llama-cloud 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +295 -0
- llama_cloud/client.py +72 -0
- llama_cloud/core/__init__.py +17 -0
- llama_cloud/core/api_error.py +15 -0
- llama_cloud/core/client_wrapper.py +51 -0
- llama_cloud/core/datetime_utils.py +28 -0
- llama_cloud/core/jsonable_encoder.py +103 -0
- llama_cloud/core/remove_none_from_dict.py +11 -0
- llama_cloud/errors/__init__.py +5 -0
- llama_cloud/errors/unprocessable_entity_error.py +9 -0
- llama_cloud/resources/__init__.py +40 -0
- llama_cloud/resources/api_keys/__init__.py +2 -0
- llama_cloud/resources/api_keys/client.py +302 -0
- llama_cloud/resources/billing/__init__.py +2 -0
- llama_cloud/resources/billing/client.py +234 -0
- llama_cloud/resources/component_definitions/__init__.py +2 -0
- llama_cloud/resources/component_definitions/client.py +192 -0
- llama_cloud/resources/data_sinks/__init__.py +5 -0
- llama_cloud/resources/data_sinks/client.py +506 -0
- llama_cloud/resources/data_sinks/types/__init__.py +6 -0
- llama_cloud/resources/data_sinks/types/data_sink_update_component.py +7 -0
- llama_cloud/resources/data_sinks/types/data_sink_update_component_one.py +17 -0
- llama_cloud/resources/data_sources/__init__.py +5 -0
- llama_cloud/resources/data_sources/client.py +521 -0
- llama_cloud/resources/data_sources/types/__init__.py +7 -0
- llama_cloud/resources/data_sources/types/data_source_update_component.py +7 -0
- llama_cloud/resources/data_sources/types/data_source_update_component_one.py +19 -0
- llama_cloud/resources/data_sources/types/data_source_update_custom_metadata_value.py +7 -0
- llama_cloud/resources/deprecated/__init__.py +2 -0
- llama_cloud/resources/deprecated/client.py +982 -0
- llama_cloud/resources/evals/__init__.py +2 -0
- llama_cloud/resources/evals/client.py +745 -0
- llama_cloud/resources/files/__init__.py +5 -0
- llama_cloud/resources/files/client.py +560 -0
- llama_cloud/resources/files/types/__init__.py +5 -0
- llama_cloud/resources/files/types/file_create_resource_info_value.py +5 -0
- llama_cloud/resources/parsing/__init__.py +2 -0
- llama_cloud/resources/parsing/client.py +982 -0
- llama_cloud/resources/pipelines/__init__.py +5 -0
- llama_cloud/resources/pipelines/client.py +2599 -0
- llama_cloud/resources/pipelines/types/__init__.py +5 -0
- llama_cloud/resources/pipelines/types/pipeline_file_update_custom_metadata_value.py +7 -0
- llama_cloud/resources/projects/__init__.py +2 -0
- llama_cloud/resources/projects/client.py +1231 -0
- llama_cloud/types/__init__.py +253 -0
- llama_cloud/types/api_key.py +37 -0
- llama_cloud/types/azure_open_ai_embedding.py +75 -0
- llama_cloud/types/base.py +26 -0
- llama_cloud/types/base_prompt_template.py +44 -0
- llama_cloud/types/bedrock_embedding.py +56 -0
- llama_cloud/types/chat_message.py +35 -0
- llama_cloud/types/cloud_az_storage_blob_data_source.py +40 -0
- llama_cloud/types/cloud_chroma_vector_store.py +40 -0
- llama_cloud/types/cloud_document.py +36 -0
- llama_cloud/types/cloud_document_create.py +36 -0
- llama_cloud/types/cloud_gcs_data_source.py +37 -0
- llama_cloud/types/cloud_google_drive_data_source.py +36 -0
- llama_cloud/types/cloud_one_drive_data_source.py +38 -0
- llama_cloud/types/cloud_pinecone_vector_store.py +46 -0
- llama_cloud/types/cloud_postgres_vector_store.py +44 -0
