llama-cloud 0.0.10__py3-none-any.whl → 0.0.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of llama-cloud might be problematic. Click here for more details.

Files changed (57) hide show
  1. llama_cloud/__init__.py +82 -6
  2. llama_cloud/client.py +3 -0
  3. llama_cloud/resources/__init__.py +13 -2
  4. llama_cloud/resources/auth/__init__.py +2 -0
  5. llama_cloud/resources/auth/client.py +124 -0
  6. llama_cloud/resources/data_sinks/types/data_sink_update_component_one.py +4 -0
  7. llama_cloud/resources/extraction/__init__.py +2 -2
  8. llama_cloud/resources/extraction/client.py +139 -48
  9. llama_cloud/resources/extraction/types/__init__.py +2 -1
  10. llama_cloud/resources/extraction/types/extraction_schema_create_data_schema_value.py +7 -0
  11. llama_cloud/resources/pipelines/__init__.py +12 -2
  12. llama_cloud/resources/pipelines/client.py +58 -2
  13. llama_cloud/resources/pipelines/types/__init__.py +11 -1
  14. llama_cloud/resources/pipelines/types/pipeline_update_transform_config.py +31 -0
  15. llama_cloud/types/__init__.py +78 -6
  16. llama_cloud/types/advanced_mode_transform_config.py +38 -0
  17. llama_cloud/types/advanced_mode_transform_config_chunking_config.py +67 -0
  18. llama_cloud/types/advanced_mode_transform_config_segmentation_config.py +45 -0
  19. llama_cloud/types/auto_transform_config.py +32 -0
  20. llama_cloud/types/character_chunking_config.py +32 -0
  21. llama_cloud/types/{html_node_parser.py → character_splitter.py} +9 -9
  22. llama_cloud/types/chat_data.py +2 -0
  23. llama_cloud/types/cloud_az_storage_blob_data_source.py +11 -2
  24. llama_cloud/types/{simple_file_node_parser.py → cloud_milvus_vector_store.py} +7 -14
  25. llama_cloud/types/cloud_mongo_db_atlas_vector_search.py +51 -0
  26. llama_cloud/types/configurable_data_sink_names.py +8 -0
  27. llama_cloud/types/configurable_transformation_names.py +8 -12
  28. llama_cloud/types/configured_transformation_item_component_one.py +4 -6
  29. llama_cloud/types/custom_claims.py +61 -0
  30. llama_cloud/types/data_sink_component_one.py +4 -0
  31. llama_cloud/types/data_sink_create_component_one.py +4 -0
  32. llama_cloud/types/element_segmentation_config.py +29 -0
  33. llama_cloud/types/embedding_config.py +36 -0
  34. llama_cloud/types/embedding_config_component.py +7 -0
  35. llama_cloud/types/embedding_config_component_one.py +19 -0
  36. llama_cloud/types/embedding_config_type.py +41 -0
  37. llama_cloud/types/eval_dataset_job_record.py +1 -0
  38. llama_cloud/types/ingestion_error_response.py +34 -0
  39. llama_cloud/types/job_name_mapping.py +45 -0
  40. llama_cloud/types/llama_parse_supported_file_extensions.py +32 -0
  41. llama_cloud/types/llm_parameters.py +39 -0
  42. llama_cloud/types/managed_ingestion_status_response.py +6 -0
  43. llama_cloud/types/none_chunking_config.py +29 -0
  44. llama_cloud/types/none_segmentation_config.py +29 -0
  45. llama_cloud/types/page_segmentation_config.py +29 -0
  46. llama_cloud/types/{json_node_parser.py → page_splitter_node_parser.py} +3 -8
  47. llama_cloud/types/parsing_job.py +2 -0
  48. llama_cloud/types/pipeline_create.py +8 -0
  49. llama_cloud/types/pipeline_create_transform_config.py +31 -0
  50. llama_cloud/types/semantic_chunking_config.py +32 -0
  51. llama_cloud/types/sentence_chunking_config.py +34 -0
  52. llama_cloud/types/token_chunking_config.py +33 -0
  53. llama_cloud/types/user.py +35 -0
  54. {llama_cloud-0.0.10.dist-info → llama_cloud-0.0.12.dist-info}/METADATA +1 -1
  55. {llama_cloud-0.0.10.dist-info → llama_cloud-0.0.12.dist-info}/RECORD +57 -30
  56. {llama_cloud-0.0.10.dist-info → llama_cloud-0.0.12.dist-info}/LICENSE +0 -0
  57. {llama_cloud-0.0.10.dist-info → llama_cloud-0.0.12.dist-info}/WHEEL +0 -0
@@ -11,13 +11,12 @@ class ConfigurableTransformationNames(str, enum.Enum):
11
11
  An enumeration.
12
12
  """
13
13
 
