
+ def delete_pipeline_files_metadata(self, pipeline_id: str) -> None:
881
+ """
882
+ Delete metadata for all files in a pipeline.
883
+
884
+ Parameters:
885
+ - pipeline_id: str.
886
+ ---
887
+ from llama_cloud.client import LlamaCloud
888
+
889
+ client = LlamaCloud(
890
+ token="YOUR_TOKEN",
891
+ )
892
+ client.pipelines.delete_pipeline_files_metadata(
893
+ pipeline_id="string",
894
+ )
895
+ """
896
+ _response = self._client_wrapper.httpx_client.request(
897
+ "DELETE",
898
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/pipelines/{pipeline_id}/metadata"),
899
+ headers=self._client_wrapper.get_headers(),
900
+ timeout=60,
901
+ )
902
+ if 200 <= _response.status_code < 300:
903
+ return
904
+ if _response.status_code == 422:
905
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
906
+ try:
907
+ _response_json = _response.json()
908
+ except JSONDecodeError:
909
+ raise ApiError(status_code=_response.status_code, body=_response.text)
910
+ raise ApiError(status_code=_response.status_code, body=_response_json)
911
+
912
+ def list_pipeline_data_sources(self, pipeline_id: str) -> typing.List[PipelineDataSource]:
841
913
  """
842
914
  Get data sources for a pipeline.
843
915
 
@@ -849,7 +921,7 @@ class PipelinesClient:
849
921
  client = LlamaCloud(
850
922
  token="YOUR_TOKEN",
851
923
  )
852
- client.pipelines.get_pipeline_data_sources(
924
+ client.pipelines.list_pipeline_data_sources(
853
925
  pipeline_id="string",
854
926
  )
855
927
  """
@@ -1064,7 +1136,7 @@ class PipelinesClient:
1064
1136
  raise ApiError(status_code=_response.status_code, body=_response.text)
1065
1137
  raise ApiError(status_code=_response.status_code, body=_response_json)
1066
1138
 
1067
- def get_pipeline_jobs(self, pipeline_id: str) -> typing.List[PipelineDeployment]:
1139
+ def list_pipeline_jobs(self, pipeline_id: str) -> typing.List[PipelineDeployment]:
1068
1140
  """
1069
1141
  Get jobs for a pipeline.
1070
1142
 
@@ -1076,7 +1148,7 @@ class PipelinesClient:
1076
1148
  client = LlamaCloud(
1077
1149
  token="YOUR_TOKEN",
1078
1150
  )
1079
- client.pipelines.get_pipeline_jobs(
1151
+ client.pipelines.list_pipeline_jobs(
1080
1152
  pipeline_id="string",
1081
1153
  )
1082
1154
  """
@@ -1968,25 +2040,38 @@ class AsyncPipelinesClient:
1968
2040
  raise ApiError(status_code=_response.status_code, body=_response.text)
1969
2041
  raise ApiError(status_code=_response.status_code, body=_response_json)
1970
2042
 
1971
- async def get_files_for_pipeline(self, pipeline_id: str) -> typing.List[PipelineFile]:
2043
+ async def list_pipeline_files(
2044
+ self,
2045
+ pipeline_id: str,
2046
+ *,
2047
+ data_source_id: typing.Optional[str] = None,
2048
+ only_manually_uploaded: typing.Optional[bool] = None,
2049
+ ) -> typing.List[PipelineFile]:
1972
2050
  """
1973
2051
  Get files for a pipeline.
1974
2052
 
1975
2053
  Parameters:
1976
2054
  - pipeline_id: str.
2055
+
2056
+ - data_source_id: typing.Optional[str].
2057
+
2058
+ - only_manually_uploaded: typing.Optional[bool].
1977
2059
  ---
1978
2060
  from llama_cloud.client import AsyncLlamaCloud
1979
2061
 
1980
2062
  client = AsyncLlamaCloud(
1981
2063
  token="YOUR_TOKEN",
1982
2064
  )
1983
- await client.pipelines.get_files_for_pipeline(
2065
+ await client.pipelines.list_pipeline_files(
1984
2066
  pipeline_id="string",
1985
2067
  )
1986
2068
  """
1987
2069
  _response = await self._client_wrapper.httpx_client.request(
1988
2070
  "GET",
1989
2071
  urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/pipelines/{pipeline_id}/files"),
2072
+ params=remove_none_from_dict(
2073
+ {"data_source_id": data_source_id, "only_manually_uploaded": only_manually_uploaded}
2074
+ ),
1990
2075
  headers=self._client_wrapper.get_headers(),
1991
2076
  timeout=60,
1992
2077
  )
@@ -2161,7 +2246,66 @@ class AsyncPipelinesClient:
2161
2246
  raise ApiError(status_code=_response.status_code, body=_response.text)
2162
2247
  raise ApiError(status_code=_response.status_code, body=_response_json)
2163
2248
 