- llama_cloud/types/cloud_qdrant_vector_store.py +48 -0
- llama_cloud/types/cloud_s_3_data_source.py +42 -0
- llama_cloud/types/cloud_sharepoint_data_source.py +38 -0
- llama_cloud/types/cloud_weaviate_vector_store.py +38 -0
- llama_cloud/types/code_splitter.py +46 -0
- llama_cloud/types/cohere_embedding.py +46 -0
- llama_cloud/types/configurable_data_sink_names.py +37 -0
- llama_cloud/types/configurable_data_source_names.py +41 -0
- llama_cloud/types/configurable_transformation_definition.py +45 -0
- llama_cloud/types/configurable_transformation_names.py +73 -0
- llama_cloud/types/configured_transformation_item.py +43 -0
- llama_cloud/types/configured_transformation_item_component.py +9 -0
- llama_cloud/types/configured_transformation_item_component_one.py +35 -0
- llama_cloud/types/data_sink.py +40 -0
- llama_cloud/types/data_sink_component.py +7 -0
- llama_cloud/types/data_sink_component_one.py +17 -0
- llama_cloud/types/data_sink_create.py +36 -0
- llama_cloud/types/data_sink_create_component.py +7 -0
- llama_cloud/types/data_sink_create_component_one.py +17 -0
- llama_cloud/types/data_sink_definition.py +41 -0
- llama_cloud/types/data_source.py +44 -0
- llama_cloud/types/data_source_component.py +7 -0
- llama_cloud/types/data_source_component_one.py +19 -0
- llama_cloud/types/data_source_create.py +40 -0
- llama_cloud/types/data_source_create_component.py +7 -0
- llama_cloud/types/data_source_create_component_one.py +19 -0
- llama_cloud/types/data_source_create_custom_metadata_value.py +7 -0
- llama_cloud/types/data_source_custom_metadata_value.py +7 -0
- llama_cloud/types/data_source_definition.py +41 -0
- llama_cloud/types/eval_dataset.py +37 -0
- llama_cloud/types/eval_dataset_job_params.py +36 -0
- llama_cloud/types/eval_dataset_job_record.py +59 -0
- llama_cloud/types/eval_execution_params.py +38 -0
- llama_cloud/types/eval_execution_params_override.py +38 -0
- llama_cloud/types/eval_llm_model_data.py +33 -0
- llama_cloud/types/eval_question.py +39 -0
- llama_cloud/types/eval_question_create.py +28 -0
- llama_cloud/types/eval_question_result.py +49 -0
- llama_cloud/types/file.py +46 -0
- llama_cloud/types/file_resource_info_value.py +5 -0
- llama_cloud/types/filter_condition.py +21 -0
- llama_cloud/types/filter_operator.py +65 -0
- llama_cloud/types/gemini_embedding.py +51 -0
- llama_cloud/types/html_node_parser.py +44 -0
- llama_cloud/types/http_validation_error.py +29 -0
- llama_cloud/types/hugging_face_inference_api_embedding.py +68 -0
- llama_cloud/types/hugging_face_inference_api_embedding_token.py +5 -0
- llama_cloud/types/json_node_parser.py +43 -0
- llama_cloud/types/llama_parse_supported_file_extensions.py +161 -0
- llama_cloud/types/llm.py +55 -0
- llama_cloud/types/local_eval.py +46 -0
- llama_cloud/types/local_eval_results.py +37 -0
- llama_cloud/types/local_eval_sets.py +30 -0
- llama_cloud/types/managed_ingestion_status.py +37 -0
- llama_cloud/types/markdown_element_node_parser.py +49 -0
- llama_cloud/types/markdown_node_parser.py +43 -0
- llama_cloud/types/message_role.py +45 -0
- llama_cloud/types/metadata_filter.py +41 -0
- llama_cloud/types/metadata_filter_value.py +5 -0
- llama_cloud/types/metadata_filters.py +41 -0
- llama_cloud/types/metadata_filters_filters_item.py +8 -0
- llama_cloud/types/metric_result.py +30 -0
