llama-cloud 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +295 -0
- llama_cloud/client.py +72 -0
- llama_cloud/core/__init__.py +17 -0
- llama_cloud/core/api_error.py +15 -0
- llama_cloud/core/client_wrapper.py +51 -0
- llama_cloud/core/datetime_utils.py +28 -0
- llama_cloud/core/jsonable_encoder.py +103 -0
- llama_cloud/core/remove_none_from_dict.py +11 -0
- llama_cloud/errors/__init__.py +5 -0
- llama_cloud/errors/unprocessable_entity_error.py +9 -0
- llama_cloud/resources/__init__.py +40 -0
- llama_cloud/resources/api_keys/__init__.py +2 -0
- llama_cloud/resources/api_keys/client.py +302 -0
- llama_cloud/resources/billing/__init__.py +2 -0
- llama_cloud/resources/billing/client.py +234 -0
- llama_cloud/resources/component_definitions/__init__.py +2 -0
- llama_cloud/resources/component_definitions/client.py +192 -0
- llama_cloud/resources/data_sinks/__init__.py +5 -0
- llama_cloud/resources/data_sinks/client.py +506 -0
- llama_cloud/resources/data_sinks/types/__init__.py +6 -0
- llama_cloud/resources/data_sinks/types/data_sink_update_component.py +7 -0
- llama_cloud/resources/data_sinks/types/data_sink_update_component_one.py +17 -0
- llama_cloud/resources/data_sources/__init__.py +5 -0
- llama_cloud/resources/data_sources/client.py +521 -0
- llama_cloud/resources/data_sources/types/__init__.py +7 -0
- llama_cloud/resources/data_sources/types/data_source_update_component.py +7 -0
- llama_cloud/resources/data_sources/types/data_source_update_component_one.py +19 -0
- llama_cloud/resources/data_sources/types/data_source_update_custom_metadata_value.py +7 -0
- llama_cloud/resources/deprecated/__init__.py +2 -0
- llama_cloud/resources/deprecated/client.py +982 -0
- llama_cloud/resources/evals/__init__.py +2 -0
- llama_cloud/resources/evals/client.py +745 -0
- llama_cloud/resources/files/__init__.py +5 -0
- llama_cloud/resources/files/client.py +560 -0
- llama_cloud/resources/files/types/__init__.py +5 -0
- llama_cloud/resources/files/types/file_create_resource_info_value.py +5 -0
- llama_cloud/resources/parsing/__init__.py +2 -0
- llama_cloud/resources/parsing/client.py +982 -0
- llama_cloud/resources/pipelines/__init__.py +5 -0
- llama_cloud/resources/pipelines/client.py +2599 -0
- llama_cloud/resources/pipelines/types/__init__.py +5 -0
- llama_cloud/resources/pipelines/types/pipeline_file_update_custom_metadata_value.py +7 -0
- llama_cloud/resources/projects/__init__.py +2 -0
- llama_cloud/resources/projects/client.py +1231 -0
- llama_cloud/types/__init__.py +253 -0
- llama_cloud/types/api_key.py +37 -0
- llama_cloud/types/azure_open_ai_embedding.py +75 -0
- llama_cloud/types/base.py +26 -0
- llama_cloud/types/base_prompt_template.py +44 -0
- llama_cloud/types/bedrock_embedding.py +56 -0
- llama_cloud/types/chat_message.py +35 -0
- llama_cloud/types/cloud_az_storage_blob_data_source.py +40 -0
- llama_cloud/types/cloud_chroma_vector_store.py +40 -0
- llama_cloud/types/cloud_document.py +36 -0
- llama_cloud/types/cloud_document_create.py +36 -0
- llama_cloud/types/cloud_gcs_data_source.py +37 -0
- llama_cloud/types/cloud_google_drive_data_source.py +36 -0
- llama_cloud/types/cloud_one_drive_data_source.py +38 -0
- llama_cloud/types/cloud_pinecone_vector_store.py +46 -0
- llama_cloud/types/cloud_postgres_vector_store.py +44 -0
- llama_cloud/types/cloud_qdrant_vector_store.py +48 -0
- llama_cloud/types/cloud_s_3_data_source.py +42 -0
- llama_cloud/types/cloud_sharepoint_data_source.py +38 -0
- llama_cloud/types/cloud_weaviate_vector_store.py +38 -0
- llama_cloud/types/code_splitter.py +46 -0
- llama_cloud/types/cohere_embedding.py +46 -0