2164
- async def get_pipeline_data_sources(self, pipeline_id: str) -> typing.List[PipelineDataSource]:
2249
+ async def import_pipeline_metadata(self, pipeline_id: str, *, upload_file: typing.IO) -> typing.Dict[str, str]:
2250
+ """
2251
+ Import metadata for a pipeline.
2252
+
2253
+ Parameters:
2254
+ - pipeline_id: str.
2255
+
2256
+ - upload_file: typing.IO.
2257
+ """
2258
+ _response = await self._client_wrapper.httpx_client.request(
2259
+ "PUT",
2260
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/pipelines/{pipeline_id}/metadata"),
2261
+ data=jsonable_encoder({}),
2262
+ files={"upload_file": upload_file},
2263
+ headers=self._client_wrapper.get_headers(),
2264
+ timeout=60,
2265
+ )
2266
+ if 200 <= _response.status_code < 300:
2267
+ return pydantic.parse_obj_as(typing.Dict[str, str], _response.json()) # type: ignore
2268
+ if _response.status_code == 422:
2269
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
2270
+ try:
2271
+ _response_json = _response.json()
2272
+ except JSONDecodeError:
2273
+ raise ApiError(status_code=_response.status_code, body=_response.text)
2274
+ raise ApiError(status_code=_response.status_code, body=_response_json)
2275
+
2276
+ async def delete_pipeline_files_metadata(self, pipeline_id: str) -> None:
2277
+ """
2278
+ Delete metadata for all files in a pipeline.
2279
+
2280
+ Parameters:
2281
+ - pipeline_id: str.
2282
+ ---
2283
+ from llama_cloud.client import AsyncLlamaCloud
2284
+
2285
+ client = AsyncLlamaCloud(
2286
+ token="YOUR_TOKEN",
2287
+ )
2288
+ await client.pipelines.delete_pipeline_files_metadata(
2289
+ pipeline_id="string",
2290
+ )
2291
+ """
2292
+ _response = await self._client_wrapper.httpx_client.request(
2293
+ "DELETE",
2294
+ urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", f"api/v1/pipelines/{pipeline_id}/metadata"),
2295
+ headers=self._client_wrapper.get_headers(),
2296
+ timeout=60,
2297
+ )
2298
+ if 200 <= _response.status_code < 300:
2299
+ return
2300
+ if _response.status_code == 422:
2301
+ raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
2302
+ try:
2303
+ _response_json = _response.json()
2304
+ except JSONDecodeError:
2305
+ raise ApiError(status_code=_response.status_code, body=_response.text)
2306
+ raise ApiError(status_code=_response.status_code, body=_response_json)
2307
+
2308
+ async def list_pipeline_data_sources(self, pipeline_id: str) -> typing.List[PipelineDataSource]:
2165
2309
  """
2166
2310
  Get data sources for a pipeline.
2167
2311
 
@@ -2173,7 +2317,7 @@ class AsyncPipelinesClient:
2173
2317
  client = AsyncLlamaCloud(
2174
2318
  token="YOUR_TOKEN",
2175
2319
  )
2176
- await client.pipelines.get_pipeline_data_sources(
2320
+ await client.pipelines.list_pipeline_data_sources(
2177
2321
  pipeline_id="string",
2178
2322
  )
2179
2323
  """
@@ -2388,7 +2532,7 @@ class AsyncPipelinesClient:
2388
2532
  raise ApiError(status_code=_response.status_code, body=_response.text)
2389
2533
  raise ApiError(status_code=_response.status_code, body=_response_json)
2390
2534
 
2391
- async def get_pipeline_jobs(self, pipeline_id: str) -> typing.List[PipelineDeployment]:
2535
+ async def list_pipeline_jobs(self, pipeline_id: str) -> typing.List[PipelineDeployment]:
2392
2536
  """
2393
2537
  Get jobs for a pipeline.
2394
2538
 