- llama_cloud/types/node_parser.py +37 -0
- llama_cloud/types/object_type.py +33 -0
- llama_cloud/types/open_ai_embedding.py +73 -0
- llama_cloud/types/parser_languages.py +361 -0
- llama_cloud/types/parsing_history_item.py +36 -0
- llama_cloud/types/parsing_job.py +30 -0
- llama_cloud/types/parsing_job_json_result.py +29 -0
- llama_cloud/types/parsing_job_markdown_result.py +29 -0
- llama_cloud/types/parsing_job_text_result.py +29 -0
- llama_cloud/types/parsing_usage.py +29 -0
- llama_cloud/types/pipeline.py +64 -0
- llama_cloud/types/pipeline_create.py +61 -0
- llama_cloud/types/pipeline_data_source.py +46 -0
- llama_cloud/types/pipeline_data_source_component.py +7 -0
- llama_cloud/types/pipeline_data_source_component_one.py +19 -0
- llama_cloud/types/pipeline_data_source_create.py +32 -0
- llama_cloud/types/pipeline_data_source_custom_metadata_value.py +7 -0
- llama_cloud/types/pipeline_deployment.py +38 -0
- llama_cloud/types/pipeline_file.py +52 -0
- llama_cloud/types/pipeline_file_create.py +36 -0
- llama_cloud/types/pipeline_file_create_custom_metadata_value.py +7 -0
- llama_cloud/types/pipeline_file_custom_metadata_value.py +7 -0
- llama_cloud/types/pipeline_file_resource_info_value.py +7 -0
- llama_cloud/types/pipeline_file_status_response.py +35 -0
- llama_cloud/types/pipeline_type.py +21 -0
- llama_cloud/types/pooling.py +29 -0
- llama_cloud/types/preset_retrieval_params.py +40 -0
- llama_cloud/types/presigned_url.py +36 -0
- llama_cloud/types/project.py +42 -0
- llama_cloud/types/project_create.py +32 -0
- llama_cloud/types/prompt_mixin_prompts.py +36 -0
- llama_cloud/types/prompt_spec.py +35 -0
- llama_cloud/types/pydantic_program_mode.py +41 -0
- llama_cloud/types/related_node_info.py +37 -0
- llama_cloud/types/retrieve_results.py +40 -0
- llama_cloud/types/sentence_splitter.py +48 -0
- llama_cloud/types/simple_file_node_parser.py +44 -0
- llama_cloud/types/status_enum.py +33 -0
- llama_cloud/types/supported_eval_llm_model.py +35 -0
- llama_cloud/types/supported_eval_llm_model_names.py +29 -0
- llama_cloud/types/text_node.py +62 -0
- llama_cloud/types/text_node_relationships_value.py +7 -0
- llama_cloud/types/text_node_with_score.py +36 -0
- llama_cloud/types/token_text_splitter.py +43 -0
- llama_cloud/types/transformation_category_names.py +21 -0
- llama_cloud/types/validation_error.py +31 -0
- llama_cloud/types/validation_error_loc_item.py +5 -0
- llama_cloud-0.0.1.dist-info/LICENSE +21 -0
- llama_cloud-0.0.1.dist-info/METADATA +25 -0
- llama_cloud-0.0.1.dist-info/RECORD +173 -0
- llama_cloud-0.0.1.dist-info/WHEEL +4 -0
|
@@ -0,0 +1,64 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .configured_transformation_item import ConfiguredTransformationItem
|
|
8
|
+
from .data_sink import DataSink
|
|
9
|
+
from .eval_execution_params import EvalExecutionParams
|
|
10
|
+
from .managed_ingestion_status import ManagedIngestionStatus
|
|
11
|
+
from .pipeline_type import PipelineType
|
|
12
|
+
from .preset_retrieval_params import PresetRetrievalParams
|
|
13
|
+
|
|
14
|
+
try:
|
|
15
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
16
|
+
except ImportError:
|
|
17
|
+
import pydantic # type: ignore
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class Pipeline(pydantic.BaseModel):
|
|
21
|
+
"""
|
|
22
|
+
Schema for a pipeline.