- llama_cloud/types/configurable_data_sink_names.py +37 -0
- llama_cloud/types/configurable_data_source_names.py +41 -0
- llama_cloud/types/configurable_transformation_definition.py +45 -0
- llama_cloud/types/configurable_transformation_names.py +73 -0
- llama_cloud/types/configured_transformation_item.py +43 -0
- llama_cloud/types/configured_transformation_item_component.py +9 -0
- llama_cloud/types/configured_transformation_item_component_one.py +35 -0
- llama_cloud/types/data_sink.py +40 -0
- llama_cloud/types/data_sink_component.py +7 -0
- llama_cloud/types/data_sink_component_one.py +17 -0
- llama_cloud/types/data_sink_create.py +36 -0
- llama_cloud/types/data_sink_create_component.py +7 -0
- llama_cloud/types/data_sink_create_component_one.py +17 -0
- llama_cloud/types/data_sink_definition.py +41 -0
- llama_cloud/types/data_source.py +44 -0
- llama_cloud/types/data_source_component.py +7 -0
- llama_cloud/types/data_source_component_one.py +19 -0
- llama_cloud/types/data_source_create.py +40 -0
- llama_cloud/types/data_source_create_component.py +7 -0
- llama_cloud/types/data_source_create_component_one.py +19 -0
- llama_cloud/types/data_source_create_custom_metadata_value.py +7 -0
- llama_cloud/types/data_source_custom_metadata_value.py +7 -0
- llama_cloud/types/data_source_definition.py +41 -0
- llama_cloud/types/eval_dataset.py +37 -0
- llama_cloud/types/eval_dataset_job_params.py +36 -0
- llama_cloud/types/eval_dataset_job_record.py +59 -0
- llama_cloud/types/eval_execution_params.py +38 -0
- llama_cloud/types/eval_execution_params_override.py +38 -0
- llama_cloud/types/eval_llm_model_data.py +33 -0
- llama_cloud/types/eval_question.py +39 -0
- llama_cloud/types/eval_question_create.py +28 -0
- llama_cloud/types/eval_question_result.py +49 -0
- llama_cloud/types/file.py +46 -0
- llama_cloud/types/file_resource_info_value.py +5 -0
- llama_cloud/types/filter_condition.py +21 -0
- llama_cloud/types/filter_operator.py +65 -0
- llama_cloud/types/gemini_embedding.py +51 -0
- llama_cloud/types/html_node_parser.py +44 -0
- llama_cloud/types/http_validation_error.py +29 -0
- llama_cloud/types/hugging_face_inference_api_embedding.py +68 -0
- llama_cloud/types/hugging_face_inference_api_embedding_token.py +5 -0
- llama_cloud/types/json_node_parser.py +43 -0
- llama_cloud/types/llama_parse_supported_file_extensions.py +161 -0
- llama_cloud/types/llm.py +55 -0
- llama_cloud/types/local_eval.py +46 -0
- llama_cloud/types/local_eval_results.py +37 -0
- llama_cloud/types/local_eval_sets.py +30 -0
- llama_cloud/types/managed_ingestion_status.py +37 -0
- llama_cloud/types/markdown_element_node_parser.py +49 -0
- llama_cloud/types/markdown_node_parser.py +43 -0
- llama_cloud/types/message_role.py +45 -0
- llama_cloud/types/metadata_filter.py +41 -0
- llama_cloud/types/metadata_filter_value.py +5 -0
- llama_cloud/types/metadata_filters.py +41 -0
- llama_cloud/types/metadata_filters_filters_item.py +8 -0
- llama_cloud/types/metric_result.py +30 -0
- llama_cloud/types/node_parser.py +37 -0
- llama_cloud/types/object_type.py +33 -0
- llama_cloud/types/open_ai_embedding.py +73 -0
- llama_cloud/types/parser_languages.py +361 -0
- llama_cloud/types/parsing_history_item.py +36 -0
- llama_cloud/types/parsing_job.py +30 -0
- llama_cloud/types/parsing_job_json_result.py +29 -0
- llama_cloud/types/parsing_job_markdown_result.py +29 -0
- llama_cloud/types/parsing_job_text_result.py +29 -0
- llama_cloud/types/parsing_usage.py +29 -0
- llama_cloud/types/pipeline.py +64 -0
- llama_cloud/types/pipeline_create.py +61 -0