@@ -2400,7 +2544,7 @@ class AsyncPipelinesClient:
2400
2544
  client = AsyncLlamaCloud(
2401
2545
  token="YOUR_TOKEN",
2402
2546
  )
2403
- await client.pipelines.get_pipeline_jobs(
2547
+ await client.pipelines.list_pipeline_jobs(
2404
2548
  pipeline_id="string",
2405
2549
  )
2406
2550
  """
@@ -238,9 +238,9 @@ class ProjectsClient:
238
238
  raise ApiError(status_code=_response.status_code, body=_response.text)
239
239
  raise ApiError(status_code=_response.status_code, body=_response_json)
240
240
 
241
- def get_datasets_for_project(self, project_id: str) -> typing.List[EvalDataset]:
241
+ def list_datasets_for_project(self, project_id: str) -> typing.List[EvalDataset]:
242
242
  """
243
- Get all eval datasets for a project.
243
+ List eval datasets for a project.
244
244
 
245
245
  Parameters:
246
246
  - project_id: str.
@@ -250,7 +250,7 @@ class ProjectsClient:
250
250
  client = LlamaCloud(
251
251
  token="YOUR_TOKEN",
252
252
  )
253
- client.projects.get_datasets_for_project(
253
+ client.projects.list_datasets_for_project(
254
254
  project_id="string",
255
255
  )
256
256
  """
@@ -353,9 +353,9 @@ class ProjectsClient:
353
353
  raise ApiError(status_code=_response.status_code, body=_response.text)
354
354
  raise ApiError(status_code=_response.status_code, body=_response_json)
355
355
 
356
- def get_local_evals_for_project(self, project_id: str) -> typing.List[LocalEvalResults]:
356
+ def list_local_evals_for_project(self, project_id: str) -> typing.List[LocalEvalResults]:
357
357
  """
358
- Get all local eval results for a project.
358
+ List local eval results for a project.
359
359
 
360
360
  Parameters:
361
361
  - project_id: str.
@@ -365,7 +365,7 @@ class ProjectsClient:
365
365
  client = LlamaCloud(
366
366
  token="YOUR_TOKEN",
367
367
  )
368
- client.projects.get_local_evals_for_project(
368
+ client.projects.list_local_evals_for_project(
369
369
  project_id="string",
370
370
  )
371
371
  """
@@ -385,9 +385,9 @@ class ProjectsClient:
385
385
  raise ApiError(status_code=_response.status_code, body=_response.text)
386
386
  raise ApiError(status_code=_response.status_code, body=_response_json)
387
387
 
388
- def get_local_eval_sets_for_project(self, project_id: str) -> typing.List[LocalEvalSets]:
388
+ def list_local_eval_sets_for_project(self, project_id: str) -> typing.List[LocalEvalSets]:
389
389
  """
390
- Get all local eval sets for a project.
390
+ List local eval sets for a project.
391
391
 
392
392
  Parameters:
393
393
  - project_id: str.
@@ -397,7 +397,7 @@ class ProjectsClient:
397
397
  client = LlamaCloud(
398
398
  token="YOUR_TOKEN",
399
399
  )
400
- client.projects.get_local_eval_sets_for_project(
400
+ client.projects.list_local_eval_sets_for_project(
401
401
  project_id="string",
402
402
  )
403
403
  """
@@ -457,9 +457,9 @@ class ProjectsClient:
457
457
  raise ApiError(status_code=_response.status_code, body=_response.text)
458
458
  raise ApiError(status_code=_response.status_code, body=_response_json)
459
459
 
460
- def get_promptmixin_prompts(self, project_id: str) -> typing.List[PromptMixinPrompts]:
460
+ def list_promptmixin_prompts(self, project_id: str) -> typing.List[PromptMixinPrompts]:
461
461
  """
462
- Get all PromptMixin prompt sets for a project.
462
+ List PromptMixin prompt sets for a project.
463
463
 
464
464
  Parameters:
465
465
  - project_id: str.
@@ -469,7 +469,7 @@ class ProjectsClient:
469
469
  client = LlamaCloud(
470
470
  token="YOUR_TOKEN",
471
471
  )
472
- client.projects.get_promptmixin_prompts(
472
+ client.projects.list_promptmixin_prompts(
473
473
  project_id="string",
474
474
  )
475
475
  """
@@ -824,9 +824,9 @@ class AsyncProjectsClient:
824
824
  raise ApiError(status_code=_response.status_code, body=_response.text)
825
825
  raise ApiError(status_code=_response.status_code, body=_response_json)
826
826
 
827
- async def get_datasets_for_project(self, project_id: str) -> typing.List[EvalDataset]:
827
+ async def list_datasets_for_project(self, project_id: str) -> typing.List[EvalDataset]:
828
828
  """
829
- Get all eval datasets for a project.
829
+ List eval datasets for a project.
830
830
 