|
|
23
|
+
"""
|
|
24
|
+
|
|
25
|
+
configured_transformations: typing.List[ConfiguredTransformationItem]
|
|
26
|
+
id: str = pydantic.Field(description="Unique identifier")
|
|
27
|
+
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
28
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
29
|
+
name: str
|
|
30
|
+
project_id: str
|
|
31
|
+
pipeline_type: typing.Optional[PipelineType] = pydantic.Field(
|
|
32
|
+
description="Type of pipeline. Either PLAYGROUND or MANAGED."
|
|
33
|
+
)
|
|
34
|
+
managed_pipeline_id: typing.Optional[str] = pydantic.Field(
|
|
35
|
+
description="The ID of the ManagedPipeline this playground pipeline is linked to."
|
|
36
|
+
)
|
|
37
|
+
preset_retrieval_parameters: typing.Optional[PresetRetrievalParams] = pydantic.Field(
|
|
38
|
+
description="Preset retrieval parameters for the pipeline."
|
|
39
|
+
)
|
|
40
|
+
eval_parameters: typing.Optional[EvalExecutionParams] = pydantic.Field(
|
|
41
|
+
description="Eval parameters for the pipeline."
|
|
42
|
+
)
|
|
43
|
+
llama_parse_enabled: typing.Optional[bool] = pydantic.Field(
|
|
44
|
+
description="Whether to use LlamaParse during pipeline execution."
|
|
45
|
+
)
|
|
46
|
+
managed_ingestion_status: typing.Optional[ManagedIngestionStatus] = pydantic.Field(
|
|
47
|
+
description="Status of Managed Ingestion."
|
|
48
|
+
)
|
|
49
|
+
data_sink: typing.Optional[DataSink] = pydantic.Field(
|
|
50
|
+
description="The data sink for the pipeline. If None, the pipeline will use the fully managed data sink."
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
54
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
55
|
+
return super().json(**kwargs_with_defaults)
|
|
56
|
+
|
|
57
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
58
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
59
|
+
return super().dict(**kwargs_with_defaults)
|
|
60
|
+
|
|
61
|
+
class Config:
|
|
62
|
+
frozen = True
|
|
63
|
+
smart_union = True
|
|
64
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .configured_transformation_item import ConfiguredTransformationItem
|
|
8
|
+
from .data_sink_create import DataSinkCreate
|
|
9
|
+
from .eval_execution_params import EvalExecutionParams
|
|
10
|
+
from .pipeline_type import PipelineType
|
|
11
|
+
from .preset_retrieval_params import PresetRetrievalParams
|
|
12
|
+
|
|
13
|
+
try:
|
|
14
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
15
|
+
except ImportError:
|
|
16
|
+
import pydantic # type: ignore
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class PipelineCreate(pydantic.BaseModel):
|
|
20
|
+
"""
|
|
21
|
+
Schema for creating a pipeline.
|
|
22
|
+
"""
|
|
23
|
+
|
|
24
|
+
configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]] = pydantic.Field(
|
|
25
|
+
description="List of configured transformations."
|
|
26
|
+
)
|
|
27
|
+
data_sink_id: typing.Optional[str] = pydantic.Field(
|
|
28
|
+
description="Data sink ID. When provided instead of data_sink, the data sink will be looked up by ID."
|
|
29
|
+
)
|
|
30
|
+
data_sink: typing.Optional[DataSinkCreate] = pydantic.Field(
|
|
31
|
+
description="Data sink. When provided instead of data_sink_id, the data sink will be created."
|
|
32
|
+
)
|
|
33
|
+
preset_retrieval_parameters: typing.Optional[PresetRetrievalParams] = pydantic.Field(
|
|
34
|
+
description="Preset retrieval parameters for the pipeline."
|
|
35
|
+
)
|
|
36
|
+
eval_parameters: typing.Optional[EvalExecutionParams] = pydantic.Field(
|
|
37
|
+
description="Eval parameters for the pipeline."
|
|
38
|
+
)
|
|
39
|
+
llama_parse_enabled: typing.Optional[bool] = pydantic.Field(
|
|
40
|
+
description="Whether to use LlamaParse during pipeline execution."
|
|
41
|
+
)
|
|
42
|
+
name: str
|
|
43
|
+
pipeline_type: typing.Optional[PipelineType] = pydantic.Field(
|
|
44
|
+
description="Type of pipeline. Either PLAYGROUND or MANAGED."
|
|
45
|
+
)
|
|
46
|
+
managed_pipeline_id: typing.Optional[str] = pydantic.Field(
|
|
47
|
+
description="The ID of the ManagedPipeline this playground pipeline is linked to."
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
51
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
52
|
+
return super().json(**kwargs_with_defaults)
|
|
53
|
+
|
|
54
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
55
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
56
|
+
return super().dict(**kwargs_with_defaults)
|
|
57
|
+
|
|
58
|
+
class Config:
|
|
59
|
+
frozen = True
|
|
60
|
+
smart_union = True
|
|
61
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .configurable_data_source_names import ConfigurableDataSourceNames
|
|
8
|
+
from .pipeline_data_source_component import PipelineDataSourceComponent
|
|
9
|
+
from .pipeline_data_source_custom_metadata_value import PipelineDataSourceCustomMetadataValue
|
|
10
|
+
|
|
11
|
+
try:
|
|
12
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
+
except ImportError:
|
|
14
|
+
import pydantic # type: ignore
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class PipelineDataSource(pydantic.BaseModel):
|
|
18
|
+
"""
|
|
19
|
+
Schema for a data source in a pipeline.
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
id: str = pydantic.Field(description="Unique identifier")
|
|
23
|
+
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
24
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
25
|
+
name: str = pydantic.Field(description="The name of the data source.")
|
|
26
|
+
source_type: ConfigurableDataSourceNames
|
|
27
|
+
custom_metadata: typing.Optional[typing.Dict[str, PipelineDataSourceCustomMetadataValue]] = pydantic.Field(
|
|
28
|
+
description="Custom metadata that will be present on all data loaded from the data source"
|
|
29
|
+
)
|
|
30
|
+
component: PipelineDataSourceComponent
|
|
31
|
+
project_id: str
|
|
32
|
+
data_source_id: str = pydantic.Field(description="The ID of the data source.")
|
|
33
|
+
pipeline_id: str = pydantic.Field(description="The ID of the pipeline.")
|
|
34
|
+
|
|
35
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
36
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
37
|
+
return super().json(**kwargs_with_defaults)
|
|
38
|
+
|
|
39
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
40
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
41
|
+
return super().dict(**kwargs_with_defaults)
|
|
42
|
+
|
|
43
|
+
class Config:
|
|
44
|
+
frozen = True
|
|
45
|
+
smart_union = True
|
|
46
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import typing
|
|
4
|
+
|
|
5
|
+
from .pipeline_data_source_component_one import PipelineDataSourceComponentOne
|
|
6
|
+
|
|
7
|
+
PipelineDataSourceComponent = typing.Union[typing.Dict[str, typing.Any], PipelineDataSourceComponentOne]
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import typing
|
|
4
|
+
|
|
5
|
+
from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
|
|
6
|
+
from .cloud_gcs_data_source import CloudGcsDataSource
|
|
7
|
+
from .cloud_google_drive_data_source import CloudGoogleDriveDataSource
|
|
8
|
+
from .cloud_one_drive_data_source import CloudOneDriveDataSource
|
|
9
|
+
from .cloud_s_3_data_source import CloudS3DataSource
|
|
10
|
+
from .cloud_sharepoint_data_source import CloudSharepointDataSource
|
|
11
|
+
|
|
12
|
+
PipelineDataSourceComponentOne = typing.Union[
|
|
13
|
+
CloudS3DataSource,
|
|
14
|
+
CloudAzStorageBlobDataSource,
|
|
15
|
+
CloudGcsDataSource,
|
|
16
|
+
CloudGoogleDriveDataSource,
|
|
17
|
+
CloudOneDriveDataSource,
|
|
18
|
+
CloudSharepointDataSource,
|
|
19
|
+
]
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
10
|
+
except ImportError:
|
|
11
|
+
import pydantic # type: ignore
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class PipelineDataSourceCreate(pydantic.BaseModel):
|
|
15
|
+
"""
|
|
16
|
+
Schema for creating an association between a data source and a pipeline.