- llama_cloud/types/pipeline_data_source.py +46 -0
- llama_cloud/types/pipeline_data_source_component.py +7 -0
- llama_cloud/types/pipeline_data_source_component_one.py +19 -0
- llama_cloud/types/pipeline_data_source_create.py +32 -0
- llama_cloud/types/pipeline_data_source_custom_metadata_value.py +7 -0
- llama_cloud/types/pipeline_deployment.py +38 -0
- llama_cloud/types/pipeline_file.py +52 -0
- llama_cloud/types/pipeline_file_create.py +36 -0
- llama_cloud/types/pipeline_file_create_custom_metadata_value.py +7 -0
- llama_cloud/types/pipeline_file_custom_metadata_value.py +7 -0
- llama_cloud/types/pipeline_file_resource_info_value.py +7 -0
- llama_cloud/types/pipeline_file_status_response.py +35 -0
- llama_cloud/types/pipeline_type.py +21 -0
- llama_cloud/types/pooling.py +29 -0
- llama_cloud/types/preset_retrieval_params.py +40 -0
- llama_cloud/types/presigned_url.py +36 -0
- llama_cloud/types/project.py +42 -0
- llama_cloud/types/project_create.py +32 -0
- llama_cloud/types/prompt_mixin_prompts.py +36 -0
- llama_cloud/types/prompt_spec.py +35 -0
- llama_cloud/types/pydantic_program_mode.py +41 -0
- llama_cloud/types/related_node_info.py +37 -0
- llama_cloud/types/retrieve_results.py +40 -0
- llama_cloud/types/sentence_splitter.py +48 -0
- llama_cloud/types/simple_file_node_parser.py +44 -0
- llama_cloud/types/status_enum.py +33 -0
- llama_cloud/types/supported_eval_llm_model.py +35 -0
- llama_cloud/types/supported_eval_llm_model_names.py +29 -0
- llama_cloud/types/text_node.py +62 -0
- llama_cloud/types/text_node_relationships_value.py +7 -0
- llama_cloud/types/text_node_with_score.py +36 -0
- llama_cloud/types/token_text_splitter.py +43 -0
- llama_cloud/types/transformation_category_names.py +21 -0
- llama_cloud/types/validation_error.py +31 -0
- llama_cloud/types/validation_error_loc_item.py +5 -0
- llama_cloud-0.0.1.dist-info/LICENSE +21 -0
- llama_cloud-0.0.1.dist-info/METADATA +25 -0
- llama_cloud-0.0.1.dist-info/RECORD +173 -0
- llama_cloud-0.0.1.dist-info/WHEEL +4 -0
|
@@ -0,0 +1,59 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
import typing_extensions
|
|
7
|
+
|
|
8
|
+
from ..core.datetime_utils import serialize_datetime
|
|
9
|
+
from .base import Base
|
|
10
|
+
from .eval_dataset_job_params import EvalDatasetJobParams
|
|
11
|
+
from .status_enum import StatusEnum
|
|
12
|
+
|
|
13
|
+
try:
|
|
14
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
15
|
+
except ImportError:
|
|
16
|
+
import pydantic # type: ignore
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class EvalDatasetJobRecord(pydantic.BaseModel):
|
|
20
|
+
"""
|
|
21
|
+
Schema for job that evaluates an EvalDataset against a pipeline.
|
|
22
|
+
"""
|
|
23
|
+
|
|
24
|
+
job_name: typing_extensions.Literal["eval_dataset_job"]
|
|
25
|
+
partitions: typing.Dict[str, str] = pydantic.Field(
|
|
26
|
+
description="The partitions for this execution. Used for determining where to save job output."
|
|
27
|
+
)
|
|
28
|
+
parameters: typing.Optional[EvalDatasetJobParams] = pydantic.Field(
|
|
29
|
+
description="Additional input parameters for the eval execution."
|
|
30
|
+
)
|
|
31
|
+
session_id: typing.Optional[str] = pydantic.Field(
|
|
32
|
+
description="The upstream request ID that created this job. Used for tracking the job across services."
|
|
33
|
+
)
|
|
34
|
+
correlation_id: typing.Optional[str] = pydantic.Field(
|
|
35
|
+
description="The correlation ID for this job. Used for tracking the job across services."
|
|
36
|
+
)
|
|
37
|
+
parent_job_execution_id: typing.Optional[str] = pydantic.Field(description="The ID of the parent job execution.")