831
831
  Parameters:
832
832
  - project_id: str.
@@ -836,7 +836,7 @@ class AsyncProjectsClient:
836
836
  client = AsyncLlamaCloud(
837
837
  token="YOUR_TOKEN",
838
838
  )
839
- await client.projects.get_datasets_for_project(
839
+ await client.projects.list_datasets_for_project(
840
840
  project_id="string",
841
841
  )
842
842
  """
@@ -939,9 +939,9 @@ class AsyncProjectsClient:
939
939
  raise ApiError(status_code=_response.status_code, body=_response.text)
940
940
  raise ApiError(status_code=_response.status_code, body=_response_json)
941
941
 
942
- async def get_local_evals_for_project(self, project_id: str) -> typing.List[LocalEvalResults]:
942
+ async def list_local_evals_for_project(self, project_id: str) -> typing.List[LocalEvalResults]:
943
943
  """
944
- Get all local eval results for a project.
944
+ List local eval results for a project.
945
945
 
946
946
  Parameters:
947
947
  - project_id: str.
@@ -951,7 +951,7 @@ class AsyncProjectsClient:
951
951
  client = AsyncLlamaCloud(
952
952
  token="YOUR_TOKEN",
953
953
  )
954
- await client.projects.get_local_evals_for_project(
954
+ await client.projects.list_local_evals_for_project(
955
955
  project_id="string",
956
956
  )
957
957
  """
@@ -971,9 +971,9 @@ class AsyncProjectsClient:
971
971
  raise ApiError(status_code=_response.status_code, body=_response.text)
972
972
  raise ApiError(status_code=_response.status_code, body=_response_json)
973
973
 
974
- async def get_local_eval_sets_for_project(self, project_id: str) -> typing.List[LocalEvalSets]:
974
+ async def list_local_eval_sets_for_project(self, project_id: str) -> typing.List[LocalEvalSets]:
975
975
  """
976
- Get all local eval sets for a project.
976
+ List local eval sets for a project.
977
977
 
978
978
  Parameters:
979
979
  - project_id: str.
@@ -983,7 +983,7 @@ class AsyncProjectsClient:
983
983
  client = AsyncLlamaCloud(
984
984
  token="YOUR_TOKEN",
985
985
  )
986
- await client.projects.get_local_eval_sets_for_project(
986
+ await client.projects.list_local_eval_sets_for_project(
987
987
  project_id="string",
988
988
  )
989
989
  """
@@ -1043,9 +1043,9 @@ class AsyncProjectsClient:
1043
1043
  raise ApiError(status_code=_response.status_code, body=_response.text)
1044
1044
  raise ApiError(status_code=_response.status_code, body=_response_json)
1045
1045
 
1046
- async def get_promptmixin_prompts(self, project_id: str) -> typing.List[PromptMixinPrompts]:
1046
+ async def list_promptmixin_prompts(self, project_id: str) -> typing.List[PromptMixinPrompts]:
1047
1047
  """
1048
- Get all PromptMixin prompt sets for a project.
1048
+ List PromptMixin prompt sets for a project.
1049
1049
 