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
data_source_id: str = pydantic.Field(description="The ID of the data source.")
|
|
20
|
+
|
|
21
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
22
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
23
|
+
return super().json(**kwargs_with_defaults)
|
|
24
|
+
|
|
25
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
26
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
27
|
+
return super().dict(**kwargs_with_defaults)
|
|
28
|
+
|
|
29
|
+
class Config:
|
|
30
|
+
frozen = True
|
|
31
|
+
smart_union = True
|
|
32
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .managed_ingestion_status import ManagedIngestionStatus
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
11
|
+
except ImportError:
|
|
12
|
+
import pydantic # type: ignore
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class PipelineDeployment(pydantic.BaseModel):
|
|
16
|
+
"""
|
|
17
|
+
Base schema model containing common database fields.
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
id: str = pydantic.Field(description="Unique identifier")
|
|
21
|
+
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
22
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
23
|
+
status: ManagedIngestionStatus = pydantic.Field(description="Status of the pipeline deployment.")
|
|
24
|
+
started_at: typing.Optional[dt.datetime] = pydantic.Field(description="Time the pipeline deployment started.")
|
|
25
|
+
ended_at: typing.Optional[dt.datetime] = pydantic.Field(description="Time the pipeline deployment finished.")
|
|
26
|
+
|
|
27
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
28
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
29
|
+
return super().json(**kwargs_with_defaults)
|
|
30
|
+
|
|
31
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
32
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
33
|
+
return super().dict(**kwargs_with_defaults)
|
|
34
|
+
|
|
35
|
+
class Config:
|
|
36
|
+
frozen = True
|
|
37
|
+
smart_union = True
|
|
38
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,52 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .pipeline_file_custom_metadata_value import PipelineFileCustomMetadataValue
|
|
8
|
+
from .pipeline_file_resource_info_value import PipelineFileResourceInfoValue
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
12
|
+
except ImportError:
|
|
13
|
+
import pydantic # type: ignore
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class PipelineFile(pydantic.BaseModel):
|
|
17
|
+
"""
|
|
18
|
+
Schema for a file that is associated with a pipeline.
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
id: str = pydantic.Field(description="Unique identifier")
|
|
22
|
+
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
23
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
24
|
+
name: typing.Optional[str]
|
|
25
|
+
file_size: typing.Optional[int] = pydantic.Field(description="Size of the file in bytes")
|
|
26
|
+
file_type: typing.Optional[str] = pydantic.Field(description="File type (e.g. pdf, docx, etc.)")
|
|
27
|
+
project_id: str = pydantic.Field(description="The ID of the project that the file belongs to")
|
|
28
|
+
last_modified_at: typing.Optional[dt.datetime] = pydantic.Field(description="The last modified time of the file")
|
|
29
|
+
resource_info: typing.Optional[typing.Dict[str, PipelineFileResourceInfoValue]] = pydantic.Field(
|
|
30
|
+
description="Resource information for the file"
|
|
31
|
+
)
|
|
32
|
+
data_source_id: typing.Optional[str] = pydantic.Field(
|
|
33
|
+
description="The ID of the data source that the file belongs to"
|
|
34
|
+
)
|
|
35
|
+
file_id: typing.Optional[str] = pydantic.Field(description="The ID of the file")
|
|
36
|
+
pipeline_id: str = pydantic.Field(description="The ID of the pipeline that the file is associated with")
|
|
37
|
+
custom_metadata: typing.Optional[typing.Dict[str, PipelineFileCustomMetadataValue]] = pydantic.Field(
|
|
38
|
+
description="Custom metadata for the file"
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
42
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
43
|
+
return super().json(**kwargs_with_defaults)
|
|
44
|
+
|
|
45
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
46
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
47
|
+
return super().dict(**kwargs_with_defaults)
|
|
48
|
+
|
|
49
|
+
class Config:
|
|
50
|
+
frozen = True
|
|
51
|
+
smart_union = True
|
|
52
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .pipeline_file_create_custom_metadata_value import PipelineFileCreateCustomMetadataValue
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
11
|
+
except ImportError:
|
|
12
|
+
import pydantic # type: ignore
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class PipelineFileCreate(pydantic.BaseModel):
|
|
16
|
+
"""
|
|
17
|
+
Schema for creating a file that is associated with a pipeline.