14
+ CHARACTER_SPLITTER = "CHARACTER_SPLITTER"
15
+ PAGE_SPLITTER_NODE_PARSER = "PAGE_SPLITTER_NODE_PARSER"
14
16
  CODE_NODE_PARSER = "CODE_NODE_PARSER"
15
17
  SENTENCE_AWARE_NODE_PARSER = "SENTENCE_AWARE_NODE_PARSER"
16
18
  TOKEN_AWARE_NODE_PARSER = "TOKEN_AWARE_NODE_PARSER"
17
- HTML_NODE_PARSER = "HTML_NODE_PARSER"
18
19
  MARKDOWN_NODE_PARSER = "MARKDOWN_NODE_PARSER"
19
- JSON_NODE_PARSER = "JSON_NODE_PARSER"
20
- SIMPLE_FILE_NODE_PARSER = "SIMPLE_FILE_NODE_PARSER"
21
20
  MARKDOWN_ELEMENT_NODE_PARSER = "MARKDOWN_ELEMENT_NODE_PARSER"
22
21
  OPENAI_EMBEDDING = "OPENAI_EMBEDDING"
23
22
  AZURE_EMBEDDING = "AZURE_EMBEDDING"
@@ -28,13 +27,12 @@ class ConfigurableTransformationNames(str, enum.Enum):
28
27
 
29
28
  def visit(
30
29
  self,
30
+ character_splitter: typing.Callable[[], T_Result],
31
+ page_splitter_node_parser: typing.Callable[[], T_Result],
31
32
  code_node_parser: typing.Callable[[], T_Result],
32
33
  sentence_aware_node_parser: typing.Callable[[], T_Result],
33
34
  token_aware_node_parser: typing.Callable[[], T_Result],
34
- html_node_parser: typing.Callable[[], T_Result],
35
35
  markdown_node_parser: typing.Callable[[], T_Result],
36
- json_node_parser: typing.Callable[[], T_Result],
37
- simple_file_node_parser: typing.Callable[[], T_Result],
38
36
  markdown_element_node_parser: typing.Callable[[], T_Result],
39
37
  openai_embedding: typing.Callable[[], T_Result],
40
38
  azure_embedding: typing.Callable[[], T_Result],
@@ -43,20 +41,18 @@ class ConfigurableTransformationNames(str, enum.Enum):
43
41
  huggingface_api_embedding: typing.Callable[[], T_Result],
44
42
  gemini_embedding: typing.Callable[[], T_Result],
45
43
  ) -> T_Result:
44
+ if self is ConfigurableTransformationNames.CHARACTER_SPLITTER:
45
+ return character_splitter()
46
+ if self is ConfigurableTransformationNames.PAGE_SPLITTER_NODE_PARSER:
47
+ return page_splitter_node_parser()
46
48
  if self is ConfigurableTransformationNames.CODE_NODE_PARSER:
47
49
  return code_node_parser()
48
50
  if self is ConfigurableTransformationNames.SENTENCE_AWARE_NODE_PARSER:
49
51
  return sentence_aware_node_parser()
50
52
  if self is ConfigurableTransformationNames.TOKEN_AWARE_NODE_PARSER:
51
53
  return token_aware_node_parser()
52
- if self is ConfigurableTransformationNames.HTML_NODE_PARSER:
53
- return html_node_parser()
54
54
  if self is ConfigurableTransformationNames.MARKDOWN_NODE_PARSER:
55
55
  return markdown_node_parser()
56
- if self is ConfigurableTransformationNames.JSON_NODE_PARSER:
57
- return json_node_parser()
58
- if self is ConfigurableTransformationNames.SIMPLE_FILE_NODE_PARSER:
59
- return simple_file_node_parser()
60
56
  if self is ConfigurableTransformationNames.MARKDOWN_ELEMENT_NODE_PARSER:
61
57
  return markdown_element_node_parser()
62
58
  if self is ConfigurableTransformationNames.OPENAI_EMBEDDING:
@@ -4,27 +4,25 @@ import typing
4
4
 
5
5
  from .azure_open_ai_embedding import AzureOpenAiEmbedding
6
6
  from .bedrock_embedding import BedrockEmbedding
7
+ from .character_splitter import CharacterSplitter
7
8
  from .code_splitter import CodeSplitter
8
9
  from .cohere_embedding import CohereEmbedding
9
10
  from .gemini_embedding import GeminiEmbedding
10
- from .html_node_parser import HtmlNodeParser
11
11
  from .hugging_face_inference_api_embedding import HuggingFaceInferenceApiEmbedding
12
- from .json_node_parser import JsonNodeParser
13
12
  from .markdown_element_node_parser import MarkdownElementNodeParser
14
13
  from .markdown_node_parser import MarkdownNodeParser
15
14
  from .open_ai_embedding import OpenAiEmbedding
15
+ from .page_splitter_node_parser import PageSplitterNodeParser
16
16
  from .sentence_splitter import SentenceSplitter
17
- from .simple_file_node_parser import SimpleFileNodeParser
18
17
  from .token_text_splitter import TokenTextSplitter
19
18
 
20
19
  ConfiguredTransformationItemComponentOne = typing.Union[
20
+ CharacterSplitter,
21
+ PageSplitterNodeParser,
21
22
  CodeSplitter,
22
23
  SentenceSplitter,
23
24
  TokenTextSplitter,
24
- HtmlNodeParser,
25
25
  MarkdownNodeParser,
26
- JsonNodeParser,
27
- SimpleFileNodeParser,
28
26
  MarkdownElementNodeParser,
29
27
  OpenAiEmbedding,
30
28
  AzureOpenAiEmbedding,
@@ -0,0 +1,61 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class CustomClaims(pydantic.BaseModel):
18
+ """
19
+ Custom claims that dictate various limits or allowed behaviors.
20
+ Currently these claims reside at a per user level. Claims may expand to a per organization level or project in the future.
21
+ """
22
+
23
+ allowed_index: typing.Optional[bool] = pydantic.Field(
24
+ description="Whether the user is allowed to access the index."
25
+ )
26
+ allowed_playground: typing.Optional[bool] = pydantic.Field(description="Deprecated. Use allowed_index instead")
27
+ usage_pdf_max_pages_per_day: typing.Optional[int] = pydantic.Field(
28
+ description="The maximum number of PDF pages the user can generate per day."
29
+ )
30
+ parse_premium: typing.Optional[bool] = pydantic.Field(
31
+ description="Whether the user has a LlamaParse premium claim."
32
+ )
33
+ usage_index_max_files_per_pipeline: typing.Optional[int] = pydantic.Field(
34
+ description="The maximum number of files per pipeline the user can index without LlamaParse premium."
35
+ )
36
+ max_jobs_in_execution: typing.Optional[int] = pydantic.Field(
37
+ description="The maximum number of jobs the user can have in execution."
38
+ )
39
+ max_jobs_in_execution_per_job_type: typing.Optional[int] = pydantic.Field(
40
+ description="The maximum number of jobs the user can have in execution per job type."
41
+ )
42
+ max_document_ingestion_jobs_in_execution: typing.Optional[int] = pydantic.Field(
43
+ description="The maximum number of document ingestion jobs the user can have in execution."
44
+ )
45
+ allowed_extraction: typing.Optional[bool] = pydantic.Field(
46
+ description="Whether the user is allowed to use structured data extraction features."
47
+ )
48
+ allowed_eval: typing.Optional[bool] = pydantic.Field(description="Whether the user is allowed to run evals.")
49
+
50
+ def json(self, **kwargs: typing.Any) -> str:
51
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
52
+ return super().json(**kwargs_with_defaults)
53
+
54
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
55
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
56
+ return super().dict(**kwargs_with_defaults)
57
+
58
+ class Config:
59
+ frozen = True
60
+ smart_union = True
61
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -4,6 +4,8 @@ import typing
4
4
 
5
5
  from .cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
6
6
  from .cloud_chroma_vector_store import CloudChromaVectorStore
7
+ from .cloud_milvus_vector_store import CloudMilvusVectorStore
8
+ from .cloud_mongo_db_atlas_vector_search import CloudMongoDbAtlasVectorSearch
7
9
  from .cloud_pinecone_vector_store import CloudPineconeVectorStore
8
10
  from .cloud_postgres_vector_store import CloudPostgresVectorStore
9
11
  from .cloud_qdrant_vector_store import CloudQdrantVectorStore
@@ -16,4 +18,6 @@ DataSinkComponentOne = typing.Union[
16
18
  CloudQdrantVectorStore,
17
19
  CloudWeaviateVectorStore,
18
20
  CloudAzureAiSearchVectorStore,
21
+ CloudMongoDbAtlasVectorSearch,
22
+ CloudMilvusVectorStore,
19
23
  ]
@@ -4,6 +4,8 @@ import typing
4
4
 
5
5
  from .cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
6
6
  from .cloud_chroma_vector_store import CloudChromaVectorStore
7
+ from .cloud_milvus_vector_store import CloudMilvusVectorStore
8
+ from .cloud_mongo_db_atlas_vector_search import CloudMongoDbAtlasVectorSearch
7
9
  from .cloud_pinecone_vector_store import CloudPineconeVectorStore
8
10
  from .cloud_postgres_vector_store import CloudPostgresVectorStore
9
11
  from .cloud_qdrant_vector_store import CloudQdrantVectorStore
@@ -16,4 +18,6 @@ DataSinkCreateComponentOne = typing.Union[
16
18
  CloudQdrantVectorStore,
17
19
  CloudWeaviateVectorStore,
18
20
  CloudAzureAiSearchVectorStore,
21
+ CloudMongoDbAtlasVectorSearch,
22
+ CloudMilvusVectorStore,
19
23
  ]
@@ -0,0 +1,29 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class ElementSegmentationConfig(pydantic.BaseModel):
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,36 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .embedding_config_component import EmbeddingConfigComponent
8
+ from .embedding_config_type import EmbeddingConfigType
9
+
10
+ try:
11
+ import pydantic
12
+ if pydantic.__version__.startswith("1."):
13
+ raise ImportError
14
+ import pydantic.v1 as pydantic # type: ignore
15
+ except ImportError:
16
+ import pydantic # type: ignore
17
+
18
+
19
+ class EmbeddingConfig(pydantic.BaseModel):
20
+ type: typing.Optional[EmbeddingConfigType] = pydantic.Field(description="Type of the embedding model.")
21
+ component: typing.Optional[EmbeddingConfigComponent] = pydantic.Field(
22
+ description="Configuration for the transformation."
23
+ )
24
+
25
+ def json(self, **kwargs: typing.Any) -> str:
26
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
27
+ return super().json(**kwargs_with_defaults)
28
+
29
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
30
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
31
+ return super().dict(**kwargs_with_defaults)
32
+
33
+ class Config:
34
+ frozen = True
35
+ smart_union = True
36
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,7 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ from .embedding_config_component_one import EmbeddingConfigComponentOne
6
+
7
+ EmbeddingConfigComponent = typing.Union[typing.Dict[str, typing.Any], EmbeddingConfigComponentOne]
@@ -0,0 +1,19 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ from .azure_open_ai_embedding import AzureOpenAiEmbedding
6
+ from .bedrock_embedding import BedrockEmbedding
7
+ from .cohere_embedding import CohereEmbedding
8
+ from .gemini_embedding import GeminiEmbedding
9
+ from .hugging_face_inference_api_embedding import HuggingFaceInferenceApiEmbedding
10
+ from .open_ai_embedding import OpenAiEmbedding
11
+
12
+ EmbeddingConfigComponentOne = typing.Union[
13
+ OpenAiEmbedding,
14
+ AzureOpenAiEmbedding,
15
+ CohereEmbedding,
16
+ BedrockEmbedding,
17
+ HuggingFaceInferenceApiEmbedding,
18
+ GeminiEmbedding,
19
+ ]
@@ -0,0 +1,41 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import enum
4
+ import typing
5
+
6
+ T_Result = typing.TypeVar("T_Result")
7
+
8
+
9
+ class EmbeddingConfigType(str, enum.Enum):
10
+ """
11
+ An enumeration.
12
+ """
13
+
14
+ OPENAI_EMBEDDING = "OPENAI_EMBEDDING"
15
+ AZURE_EMBEDDING = "AZURE_EMBEDDING"
16
+ BEDROCK_EMBEDDING = "BEDROCK_EMBEDDING"
17
+ COHERE_EMBEDDING = "COHERE_EMBEDDING"
18
+ GEMINI_EMBEDDING = "GEMINI_EMBEDDING"
19
+ HUGGINGFACE_API_EMBEDDING = "HUGGINGFACE_API_EMBEDDING"
20
+
21
+ def visit(
22
+ self,
23
+ openai_embedding: typing.Callable[[], T_Result],
24
+ azure_embedding: typing.Callable[[], T_Result],
25
+ bedrock_embedding: typing.Callable[[], T_Result],
26
+ cohere_embedding: typing.Callable[[], T_Result],
27
+ gemini_embedding: typing.Callable[[], T_Result],
28
+ huggingface_api_embedding: typing.Callable[[], T_Result],
29
+ ) -> T_Result:
30
+ if self is EmbeddingConfigType.OPENAI_EMBEDDING:
31
+ return openai_embedding()
32
+ if self is EmbeddingConfigType.AZURE_EMBEDDING:
33
+ return azure_embedding()
34
+ if self is EmbeddingConfigType.BEDROCK_EMBEDDING:
35
+ return bedrock_embedding()
36
+ if self is EmbeddingConfigType.COHERE_EMBEDDING:
37
+ return cohere_embedding()
38
+ if self is EmbeddingConfigType.GEMINI_EMBEDDING:
39
+ return gemini_embedding()
40
+ if self is EmbeddingConfigType.HUGGINGFACE_API_EMBEDDING:
41
+ return huggingface_api_embedding()
@@ -42,6 +42,7 @@ class EvalDatasetJobRecord(pydantic.BaseModel):
42
42
  created_at: typing.Optional[dt.datetime] = pydantic.Field(description="Creation datetime")
43
43
  id: typing.Optional[str] = pydantic.Field(description="Unique identifier")
44
44
  status: StatusEnum
45
+ error_code: typing.Optional[str]
45
46
  error_message: typing.Optional[str]
46
47
  attempts: typing.Optional[int] = pydantic.Field(description="The number of times this job has been attempted")
47
48
  started_at: typing.Optional[dt.datetime]
@@ -0,0 +1,34 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .job_name_mapping import JobNameMapping
8
+
9
+ try:
10
+ import pydantic
11
+ if pydantic.__version__.startswith("1."):
12
+ raise ImportError
13
+ import pydantic.v1 as pydantic # type: ignore
14
+ except ImportError:
15
+ import pydantic # type: ignore
16
+
17
+
18
+ class IngestionErrorResponse(pydantic.BaseModel):
19
+ job_id: str = pydantic.Field(description="ID of the job that failed.")
20
+ message: str = pydantic.Field(description="List of errors that occurred during ingestion.")
21
+ step: JobNameMapping = pydantic.Field(description="Name of the job that failed.")
22
+
23
+ def json(self, **kwargs: typing.Any) -> str:
24
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
25
+ return super().json(**kwargs_with_defaults)
26
+
27
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
28
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
29
+ return super().dict(**kwargs_with_defaults)
30
+
31
+ class Config:
32
+ frozen = True
33
+ smart_union = True
34
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,45 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import enum
4
+ import typing
5
+
6
+ T_Result = typing.TypeVar("T_Result")
7
+
8
+
9
+ class JobNameMapping(str, enum.Enum):
10
+ """
11
+ Enum for mapping original job names to readable names.
12
+ """
13
+
14
+ MANAGED_INGESTION = "MANAGED_INGESTION"
15
+ DATA_SOURCE = "DATA_SOURCE"
16
+ FILES_UPDATE = "FILES_UPDATE"
17
+ FILE_UPDATER = "FILE_UPDATER"
18
+ PARSE = "PARSE"
19
+ TRANSFORM = "TRANSFORM"
20
+ INGESTION = "INGESTION"
21
+
22
+ def visit(
23
+ self,
24
+ managed_ingestion: typing.Callable[[], T_Result],
25
+ data_source: typing.Callable[[], T_Result],
26
+ files_update: typing.Callable[[], T_Result],
27
+ file_updater: typing.Callable[[], T_Result],
28
+ parse: typing.Callable[[], T_Result],
29
+ transform: typing.Callable[[], T_Result],
30
+ ingestion: typing.Callable[[], T_Result],
31
+ ) -> T_Result:
32