|
|
38
|
+
id: typing.Optional[str] = pydantic.Field(description="Unique identifier")
|
|
39
|
+
status: StatusEnum
|
|
40
|
+
error_message: typing.Optional[str]
|
|
41
|
+
attempts: typing.Optional[int] = pydantic.Field(description="The number of times this job has been attempted")
|
|
42
|
+
started_at: typing.Optional[dt.datetime]
|
|
43
|
+
ended_at: typing.Optional[dt.datetime]
|
|
44
|
+
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
45
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
46
|
+
data: typing.Optional[Base] = pydantic.Field(description="Additional metadata for the job execution.")
|
|
47
|
+
|
|
48
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
49
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
50
|
+
return super().json(**kwargs_with_defaults)
|
|
51
|
+
|
|
52
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
53
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
54
|
+
return super().dict(**kwargs_with_defaults)
|
|
55
|
+
|
|
56
|
+
class Config:
|
|
57
|
+
frozen = True
|
|
58
|
+
smart_union = True
|
|
59
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .supported_eval_llm_model_names import SupportedEvalLlmModelNames
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
11
|
+
except ImportError:
|
|
12
|
+
import pydantic # type: ignore
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class EvalExecutionParams(pydantic.BaseModel):
|
|
16
|
+
"""
|
|
17
|
+
Schema for the params for an eval execution.
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
llm_model: typing.Optional[SupportedEvalLlmModelNames] = pydantic.Field(
|
|
21
|
+
description="The LLM model to use within eval execution."
|
|
22
|
+
)
|
|
23
|
+
qa_prompt_tmpl: typing.Optional[str] = pydantic.Field(
|
|
24
|
+
description="The template to use for the question answering prompt."
|
|
25
|
+
)
|
|
26
|
+
|
|
27
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
28
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
29
|
+
return super().json(**kwargs_with_defaults)
|
|
30
|
+
|
|
31
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
32
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
33
|
+
return super().dict(**kwargs_with_defaults)
|
|
34
|
+
|
|
35
|
+
class Config:
|
|
36
|
+
frozen = True
|
|
37
|
+
smart_union = True
|
|
38
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .supported_eval_llm_model_names import SupportedEvalLlmModelNames
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
11
|
+
except ImportError:
|
|
12
|
+
import pydantic # type: ignore
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class EvalExecutionParamsOverride(pydantic.BaseModel):
|
|
16
|
+
"""
|
|
17
|
+
Schema for the params override for an eval execution.
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
llm_model: typing.Optional[SupportedEvalLlmModelNames] = pydantic.Field(
|
|
21
|
+
description="The LLM model to use within eval execution."
|
|
22
|
+
)
|
|
23
|
+
qa_prompt_tmpl: typing.Optional[str] = pydantic.Field(
|
|
24
|
+
description="The template to use for the question answering prompt."
|
|
25
|
+
)
|
|
26
|
+
|
|
27
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
28
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
29
|
+
return super().json(**kwargs_with_defaults)
|
|
30
|
+
|
|
31
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
32
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
33
|
+
return super().dict(**kwargs_with_defaults)
|
|
34
|
+
|
|
35
|
+
class Config:
|
|
36
|
+
frozen = True
|
|
37
|
+
smart_union = True
|
|
38
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
10
|
+
except ImportError:
|
|
11
|
+
import pydantic # type: ignore
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class EvalLlmModelData(pydantic.BaseModel):
|
|
15
|
+
"""
|
|
16
|
+
Schema for an eval LLM model.
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
name: str = pydantic.Field(description="The name of the LLM model.")
|
|
20
|
+
description: str = pydantic.Field(description="The description of the LLM model.")
|
|
21
|
+
|
|
22
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
23
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
24
|
+
return super().json(**kwargs_with_defaults)
|
|
25
|
+
|
|
26
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
27
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
28
|
+
return super().dict(**kwargs_with_defaults)
|
|
29
|
+
|
|
30
|
+
class Config:
|
|
31
|
+
frozen = True
|
|
32
|
+
smart_union = True
|
|
33
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
10
|
+
except ImportError:
|
|
11
|
+
import pydantic # type: ignore
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class EvalQuestion(pydantic.BaseModel):
|
|
15
|
+
"""
|
|
16
|
+
Base schema model containing common database fields.