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
file_id: str = pydantic.Field(description="The ID of the file")
|
|
21
|
+
custom_metadata: typing.Optional[typing.Dict[str, PipelineFileCreateCustomMetadataValue]] = pydantic.Field(
|
|
22
|
+
description="Custom metadata for the file"
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
26
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
27
|
+
return super().json(**kwargs_with_defaults)
|
|
28
|
+
|
|
29
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
30
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
+
return super().dict(**kwargs_with_defaults)
|
|
32
|
+
|
|
33
|
+
class Config:
|
|
34
|
+
frozen = True
|
|
35
|
+
smart_union = True
|
|
36
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .managed_ingestion_status import ManagedIngestionStatus
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
11
|
+
except ImportError:
|
|
12
|
+
import pydantic # type: ignore
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class PipelineFileStatusResponse(pydantic.BaseModel):
|
|
16
|
+
"""
|
|
17
|
+
Schema for the status of a pipeline file.
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
file_id: str = pydantic.Field(description="The ID of the file")
|
|
21
|
+
pipeline_id: str = pydantic.Field(description="The ID of the pipeline")
|
|
22
|
+
status: ManagedIngestionStatus = pydantic.Field(description="The status of the pipeline file")
|
|
23
|
+
|
|
24
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
25
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
26
|
+
return super().json(**kwargs_with_defaults)
|
|
27
|
+
|
|
28
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
29
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
30
|
+
return super().dict(**kwargs_with_defaults)
|
|
31
|
+
|
|
32
|
+
class Config:
|
|
33
|
+
frozen = True
|
|
34
|
+
smart_union = True
|
|
35
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class PipelineType(str, enum.Enum):
|
|
10
|
+
"""
|
|
11
|
+
Enum for representing the type of a pipeline
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
PLAYGROUND = "PLAYGROUND"
|
|
15
|
+
MANAGED = "MANAGED"
|
|
16
|
+
|
|
17
|
+
def visit(self, playground: typing.Callable[[], T_Result], managed: typing.Callable[[], T_Result]) -> T_Result:
|
|
18
|
+
if self is PipelineType.PLAYGROUND:
|
|
19
|
+
return playground()
|
|
20
|
+
if self is PipelineType.MANAGED:
|
|
21
|
+
return managed()
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class Pooling(str, enum.Enum):
|
|
10
|
+
"""
|
|
11
|
+
Enum of possible pooling choices with pooling behaviors.
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
CLS = "cls"
|
|
15
|
+
MEAN = "mean"
|
|
16
|
+
LAST = "last"
|
|
17
|
+
|
|
18
|
+
def visit(
|
|
19
|
+
self,
|
|
20
|
+
cls: typing.Callable[[], T_Result],
|
|
21
|
+
mean: typing.Callable[[], T_Result],
|
|
22
|
+
last: typing.Callable[[], T_Result],
|
|
23
|
+
) -> T_Result:
|
|
24
|
+
if self is Pooling.CLS:
|
|
25
|
+
return cls()
|
|
26
|
+
if self is Pooling.MEAN:
|
|
27
|
+
return mean()
|
|
28
|
+
if self is Pooling.LAST:
|
|
29
|
+
return last()
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .metadata_filters import MetadataFilters
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
11
|
+
except ImportError:
|
|
12
|
+
import pydantic # type: ignore
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class PresetRetrievalParams(pydantic.BaseModel):
|
|
16
|
+
"""
|
|
17
|
+
Schema for the search params for an retrieval execution that can be preset for a pipeline.
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
dense_similarity_top_k: typing.Optional[int] = pydantic.Field(description="Number of nodes for dense retrieval.")
|
|
21
|
+
sparse_similarity_top_k: typing.Optional[int] = pydantic.Field(description="Number of nodes for sparse retrieval.")
|
|
22
|
+
enable_reranking: typing.Optional[bool] = pydantic.Field(description="Enable reranking for retrieval")
|
|
23
|
+
rerank_top_n: typing.Optional[int] = pydantic.Field(description="Number of reranked nodes for returning.")
|
|
24
|
+
alpha: typing.Optional[float] = pydantic.Field(
|
|
25
|
+
description="Alpha value for hybrid retrieval to determine the weights between dense and sparse retrieval. 0 is sparse retrieval and 1 is dense retrieval."
|
|
26
|
+
)
|
|
27
|
+
search_filters: typing.Optional[MetadataFilters] = pydantic.Field(description="Search filters for retrieval.")
|
|
28
|
+
|
|
29
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
30
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
+
return super().json(**kwargs_with_defaults)
|
|
32
|
+
|
|
33
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
34
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
35
|
+
return super().dict(**kwargs_with_defaults)
|
|
36
|
+
|
|
37
|
+
class Config:
|
|
38
|
+
frozen = True
|
|
39
|
+
smart_union = True
|
|
40
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
10
|
+
except ImportError:
|
|
11
|
+
import pydantic # type: ignore
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class PresignedUrl(pydantic.BaseModel):
|
|
15
|
+
"""
|
|
16
|
+
Schema for a presigned URL.
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
url: str = pydantic.Field(description="A presigned URL for IO operations against a private file")
|
|
20
|
+
expires_at: dt.datetime = pydantic.Field(description="The time at which the presigned URL expires")
|
|
21
|
+
form_fields: typing.Optional[typing.Dict[str, str]] = pydantic.Field(
|
|
22
|
+
description="Form fields for a presigned POST request"
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
26
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
27
|
+
return super().json(**kwargs_with_defaults)
|
|
28
|
+
|
|
29
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
30
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
31
|
+
return super().dict(**kwargs_with_defaults)
|
|
32
|
+
|
|
33
|
+
class Config:
|
|
34
|
+
frozen = True
|
|
35
|
+
smart_union = True
|
|
36
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .pipeline import Pipeline
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
11
|
+
except ImportError:
|
|
12
|
+
import pydantic # type: ignore
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class Project(pydantic.BaseModel):
|
|
16
|
+
"""
|
|
17
|
+
Schema for a project.
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
name: str
|
|
21
|
+
id: str = pydantic.Field(description="Unique identifier")
|
|
22
|
+
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
23
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
24
|
+
pipelines: typing.List[Pipeline]
|
|
25
|
+
ad_hoc_eval_dataset_id: typing.Optional[str]
|
|
26
|
+
user_id: str = pydantic.Field(description="The user ID of the project owner.")
|
|
27
|
+
is_default: typing.Optional[bool] = pydantic.Field(
|
|
28
|
+
description="Whether this project is the default project for the user."
|
|
29
|
+
)
|
|
30
|
+
|
|
31
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
32
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
33
|
+
return super().json(**kwargs_with_defaults)
|
|
34
|
+
|
|
35
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
36
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
37
|
+
return super().dict(**kwargs_with_defaults)
|
|
38
|
+
|
|
39
|
+
class Config:
|
|
40
|
+
frozen = True
|
|
41
|
+
smart_union = True
|
|
42
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
10
|
+
except ImportError:
|
|
11
|
+
import pydantic # type: ignore
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class ProjectCreate(pydantic.BaseModel):
|
|
15
|
+
"""
|
|
16
|
+
Schema for creating a project.
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
name: str
|
|
20
|
+
|
|
21
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
22
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
23
|
+
return super().json(**kwargs_with_defaults)
|
|
24
|
+
|
|
25
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
26
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
27
|
+
return super().dict(**kwargs_with_defaults)
|
|
28
|
+
|
|
29
|
+
class Config:
|
|
30
|
+
frozen = True
|
|
31
|
+
smart_union = True
|
|
32
|
+
json_encoders = {dt.datetime: serialize_datetime}
|