+ if self is JobNameMapping.MANAGED_INGESTION:
33
+ return managed_ingestion()
34
+ if self is JobNameMapping.DATA_SOURCE:
35
+ return data_source()
36
+ if self is JobNameMapping.FILES_UPDATE:
37
+ return files_update()
38
+ if self is JobNameMapping.FILE_UPDATER:
39
+ return file_updater()
40
+ if self is JobNameMapping.PARSE:
41
+ return parse()
42
+ if self is JobNameMapping.TRANSFORM:
43
+ return transform()
44
+ if self is JobNameMapping.INGESTION:
45
+ return ingestion()
@@ -45,6 +45,14 @@ class LlamaParseSupportedFileExtensions(str, enum.Enum):
45
45
  SXI = ".sxi"
46
46
  STI = ".sti"
47
47
  EPUB = ".epub"
48
+ JPG = ".jpg"
49
+ JPEG = ".jpeg"
50
+ PNG = ".png"
51
+ GIF = ".gif"
52
+ BMP = ".bmp"
53
+ SVG = ".svg"
54
+ TIFF = ".tiff"
55
+ WEBP = ".webp"
48
56
  HTML = ".html"
49
57
  HTM = ".htm"
50
58
  XLS = ".xls"
@@ -115,6 +123,14 @@ class LlamaParseSupportedFileExtensions(str, enum.Enum):
115
123
  sxi: typing.Callable[[], T_Result],
116
124
  sti: typing.Callable[[], T_Result],
117
125
  epub: typing.Callable[[], T_Result],
126
+ jpg: typing.Callable[[], T_Result],
127
+ jpeg: typing.Callable[[], T_Result],
128
+ png: typing.Callable[[], T_Result],
129
+ gif: typing.Callable[[], T_Result],
130
+ bmp: typing.Callable[[], T_Result],
131
+ svg: typing.Callable[[], T_Result],
132
+ tiff: typing.Callable[[], T_Result],
133
+ webp: typing.Callable[[], T_Result],
118
134
  html: typing.Callable[[], T_Result],
119
135
  htm: typing.Callable[[], T_Result],
120
136
  xls: typing.Callable[[], T_Result],
@@ -217,6 +233,22 @@ class LlamaParseSupportedFileExtensions(str, enum.Enum):
217
233
  return sti()
218
234
  if self is LlamaParseSupportedFileExtensions.EPUB:
219
235
  return epub()
236
+ if self is LlamaParseSupportedFileExtensions.JPG:
237
+ return jpg()
238
+ if self is LlamaParseSupportedFileExtensions.JPEG:
239
+ return jpeg()
240
+ if self is LlamaParseSupportedFileExtensions.PNG:
241
+ return png()
242
+ if self is LlamaParseSupportedFileExtensions.GIF:
243
+ return gif()
244
+ if self is LlamaParseSupportedFileExtensions.BMP:
245
+ return bmp()
246
+ if self is LlamaParseSupportedFileExtensions.SVG:
247
+ return svg()
248
+ if self is LlamaParseSupportedFileExtensions.TIFF:
249
+ return tiff()
250
+ if self is LlamaParseSupportedFileExtensions.WEBP:
251
+ return webp()
220
252
  if self is LlamaParseSupportedFileExtensions.HTML:
221
253
  return html()
222
254
  if self is LlamaParseSupportedFileExtensions.HTM:
@@ -0,0 +1,39 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class LlmParameters(pydantic.BaseModel):
18
+ """
19
+ Base schema model for BaseComponent classes used in the platform.
20
+ Comes with special serialization logic for types used commonly in platform codebase.
21
+ """
22
+
23
+ model_name: typing.Optional[str] = pydantic.Field(description="The name of the model to use for retrieval.")
24
+ system_prompt: typing.Optional[str] = pydantic.Field(description="The system prompt to use for the model.")
25
+ temperature: typing.Optional[float] = pydantic.Field(description="The temperature value for the model.")
26
+ class_name: typing.Optional[str]
27
+
28
+ def json(self, **kwargs: typing.Any) -> str:
29
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
30
+ return super().json(**kwargs_with_defaults)
31
+
32
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
33
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
34
+ return super().dict(**kwargs_with_defaults)
35
+
36
+ class Config:
37
+ frozen = True
38
+ smart_union = True
39
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -4,6 +4,7 @@ import datetime as dt
4
4
  import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
+ from .ingestion_error_response import IngestionErrorResponse
7
8
  from .managed_ingestion_status import ManagedIngestionStatus
8
9
 
9
10
  try:
@@ -16,7 +17,12 @@ except ImportError:
16
17
 
17
18
 
18
19
  class ManagedIngestionStatusResponse(pydantic.BaseModel):
20
+ job_id: typing.Optional[str] = pydantic.Field(description="ID of the latest job.")
21
+ deployment_date: typing.Optional[dt.datetime] = pydantic.Field(description="Date of the deployment.")
19
22
  status: ManagedIngestionStatus = pydantic.Field(description="Status of the ingestion.")
23
+ error: typing.Optional[typing.List[IngestionErrorResponse]] = pydantic.Field(
24
+ description="List of errors that occurred during ingestion."
25
+ )
20
26
 
21
27
  def json(self, **kwargs: typing.Any) -> str:
22
28
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -0,0 +1,29 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class NoneChunkingConfig(pydantic.BaseModel):
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,29 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class NoneSegmentationConfig(pydantic.BaseModel):
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,29 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic
10
+ if pydantic.__version__.startswith("1."):
11
+ raise ImportError
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class PageSegmentationConfig(pydantic.BaseModel):
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -14,15 +14,9 @@ except ImportError:
14
14
  import pydantic # type: ignore
15
15
 
16
16
 
17
- class JsonNodeParser(pydantic.BaseModel):
17
+ class PageSplitterNodeParser(pydantic.BaseModel):
18
18
  """
19
- JSON node parser.
20
-
21
- Splits a document into Nodes using custom JSON splitting logic.
22
-
23
- Args:
24
- include_metadata (bool): whether to include metadata in nodes
25
- include_prev_next_rel (bool): whether to include prev/next relationships
19
+ Split text into pages.
26
20
  """
27
21
 
28
22
  include_metadata: typing.Optional[bool] = pydantic.Field(
@@ -30,6 +24,7 @@ class JsonNodeParser(pydantic.BaseModel):
30
24
  )
31
25
  include_prev_next_rel: typing.Optional[bool] = pydantic.Field(description="Include prev/next node relationships.")
32
26
  callback_manager: typing.Optional[typing.Dict[str, typing.Any]]
27
+ page_separator: typing.Optional[str] = pydantic.Field(description="Separator to split text into pages.")
33
28
  class_name: typing.Optional[str]
34
29
 
35
30
  def json(self, **kwargs: typing.Any) -> str:
@@ -18,6 +18,8 @@ except ImportError:
18
18
  class ParsingJob(pydantic.BaseModel):
19
19
  id: str
20
20
  status: StatusEnum
21
+ error_code: typing.Optional[str]
22
+ error_message: typing.Optional[str]
21
23
 
22
24
  def json(self, **kwargs: typing.Any) -> str:
23
25
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}