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
id: str = pydantic.Field(description="Unique identifier")
|
|
20
|
+
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
21
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
22
|
+
content: str = pydantic.Field(description="The content of the question.")
|
|
23
|
+
eval_dataset_id: str
|
|
24
|
+
eval_dataset_index: int = pydantic.Field(
|
|
25
|
+
description="The index at which this question is positioned relative to the other questions in the linked EvalDataset. Client is responsible for setting this correctly."
|
|
26
|
+
)
|
|
27
|
+
|
|
28
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
29
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
30
|
+
return super().json(**kwargs_with_defaults)
|
|
31
|
+
|
|
32
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
33
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
34
|
+
return super().dict(**kwargs_with_defaults)
|
|
35
|
+
|
|
36
|
+
class Config:
|
|
37
|
+
frozen = True
|
|
38
|
+
smart_union = True
|
|
39
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
10
|
+
except ImportError:
|
|
11
|
+
import pydantic # type: ignore
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class EvalQuestionCreate(pydantic.BaseModel):
|
|
15
|
+
content: str = pydantic.Field(description="The content of the question.")
|
|
16
|
+
|
|
17
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
18
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
19
|
+
return super().json(**kwargs_with_defaults)
|
|
20
|
+
|
|
21
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
22
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
23
|
+
return super().dict(**kwargs_with_defaults)
|
|
24
|
+
|
|
25
|
+
class Config:
|
|
26
|
+
frozen = True
|
|
27
|
+
smart_union = True
|
|
28
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .eval_execution_params import EvalExecutionParams
|
|
8
|
+
from .metric_result import MetricResult
|
|
9
|
+
from .text_node import TextNode
|
|
10
|
+
|
|
11
|
+
try:
|
|
12
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
13
|
+
except ImportError:
|
|
14
|
+
import pydantic # type: ignore
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class EvalQuestionResult(pydantic.BaseModel):
|
|
18
|
+
"""
|
|
19
|
+
Schema for the result of an eval question job.
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
eval_question_id: str = pydantic.Field(description="The ID of the question that was executed.")
|
|
23
|
+
pipeline_id: str = pydantic.Field(description="The ID of the pipeline that the question was executed against.")
|
|
24
|
+
source_nodes: typing.List[TextNode] = pydantic.Field(
|
|
25
|
+
description="The nodes retrieved by the pipeline for the given question."
|
|
26
|
+
)
|
|
27
|
+
answer: str = pydantic.Field(description="The answer to the question.")
|
|
28
|
+
eval_metrics: typing.Dict[str, MetricResult] = pydantic.Field(description="The eval metrics for the question.")
|
|
29
|
+
eval_dataset_execution_id: str = pydantic.Field(
|
|
30
|
+
description="The ID of the EvalDatasetJobRecord that this result was generated from."
|
|
31
|
+
)
|
|
32
|
+
eval_dataset_execution_params: EvalExecutionParams = pydantic.Field(
|
|
33
|
+
description="The EvalExecutionParams that were used when this result was generated."
|
|
34
|
+
)
|
|
35
|
+
eval_finished_at: dt.datetime = pydantic.Field(description="The timestamp when the eval finished.")
|
|
36
|
+
class_name: typing.Optional[str]
|
|
37
|
+
|
|
38
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
39
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
40
|
+
return super().json(**kwargs_with_defaults)
|
|
41
|
+
|
|
42
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
43
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
44
|
+
return super().dict(**kwargs_with_defaults)
|
|
45
|
+
|
|
46
|
+
class Config:
|
|
47
|
+
frozen = True
|
|
48
|
+
smart_union = True
|
|
49
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .file_resource_info_value import FileResourceInfoValue
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
11
|
+
except ImportError:
|
|
12
|
+
import pydantic # type: ignore
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class File(pydantic.BaseModel):
|
|
16
|
+
"""
|
|
17
|
+
Schema for a file.
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
id: str = pydantic.Field(description="Unique identifier")
|
|
21
|
+
created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
|
|
22
|
+
updated_at: typing.Optional[dt.datetime] = pydantic.Field(description="Update datetime")
|
|
23
|
+
name: str
|
|
24
|
+
file_size: typing.Optional[int] = pydantic.Field(description="Size of the file in bytes")
|
|
25
|
+
file_type: typing.Optional[str] = pydantic.Field(description="File type (e.g. pdf, docx, etc.)")
|
|
26
|
+
project_id: str = pydantic.Field(description="The ID of the project that the file belongs to")
|
|
27
|
+
last_modified_at: typing.Optional[dt.datetime] = pydantic.Field(description="The last modified time of the file")
|
|
28
|
+
resource_info: typing.Optional[typing.Dict[str, FileResourceInfoValue]] = pydantic.Field(
|
|
29
|
+
description="Resource information for the file"
|
|
30
|
+
)
|
|
31
|
+
data_source_id: typing.Optional[str] = pydantic.Field(
|
|
32
|
+
description="The ID of the data source that the file belongs to"
|
|
33
|
+
)
|
|
34
|
+
|
|
35
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
36
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
37
|
+
return super().json(**kwargs_with_defaults)
|
|
38
|
+
|
|
39
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
40
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
41
|
+
return super().dict(**kwargs_with_defaults)
|
|
42
|
+
|
|
43
|
+
class Config:
|
|
44
|
+
frozen = True
|
|
45
|
+
smart_union = True
|
|
46
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class FilterCondition(str, enum.Enum):
|
|
10
|
+
"""
|
|
11
|
+
Vector store filter conditions to combine different filters.
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
AND = "and"
|
|
15
|
+
OR = "or"
|
|
16
|
+
|
|
17
|
+
def visit(self, and_: typing.Callable[[], T_Result], or_: typing.Callable[[], T_Result]) -> T_Result:
|
|
18
|
+
if self is FilterCondition.AND:
|
|
19
|
+
return and_()
|
|
20
|
+
if self is FilterCondition.OR:
|
|
21
|
+
return or_()
|
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import enum
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
T_Result = typing.TypeVar("T_Result")
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class FilterOperator(str, enum.Enum):
|
|
10
|
+
"""
|
|
11
|
+
Vector store filter operator.
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
EQUAL_TO = "=="
|
|
15
|
+
GREATER_THAN = ">"
|
|
16
|
+
LESS_THAN = "<"
|
|
17
|
+
NOT_EQUALS = "!="
|
|
18
|
+
GREATER_THAN_OR_EQUAL_TO = ">="
|
|
19
|
+
LESS_THAN_OR_EQUAL_TO = "<="
|
|
20
|
+
IN = "in"
|
|
21
|
+
NIN = "nin"
|
|
22
|
+
ANY = "any"
|
|
23
|
+
ALL = "all"
|
|
24
|
+
TEXT_MATCH = "text_match"
|
|
25
|
+
CONTAINS = "contains"
|
|
26
|
+
|
|
27
|
+
def visit(
|
|
28
|
+
self,
|
|
29
|
+
equal_to: typing.Callable[[], T_Result],
|
|
30
|
+
greater_than: typing.Callable[[], T_Result],
|
|
31
|
+
less_than: typing.Callable[[], T_Result],
|
|
32
|
+
not_equals: typing.Callable[[], T_Result],
|
|
33
|
+
greater_than_or_equal_to: typing.Callable[[], T_Result],
|
|
34
|
+
less_than_or_equal_to: typing.Callable[[], T_Result],
|
|
35
|
+
in_: typing.Callable[[], T_Result],
|
|
36
|
+
nin: typing.Callable[[], T_Result],
|
|
37
|
+
any: typing.Callable[[], T_Result],
|
|
38
|
+
all: typing.Callable[[], T_Result],
|
|
39
|
+
text_match: typing.Callable[[], T_Result],
|
|
40
|
+
contains: typing.Callable[[], T_Result],
|
|
41
|
+
) -> T_Result:
|
|
42
|
+
if self is FilterOperator.EQUAL_TO:
|
|
43
|
+
return equal_to()
|
|
44
|
+
if self is FilterOperator.GREATER_THAN:
|
|
45
|
+
return greater_than()
|
|
46
|
+
if self is FilterOperator.LESS_THAN:
|
|
47
|
+
return less_than()
|
|
48
|
+
if self is FilterOperator.NOT_EQUALS:
|
|
49
|
+
return not_equals()
|
|
50
|
+
if self is FilterOperator.GREATER_THAN_OR_EQUAL_TO:
|
|
51
|
+
return greater_than_or_equal_to()
|
|
52
|
+
if self is FilterOperator.LESS_THAN_OR_EQUAL_TO:
|
|
53
|
+
return less_than_or_equal_to()
|
|
54
|
+
if self is FilterOperator.IN:
|
|
55
|
+
return in_()
|
|
56
|
+
if self is FilterOperator.NIN:
|
|
57
|
+
return nin()
|
|
58
|
+
if self is FilterOperator.ANY:
|
|
59
|
+
return any()
|
|
60
|
+
if self is FilterOperator.ALL:
|
|
61
|
+
return all()
|
|
62
|
+
if self is FilterOperator.TEXT_MATCH:
|
|
63
|
+
return text_match()
|
|
64
|
+
if self is FilterOperator.CONTAINS:
|
|
65
|
+
return contains()
|
|
@@ -0,0 +1,51 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
10
|
+
except ImportError:
|
|
11
|
+
import pydantic # type: ignore
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class GeminiEmbedding(pydantic.BaseModel):
|
|
15
|
+
"""
|
|
16
|
+
Google Gemini embeddings.
|
|
17
|
+
|
|
18
|
+
Args:
|
|
19
|
+
model_name (str): Model for embedding.
|
|
20
|
+
Defaults to "models/embedding-001".
|
|
21
|
+
|
|
22
|
+
api_key (Optional[str]): API key to access the model. Defaults to None.
|
|
23
|
+
api_base (Optional[str]): API base to access the model. Defaults to Official Base.
|
|
24
|
+
transport (Optional[str]): Transport to access the model.
|
|
25
|
+
"""
|
|
26
|
+
|
|
27
|
+
model_name: typing.Optional[str] = pydantic.Field(description="The name of the embedding model.")
|
|
28
|
+
embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
|
|
29
|
+
callback_manager: typing.Optional[typing.Dict[str, typing.Any]]
|
|
30
|
+
num_workers: typing.Optional[int] = pydantic.Field(
|
|
31
|
+
description="The number of workers to use for async embedding calls."
|
|
32
|
+
)
|
|
33
|
+
title: typing.Optional[str] = pydantic.Field(
|
|
34
|
+
description="Title is only applicable for retrieval_document tasks, and is used to represent a document title. For other tasks, title is invalid."
|
|
35
|
+
)
|
|
36
|
+
task_type: typing.Optional[str] = pydantic.Field(description="The task for embedding model.")
|
|
37
|
+
api_key: typing.Optional[str] = pydantic.Field(description="API key to access the model. Defaults to None.")
|
|
38
|
+
class_name: typing.Optional[str]
|
|
39
|
+
|
|
40
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
41
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
42
|
+
return super().json(**kwargs_with_defaults)
|
|
43
|
+
|
|
44
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
45
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
46
|
+
return super().dict(**kwargs_with_defaults)
|
|
47
|
+
|
|
48
|
+
class Config:
|
|
49
|
+
frozen = True
|
|
50
|
+
smart_union = True
|
|
51
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,44 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
10
|
+
except ImportError:
|
|
11
|
+
import pydantic # type: ignore
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class HtmlNodeParser(pydantic.BaseModel):
|
|
15
|
+
"""
|
|
16
|
+
HTML node parser.
|
|
17
|
+
|
|
18
|
+
Splits a document into Nodes using custom HTML splitting logic.
|
|
19
|
+
|
|
20
|
+
Args:
|
|
21
|
+
include_metadata (bool): whether to include metadata in nodes
|
|
22
|
+
include_prev_next_rel (bool): whether to include prev/next relationships
|
|
23
|
+
"""
|
|
24
|
+
|
|
25
|
+
include_metadata: typing.Optional[bool] = pydantic.Field(
|
|
26
|
+
description="Whether or not to consider metadata when splitting."
|
|
27
|
+
)
|
|
28
|
+
include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
|
|
29
|
+
callback_manager: typing.Optional[typing.Dict[str, typing.Any]]
|
|
30
|
+
tags: typing.Optional[typing.List[str]] = pydantic.Field(description="HTML tags to extract text from.")
|
|
31
|
+
class_name: typing.Optional[str]
|
|
32
|
+
|
|
33
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
34
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
35
|
+
return super().json(**kwargs_with_defaults)
|
|
36
|
+
|
|
37
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
38
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
39
|
+
return super().dict(**kwargs_with_defaults)
|
|
40
|
+
|
|
41
|
+
class Config:
|
|
42
|
+
frozen = True
|
|
43
|
+
smart_union = True
|
|
44
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .validation_error import ValidationError
|
|
8
|
+
|
|
9
|
+
try:
|
|
10
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
11
|
+
except ImportError:
|
|
12
|
+
import pydantic # type: ignore
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class HttpValidationError(pydantic.BaseModel):
|
|
16
|
+
detail: typing.Optional[typing.List[ValidationError]]
|
|
17
|
+
|
|
18
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
19
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
20
|
+
return super().json(**kwargs_with_defaults)
|
|
21
|
+
|
|
22
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
23
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
24
|
+
return super().dict(**kwargs_with_defaults)
|
|
25
|
+
|
|
26
|
+
class Config:
|
|
27
|
+
frozen = True
|
|
28
|
+
smart_union = True
|
|
29
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
|
@@ -0,0 +1,68 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
|
7
|
+
from .hugging_face_inference_api_embedding_token import HuggingFaceInferenceApiEmbeddingToken
|
|
8
|
+
from .pooling import Pooling
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
import pydantic.v1 as pydantic # type: ignore
|
|
12
|
+
except ImportError:
|
|
13
|
+
import pydantic # type: ignore
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class HuggingFaceInferenceApiEmbedding(pydantic.BaseModel):
|
|
17
|
+
"""
|
|
18
|
+
Wrapper on the Hugging Face's Inference API for embeddings.
|
|
19
|
+
|
|
20
|
+
Overview of the design:
|
|
21
|
+
|
|
22
|
+
- Uses the feature extraction task: https://huggingface.co/tasks/feature-extraction
|
|
23
|
+
"""
|
|
24
|
+
|
|
25
|
+
model_name: typing.Optional[str] = pydantic.Field(
|
|
26
|
+
description="Hugging Face model name. If None, the task will be used."
|
|
27
|
+
)
|
|
28
|
+
embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
|
|
29
|
+
callback_manager: typing.Optional[typing.Dict[str, typing.Any]]
|
|
30
|
+
num_workers: typing.Optional[int] = pydantic.Field(
|
|
31
|
+
description="The number of workers to use for async embedding calls."
|
|
32
|
+
)
|
|
33
|
+
pooling: typing.Optional[Pooling] = pydantic.Field(
|
|
34
|
+
description="Pooling strategy. If None, the model's default pooling is used."
|
|
35
|
+
)
|
|
36
|
+
query_instruction: typing.Optional[str] = pydantic.Field(
|
|
37
|
+
description="Instruction to prepend during query embedding."
|
|
38
|
+
)
|
|
39
|
+
text_instruction: typing.Optional[str] = pydantic.Field(description="Instruction to prepend during text embedding.")
|
|
40
|
+
token: typing.Optional[HuggingFaceInferenceApiEmbeddingToken] = pydantic.Field(
|
|
41
|
+
description="Hugging Face token. Will default to the locally saved token. Pass token=False if you don’t want to send your token to the server."
|
|
42
|
+
)
|
|
43
|
+
timeout: typing.Optional[float] = pydantic.Field(
|
|
44
|
+
description="The maximum number of seconds to wait for a response from the server. Loading a new model in Inference API can take up to several minutes. Defaults to None, meaning it will loop until the server is available."
|
|
45
|
+
)
|
|
46
|
+
headers: typing.Optional[typing.Dict[str, str]] = pydantic.Field(
|
|
47
|
+
description="Additional headers to send to the server. By default only the authorization and user-agent headers are sent. Values in this dictionary will override the default values."
|
|
48
|
+
)
|
|
49
|
+
cookies: typing.Optional[typing.Dict[str, str]] = pydantic.Field(
|
|
50
|
+
description="Additional cookies to send to the server."
|
|
51
|
+
)
|
|
52
|
+
task: typing.Optional[str] = pydantic.Field(
|
|
53
|
+
description="Optional task to pick Hugging Face's recommended model, used when model_name is left as default of None."
|
|
54
|
+
)
|
|
55
|
+
class_name: typing.Optional[str]
|
|
56
|
+
|
|
57
|
+
def json(self, **kwargs: typing.Any) -> str:
|
|
58
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
59
|
+
return super().json(**kwargs_with_defaults)
|
|
60
|
+
|
|
61
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
|
62
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
63
|
+
return super().dict(**kwargs_with_defaults)
|
|
64
|
+
|
|
65
|
+
class Config:
|
|
66
|
+
frozen = True
|
|
67
|
+
smart_union = True
|
|
68
|
+
json_encoders = {dt.datetime: serialize_datetime}
|