1050
1050
  Parameters:
1051
1051
  - project_id: str.
@@ -1055,7 +1055,7 @@ class AsyncProjectsClient:
1055
1055
  client = AsyncLlamaCloud(
1056
1056
  token="YOUR_TOKEN",
1057
1057
  )
1058
- await client.projects.get_promptmixin_prompts(
1058
+ await client.projects.list_promptmixin_prompts(
1059
1059
  project_id="string",
1060
1060
  )
1061
1061
  """
@@ -6,17 +6,18 @@ from .base_prompt_template import BasePromptTemplate
6
6
  from .bedrock_embedding import BedrockEmbedding
7
7
  from .chat_message import ChatMessage
8
8
  from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
9
+ from .cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
9
10
  from .cloud_chroma_vector_store import CloudChromaVectorStore
10
11
  from .cloud_document import CloudDocument
11
12
  from .cloud_document_create import CloudDocumentCreate
12
- from .cloud_gcs_data_source import CloudGcsDataSource
13
- from .cloud_google_drive_data_source import CloudGoogleDriveDataSource
13
+ from .cloud_notion_page_data_source import CloudNotionPageDataSource
14
14
  from .cloud_one_drive_data_source import CloudOneDriveDataSource
15
15
  from .cloud_pinecone_vector_store import CloudPineconeVectorStore
16
16
  from .cloud_postgres_vector_store import CloudPostgresVectorStore
17
17
  from .cloud_qdrant_vector_store import CloudQdrantVectorStore
18
18
  from .cloud_s_3_data_source import CloudS3DataSource
19
19
  from .cloud_sharepoint_data_source import CloudSharepointDataSource
20
+ from .cloud_slack_data_source import CloudSlackDataSource
20
21
  from .cloud_weaviate_vector_store import CloudWeaviateVectorStore
21
22
  from .code_splitter import CodeSplitter
22
23
  from .cohere_embedding import CohereEmbedding
@@ -52,6 +53,10 @@ from .eval_llm_model_data import EvalLlmModelData
52
53
  from .eval_question import EvalQuestion
53
54
  from .eval_question_create import EvalQuestionCreate
54
55
  from .eval_question_result import EvalQuestionResult
56
+ from .extraction_result import ExtractionResult
57
+ from .extraction_result_data_value import ExtractionResultDataValue
58
+ from .extraction_schema import ExtractionSchema
59
+ from .extraction_schema_data_schema_value import ExtractionSchemaDataSchemaValue
55
60
  from .file import File
56
61
  from .file_resource_info_value import FileResourceInfoValue
57
62
  from .filter_condition import FilterCondition
@@ -132,17 +137,18 @@ __all__ = [
132
137
  "BedrockEmbedding",
133
138
  "ChatMessage",
134
139
  "CloudAzStorageBlobDataSource",
140
+ "CloudAzureAiSearchVectorStore",
135
141
  "CloudChromaVectorStore",
136
142
  "CloudDocument",
137
143
  "CloudDocumentCreate",
138
- "CloudGcsDataSource",
139
- "CloudGoogleDriveDataSource",
144
+ "CloudNotionPageDataSource",
140
145
  "CloudOneDriveDataSource",
141
146
  "CloudPineconeVectorStore",
142
147
  "CloudPostgresVectorStore",
143
148
  "CloudQdrantVectorStore",
144
149
  "CloudS3DataSource",
145
150
  "CloudSharepointDataSource",
151
+ "CloudSlackDataSource",
146
152
  "CloudWeaviateVectorStore",
147
153
  "CodeSplitter",
148
154
  "CohereEmbedding",
@@ -178,6 +184,10 @@ __all__ = [
178
184
  "EvalQuestion",
179
185
  "EvalQuestionCreate",
180
186
  "EvalQuestionResult",
187
+ "ExtractionResult",
188
+ "ExtractionResultDataValue",
189
+ "ExtractionSchema",
190
+ "ExtractionSchemaDataSchemaValue",
181
191
  "File",
182
192
  "FileResourceInfoValue",
183
193
  "FilterCondition",
@@ -62,6 +62,9 @@ class AzureOpenAiEmbedding(pydantic.BaseModel):
62
62
  )
63
63
  azure_endpoint: typing.Optional[str] = pydantic.Field(description="The Azure endpoint to use.")
64
64
  azure_deployment: typing.Optional[str] = pydantic.Field(description="The Azure deployment to use.")
65
+ use_azure_ad: bool = pydantic.Field(
66
+ description="Indicates if Microsoft Entra ID (former Azure AD) is used for token authentication"
67
+ )
65
68
  class_name: typing.Optional[str]
66
69
 
67
70
  def json(self, **kwargs: typing.Any) -> str:
@@ -14,16 +14,18 @@ except ImportError:
14
14
  import pydantic # type: ignore
15
15
 
16
16
 
17
- class CloudGcsDataSource(pydantic.BaseModel):
17
+ class CloudAzureAiSearchVectorStore(pydantic.BaseModel):
18
18
  """
19
- Base component object to capture class names.
19
+ Cloud Azure AI Search Vector Store.
20
20
  """
21
21
 
22
- bucket: str = pydantic.Field(description="The name of the GCS bucket to read from.")
23
- prefix: typing.Optional[str] = pydantic.Field(description="The prefix of the GCS objects to read from.")
24
- service_account_key: typing.Dict[str, typing.Any] = pydantic.Field(
25
- description="The service account key JSON to use for authentication."
26
- )
22
+ supports_nested_metadata_filters: typing.Optional[bool]
23
+ search_service_api_key: str
24
+ search_service_endpoint: str
25
+ search_service_api_version: typing.Optional[str]
26
+ index_name: typing.Optional[str]
27
+ filterable_metadata_field_keys: typing.Optional[typing.List[str]]
28
+ embedding_dimension: typing.Optional[int]
27
29
  class_name: typing.Optional[str]
28
30
 
29
31
  def json(self, **kwargs: typing.Any) -> str: