llama-cloud 0.0.10__py3-none-any.whl → 0.0.12__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- llama_cloud/__init__.py +82 -6
- llama_cloud/client.py +3 -0
- llama_cloud/resources/__init__.py +13 -2
- llama_cloud/resources/auth/__init__.py +2 -0
- llama_cloud/resources/auth/client.py +124 -0
- llama_cloud/resources/data_sinks/types/data_sink_update_component_one.py +4 -0
- llama_cloud/resources/extraction/__init__.py +2 -2
- llama_cloud/resources/extraction/client.py +139 -48
- llama_cloud/resources/extraction/types/__init__.py +2 -1
- llama_cloud/resources/extraction/types/extraction_schema_create_data_schema_value.py +7 -0
- llama_cloud/resources/pipelines/__init__.py +12 -2
- llama_cloud/resources/pipelines/client.py +58 -2
- llama_cloud/resources/pipelines/types/__init__.py +11 -1
- llama_cloud/resources/pipelines/types/pipeline_update_transform_config.py +31 -0
- llama_cloud/types/__init__.py +78 -6
- llama_cloud/types/advanced_mode_transform_config.py +38 -0
- llama_cloud/types/advanced_mode_transform_config_chunking_config.py +67 -0
- llama_cloud/types/advanced_mode_transform_config_segmentation_config.py +45 -0
- llama_cloud/types/auto_transform_config.py +32 -0
- llama_cloud/types/character_chunking_config.py +32 -0
- llama_cloud/types/{html_node_parser.py → character_splitter.py} +9 -9
- llama_cloud/types/chat_data.py +2 -0
- llama_cloud/types/cloud_az_storage_blob_data_source.py +11 -2
- llama_cloud/types/{simple_file_node_parser.py → cloud_milvus_vector_store.py} +7 -14
- llama_cloud/types/cloud_mongo_db_atlas_vector_search.py +51 -0
- llama_cloud/types/configurable_data_sink_names.py +8 -0
- llama_cloud/types/configurable_transformation_names.py +8 -12
- llama_cloud/types/configured_transformation_item_component_one.py +4 -6
- llama_cloud/types/custom_claims.py +61 -0
- llama_cloud/types/data_sink_component_one.py +4 -0
- llama_cloud/types/data_sink_create_component_one.py +4 -0
- llama_cloud/types/element_segmentation_config.py +29 -0
- llama_cloud/types/embedding_config.py +36 -0
- llama_cloud/types/embedding_config_component.py +7 -0
- llama_cloud/types/embedding_config_component_one.py +19 -0
- llama_cloud/types/embedding_config_type.py +41 -0
- llama_cloud/types/eval_dataset_job_record.py +1 -0
- llama_cloud/types/ingestion_error_response.py +34 -0
- llama_cloud/types/job_name_mapping.py +45 -0
- llama_cloud/types/llama_parse_supported_file_extensions.py +32 -0
- llama_cloud/types/llm_parameters.py +39 -0
- llama_cloud/types/managed_ingestion_status_response.py +6 -0
- llama_cloud/types/none_chunking_config.py +29 -0
- llama_cloud/types/none_segmentation_config.py +29 -0
- llama_cloud/types/page_segmentation_config.py +29 -0
- llama_cloud/types/{json_node_parser.py → page_splitter_node_parser.py} +3 -8
- llama_cloud/types/parsing_job.py +2 -0
- llama_cloud/types/pipeline_create.py +8 -0
- llama_cloud/types/pipeline_create_transform_config.py +31 -0
- llama_cloud/types/semantic_chunking_config.py +32 -0
- llama_cloud/types/sentence_chunking_config.py +34 -0
- llama_cloud/types/token_chunking_config.py +33 -0
- llama_cloud/types/user.py +35 -0
- {llama_cloud-0.0.10.dist-info → llama_cloud-0.0.12.dist-info}/METADATA +1 -1
- {llama_cloud-0.0.10.dist-info → llama_cloud-0.0.12.dist-info}/RECORD +57 -30
- {llama_cloud-0.0.10.dist-info → llama_cloud-0.0.12.dist-info}/LICENSE +0 -0
- {llama_cloud-0.0.10.dist-info → llama_cloud-0.0.12.dist-info}/WHEEL +0 -0
|
@@ -13,6 +13,7 @@ from ...types.extraction_job import ExtractionJob
|
|
|
13
13
|
from ...types.extraction_result import ExtractionResult
|
|
14
14
|
from ...types.extraction_schema import ExtractionSchema
|
|
15
15
|
from ...types.http_validation_error import HttpValidationError
|
|
16
|
+
from .types.extraction_schema_create_data_schema_value import ExtractionSchemaCreateDataSchemaValue
|
|
16
17
|
from .types.extraction_schema_update_data_schema_value import ExtractionSchemaUpdateDataSchemaValue
|
|
17
18
|
|
|
18
19
|
try:
|
|
@@ -31,47 +32,66 @@ class ExtractionClient:
|
|
|
31
32
|
def __init__(self, *, client_wrapper: SyncClientWrapper):
|
|
32
33
|
self._client_wrapper = client_wrapper
|
|
33
34
|
|
|
34
|
-
def
|
|
35
|
+
def list_schemas(self, *, project_id: typing.Optional[str] = None) -> typing.List[ExtractionSchema]:
|
|
36
|
+
"""
|
|
37
|
+
Parameters:
|
|
38
|
+
- project_id: typing.Optional[str].
|
|
39
|
+
---
|
|
40
|
+
from llama_cloud.client import LlamaCloud
|
|
41
|
+
|
|
42
|
+
client = LlamaCloud(
|
|
43
|
+
token="YOUR_TOKEN",
|
|
44
|
+
)
|
|
45
|
+
client.extraction.list_schemas()
|
|
46
|
+
"""
|
|
47
|
+
_response = self._client_wrapper.httpx_client.request(
|
|
48
|
+
"GET",
|
|
49
|
+
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/schemas"),
|
|
50
|
+
params=remove_none_from_dict({"project_id": project_id}),
|
|
51
|
+
headers=self._client_wrapper.get_headers(),
|
|
52
|
+
timeout=60,
|
|
53
|
+
)
|
|
54
|
+
if 200 <= _response.status_code < 300:
|
|
55
|
+
return pydantic.parse_obj_as(typing.List[ExtractionSchema], _response.json()) # type: ignore
|
|
56
|
+
if _response.status_code == 422:
|
|
57
|
+
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
58
|
+
try:
|
|
59
|
+
_response_json = _response.json()
|
|
60
|
+
except JSONDecodeError:
|
|
61
|
+
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
62
|
+
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
63
|
+
|
|
64
|
+
def create_schema(
|
|
35
65
|
self,
|
|
36
66
|
*,
|
|
37
|
-
schema_id: typing.Optional[str] = OMIT,
|
|
38
67
|
name: str,
|
|
39
68
|
project_id: typing.Optional[str] = OMIT,
|
|
40
|
-
|
|
41
|
-
stream: typing.Optional[bool] = OMIT,
|
|
69
|
+
data_schema: typing.Dict[str, ExtractionSchemaCreateDataSchemaValue],
|
|
42
70
|
) -> ExtractionSchema:
|
|
43
71
|
"""
|
|
44
72
|
Parameters:
|
|
45
|
-
- schema_id: typing.Optional[str]. The ID of a schema to update with the new schema
|
|
46
|
-
|
|
47
73
|
- name: str. The name of the extraction schema
|
|
48
74
|
|
|
49
75
|
- project_id: typing.Optional[str]. The ID of the project that the extraction schema belongs to
|
|
50
76
|
|
|
51
|
-
-
|
|
52
|
-
|
|
53
|
-
- stream: typing.Optional[bool]. Whether to stream the results of the extraction schema
|
|
77
|
+
- data_schema: typing.Dict[str, ExtractionSchemaCreateDataSchemaValue]. The schema of the data
|
|
54
78
|
---
|
|
55
79
|
from llama_cloud.client import LlamaCloud
|
|
56
80
|
|
|
57
81
|
client = LlamaCloud(
|
|
58
82
|
token="YOUR_TOKEN",
|
|
59
83
|
)
|
|
60
|
-
client.extraction.
|
|
84
|
+
client.extraction.create_schema(
|
|
61
85
|
name="string",
|
|
62
|
-
|
|
86
|
+
data_schema={},
|
|
63
87
|
)
|
|
64
88
|
"""
|
|
65
|
-
_request: typing.Dict[str, typing.Any] = {"name": name, "
|
|
66
|
-
if schema_id is not OMIT:
|
|
67
|
-
_request["schema_id"] = schema_id
|
|
89
|
+
_request: typing.Dict[str, typing.Any] = {"name": name, "data_schema": data_schema}
|
|
68
90
|
if project_id is not OMIT:
|
|
69
91
|
_request["project_id"] = project_id
|
|
70
|
-
if stream is not OMIT:
|
|
71
|
-
_request["stream"] = stream
|
|
72
92
|
_response = self._client_wrapper.httpx_client.request(
|
|
73
93
|
"POST",
|
|
74
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/schemas
|
|
94
|
+
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/schemas"),
|
|
75
95
|
json=jsonable_encoder(_request),
|
|
76
96
|
headers=self._client_wrapper.get_headers(),
|
|
77
97
|
timeout=60,
|
|
@@ -86,27 +106,53 @@ class ExtractionClient:
|
|
|
86
106
|
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
87
107
|
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
88
108
|
|
|
89
|
-
def
|
|
109
|
+
def infer_schema(
|
|
110
|
+
self,
|
|
111
|
+
*,
|
|
112
|
+
schema_id: typing.Optional[str] = OMIT,
|
|
113
|
+
name: str,
|
|
114
|
+
project_id: typing.Optional[str] = OMIT,
|
|
115
|
+
file_ids: typing.List[str],
|
|
116
|
+
stream: typing.Optional[bool] = OMIT,
|
|
117
|
+
) -> ExtractionSchema:
|
|
90
118
|
"""
|
|
91
119
|
Parameters:
|
|
92
|
-
-
|
|
120
|
+
- schema_id: typing.Optional[str]. The ID of a schema to update with the new schema
|
|
121
|
+
|
|
122
|
+
- name: str. The name of the extraction schema
|
|
123
|
+
|
|
124
|
+
- project_id: typing.Optional[str]. The ID of the project that the extraction schema belongs to
|
|
125
|
+
|
|
126
|
+
- file_ids: typing.List[str]. The IDs of the files that the extraction schema contains
|
|
127
|
+
|
|
128
|
+
- stream: typing.Optional[bool]. Whether to stream the results of the extraction schema
|
|
93
129
|
---
|
|
94
130
|
from llama_cloud.client import LlamaCloud
|
|
95
131
|
|
|
96
132
|
client = LlamaCloud(
|
|
97
133
|
token="YOUR_TOKEN",
|
|
98
134
|
)
|
|
99
|
-
client.extraction.
|
|
135
|
+
client.extraction.infer_schema(
|
|
136
|
+
name="string",
|
|
137
|
+
file_ids=[],
|
|
138
|
+
)
|
|
100
139
|
"""
|
|
140
|
+
_request: typing.Dict[str, typing.Any] = {"name": name, "file_ids": file_ids}
|
|
141
|
+
if schema_id is not OMIT:
|
|
142
|
+
_request["schema_id"] = schema_id
|
|
143
|
+
if project_id is not OMIT:
|
|
144
|
+
_request["project_id"] = project_id
|
|
145
|
+
if stream is not OMIT:
|
|
146
|
+
_request["stream"] = stream
|
|
101
147
|
_response = self._client_wrapper.httpx_client.request(
|
|
102
|
-
"
|
|
103
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/schemas"),
|
|
104
|
-
|
|
148
|
+
"POST",
|
|
149
|
+
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/schemas/infer"),
|
|
150
|
+
json=jsonable_encoder(_request),
|
|
105
151
|
headers=self._client_wrapper.get_headers(),
|
|
106
152
|
timeout=60,
|
|
107
153
|
)
|
|
108
154
|
if 200 <= _response.status_code < 300:
|
|
109
|
-
return pydantic.parse_obj_as(
|
|
155
|
+
return pydantic.parse_obj_as(ExtractionSchema, _response.json()) # type: ignore
|
|
110
156
|
if _response.status_code == 422:
|
|
111
157
|
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
112
158
|
try:
|
|
@@ -350,47 +396,66 @@ class AsyncExtractionClient:
|
|
|
350
396
|
def __init__(self, *, client_wrapper: AsyncClientWrapper):
|
|
351
397
|
self._client_wrapper = client_wrapper
|
|
352
398
|
|
|
353
|
-
async def
|
|
399
|
+
async def list_schemas(self, *, project_id: typing.Optional[str] = None) -> typing.List[ExtractionSchema]:
|
|
400
|
+
"""
|
|
401
|
+
Parameters:
|
|
402
|
+
- project_id: typing.Optional[str].
|
|
403
|
+
---
|
|
404
|
+
from llama_cloud.client import AsyncLlamaCloud
|
|
405
|
+
|
|
406
|
+
client = AsyncLlamaCloud(
|
|
407
|
+
token="YOUR_TOKEN",
|
|
408
|
+
)
|
|
409
|
+
await client.extraction.list_schemas()
|
|
410
|
+
"""
|
|
411
|
+
_response = await self._client_wrapper.httpx_client.request(
|
|
412
|
+
"GET",
|
|
413
|
+
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/schemas"),
|
|
414
|
+
params=remove_none_from_dict({"project_id": project_id}),
|
|
415
|
+
headers=self._client_wrapper.get_headers(),
|
|
416
|
+
timeout=60,
|
|
417
|
+
)
|
|
418
|
+
if 200 <= _response.status_code < 300:
|
|
419
|
+
return pydantic.parse_obj_as(typing.List[ExtractionSchema], _response.json()) # type: ignore
|
|
420
|
+
if _response.status_code == 422:
|
|
421
|
+
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
422
|
+
try:
|
|
423
|
+
_response_json = _response.json()
|
|
424
|
+
except JSONDecodeError:
|
|
425
|
+
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
426
|
+
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
427
|
+
|
|
428
|
+
async def create_schema(
|
|
354
429
|
self,
|
|
355
430
|
*,
|
|
356
|
-
schema_id: typing.Optional[str] = OMIT,
|
|
357
431
|
name: str,
|
|
358
432
|
project_id: typing.Optional[str] = OMIT,
|
|
359
|
-
|
|
360
|
-
stream: typing.Optional[bool] = OMIT,
|
|
433
|
+
data_schema: typing.Dict[str, ExtractionSchemaCreateDataSchemaValue],
|
|
361
434
|
) -> ExtractionSchema:
|
|
362
435
|
"""
|
|
363
436
|
Parameters:
|
|
364
|
-
- schema_id: typing.Optional[str]. The ID of a schema to update with the new schema
|
|
365
|
-
|
|
366
437
|
- name: str. The name of the extraction schema
|
|
367
438
|
|
|
368
439
|
- project_id: typing.Optional[str]. The ID of the project that the extraction schema belongs to
|
|
369
440
|
|
|
370
|
-
-
|
|
371
|
-
|
|
372
|
-
- stream: typing.Optional[bool]. Whether to stream the results of the extraction schema
|
|
441
|
+
- data_schema: typing.Dict[str, ExtractionSchemaCreateDataSchemaValue]. The schema of the data
|
|
373
442
|
---
|
|
374
443
|
from llama_cloud.client import AsyncLlamaCloud
|
|
375
444
|
|
|
376
445
|
client = AsyncLlamaCloud(
|
|
377
446
|
token="YOUR_TOKEN",
|
|
378
447
|
)
|
|
379
|
-
await client.extraction.
|
|
448
|
+
await client.extraction.create_schema(
|
|
380
449
|
name="string",
|
|
381
|
-
|
|
450
|
+
data_schema={},
|
|
382
451
|
)
|
|
383
452
|
"""
|
|
384
|
-
_request: typing.Dict[str, typing.Any] = {"name": name, "
|
|
385
|
-
if schema_id is not OMIT:
|
|
386
|
-
_request["schema_id"] = schema_id
|
|
453
|
+
_request: typing.Dict[str, typing.Any] = {"name": name, "data_schema": data_schema}
|
|
387
454
|
if project_id is not OMIT:
|
|
388
455
|
_request["project_id"] = project_id
|
|
389
|
-
if stream is not OMIT:
|
|
390
|
-
_request["stream"] = stream
|
|
391
456
|
_response = await self._client_wrapper.httpx_client.request(
|
|
392
457
|
"POST",
|
|
393
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/schemas
|
|
458
|
+
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/schemas"),
|
|
394
459
|
json=jsonable_encoder(_request),
|
|
395
460
|
headers=self._client_wrapper.get_headers(),
|
|
396
461
|
timeout=60,
|
|
@@ -405,27 +470,53 @@ class AsyncExtractionClient:
|
|
|
405
470
|
raise ApiError(status_code=_response.status_code, body=_response.text)
|
|
406
471
|
raise ApiError(status_code=_response.status_code, body=_response_json)
|
|
407
472
|
|
|
408
|
-
async def
|
|
473
|
+
async def infer_schema(
|
|
474
|
+
self,
|
|
475
|
+
*,
|
|
476
|
+
schema_id: typing.Optional[str] = OMIT,
|
|
477
|
+
name: str,
|
|
478
|
+
project_id: typing.Optional[str] = OMIT,
|
|
479
|
+
file_ids: typing.List[str],
|
|
480
|
+
stream: typing.Optional[bool] = OMIT,
|
|
481
|
+
) -> ExtractionSchema:
|
|
409
482
|
"""
|
|
410
483
|
Parameters:
|
|
411
|
-
-
|
|
484
|
+
- schema_id: typing.Optional[str]. The ID of a schema to update with the new schema
|
|
485
|
+
|
|
486
|
+
- name: str. The name of the extraction schema
|
|
487
|
+
|
|
488
|
+
- project_id: typing.Optional[str]. The ID of the project that the extraction schema belongs to
|
|
489
|
+
|
|
490
|
+
- file_ids: typing.List[str]. The IDs of the files that the extraction schema contains
|
|
491
|
+
|
|
492
|
+
- stream: typing.Optional[bool]. Whether to stream the results of the extraction schema
|
|
412
493
|
---
|
|
413
494
|
from llama_cloud.client import AsyncLlamaCloud
|
|
414
495
|
|
|
415
496
|
client = AsyncLlamaCloud(
|
|
416
497
|
token="YOUR_TOKEN",
|
|
417
498
|
)
|
|
418
|
-
await client.extraction.
|
|
499
|
+
await client.extraction.infer_schema(
|
|
500
|
+
name="string",
|
|
501
|
+
file_ids=[],
|
|
502
|
+
)
|
|
419
503
|
"""
|
|
504
|
+
_request: typing.Dict[str, typing.Any] = {"name": name, "file_ids": file_ids}
|
|
505
|
+
if schema_id is not OMIT:
|
|
506
|
+
_request["schema_id"] = schema_id
|
|
507
|
+
if project_id is not OMIT:
|
|
508
|
+
_request["project_id"] = project_id
|
|
509
|
+
if stream is not OMIT:
|
|
510
|
+
_request["stream"] = stream
|
|
420
511
|
_response = await self._client_wrapper.httpx_client.request(
|
|
421
|
-
"
|
|
422
|
-
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/schemas"),
|
|
423
|
-
|
|
512
|
+
"POST",
|
|
513
|
+
urllib.parse.urljoin(f"{self._client_wrapper.get_base_url()}/", "api/v1/extraction/schemas/infer"),
|
|
514
|
+
json=jsonable_encoder(_request),
|
|
424
515
|
headers=self._client_wrapper.get_headers(),
|
|
425
516
|
timeout=60,
|
|
426
517
|
)
|
|
427
518
|
if 200 <= _response.status_code < 300:
|
|
428
|
-
return pydantic.parse_obj_as(
|
|
519
|
+
return pydantic.parse_obj_as(ExtractionSchema, _response.json()) # type: ignore
|
|
429
520
|
if _response.status_code == 422:
|
|
430
521
|
raise UnprocessableEntityError(pydantic.parse_obj_as(HttpValidationError, _response.json())) # type: ignore
|
|
431
522
|
try:
|
|
@@ -1,5 +1,6 @@
|
|
|
1
1
|
# This file was auto-generated by Fern from our API Definition.
|
|
2
2
|
|
|
3
|
+
from .extraction_schema_create_data_schema_value import ExtractionSchemaCreateDataSchemaValue
|
|
3
4
|
from .extraction_schema_update_data_schema_value import ExtractionSchemaUpdateDataSchemaValue
|
|
4
5
|
|
|
5
|
-
__all__ = ["ExtractionSchemaUpdateDataSchemaValue"]
|
|
6
|
+
__all__ = ["ExtractionSchemaCreateDataSchemaValue", "ExtractionSchemaUpdateDataSchemaValue"]
|
|
@@ -1,5 +1,15 @@
|
|
|
1
1
|
# This file was auto-generated by Fern from our API Definition.
|
|
2
2
|
|
|
3
|
-
from .types import
|
|
3
|
+
from .types import (
|
|
4
|
+
PipelineFileUpdateCustomMetadataValue,
|
|
5
|
+
PipelineUpdateTransformConfig,
|
|
6
|
+
PipelineUpdateTransformConfig_Advanced,
|
|
7
|
+
PipelineUpdateTransformConfig_Auto,
|
|
8
|
+
)
|
|
4
9
|
|
|
5
|
-
__all__ = [
|
|
10
|
+
__all__ = [
|
|
11
|
+
"PipelineFileUpdateCustomMetadataValue",
|
|
12
|
+
"PipelineUpdateTransformConfig",
|
|
13
|
+
"PipelineUpdateTransformConfig_Advanced",
|
|
14
|
+
"PipelineUpdateTransformConfig_Auto",
|
|
15
|
+
]
|
|
@@ -15,6 +15,7 @@ from ...types.cloud_document import CloudDocument
|
|
|
15
15
|
from ...types.cloud_document_create import CloudDocumentCreate
|
|
16
16
|
from ...types.configured_transformation_item import ConfiguredTransformationItem
|
|
17
17
|
from ...types.data_sink_create import DataSinkCreate
|
|
18
|
+
from ...types.embedding_config import EmbeddingConfig
|
|
18
19
|
from ...types.eval_dataset_job_record import EvalDatasetJobRecord
|
|
19
20
|
from ...types.eval_execution_params import EvalExecutionParams
|
|
20
21
|
from ...types.eval_execution_params_override import EvalExecutionParamsOverride
|
|
@@ -36,6 +37,7 @@ from ...types.retrieval_mode import RetrievalMode
|
|
|
36
37
|
from ...types.retrieve_results import RetrieveResults
|
|
37
38
|
from ...types.text_node import TextNode
|
|
38
39
|
from .types.pipeline_file_update_custom_metadata_value import PipelineFileUpdateCustomMetadataValue
|
|
40
|
+
from .types.pipeline_update_transform_config import PipelineUpdateTransformConfig
|
|
39
41
|
|
|
40
42
|
try:
|
|
41
43
|
import pydantic
|
|
@@ -119,6 +121,8 @@ class PipelinesClient:
|
|
|
119
121
|
from llama_cloud import (
|
|
120
122
|
ConfigurableDataSinkNames,
|
|
121
123
|
DataSinkCreate,
|
|
124
|
+
EmbeddingConfig,
|
|
125
|
+
EmbeddingConfigType,
|
|
122
126
|
EvalExecutionParams,
|
|
123
127
|
FilterCondition,
|
|
124
128
|
LlamaParseParameters,
|
|
@@ -136,6 +140,9 @@ class PipelinesClient:
|
|
|
136
140
|
)
|
|
137
141
|
client.pipelines.create_pipeline(
|
|
138
142
|
request=PipelineCreate(
|
|
143
|
+
embedding_config=EmbeddingConfig(
|
|
144
|
+
type=EmbeddingConfigType.OPENAI_EMBEDDING,
|
|
145
|
+
),
|
|
139
146
|
data_sink=DataSinkCreate(
|
|
140
147
|
name="string",
|
|
141
148
|
sink_type=ConfigurableDataSinkNames.CHROMA,
|
|
@@ -187,6 +194,8 @@ class PipelinesClient:
|
|
|
187
194
|
from llama_cloud import (
|
|
188
195
|
ConfigurableDataSinkNames,
|
|
189
196
|
DataSinkCreate,
|
|
197
|
+
EmbeddingConfig,
|
|
198
|
+
EmbeddingConfigType,
|
|
190
199
|
EvalExecutionParams,
|
|
191
200
|
FilterCondition,
|
|
192
201
|
LlamaParseParameters,
|
|
@@ -204,6 +213,9 @@ class PipelinesClient:
|
|
|
204
213
|
)
|
|
205
214
|
client.pipelines.upsert_pipeline(
|
|
206
215
|
request=PipelineCreate(
|
|
216
|
+
embedding_config=EmbeddingConfig(
|
|
217
|
+
type=EmbeddingConfigType.OPENAI_EMBEDDING,
|
|
218
|
+
),
|
|
207
219
|
data_sink=DataSinkCreate(
|
|
208
220
|
name="string",
|
|
209
221
|
sink_type=ConfigurableDataSinkNames.CHROMA,
|
|
@@ -278,6 +290,8 @@ class PipelinesClient:
|
|
|
278
290
|
self,
|
|
279
291
|
pipeline_id: str,
|
|
280
292
|
*,
|
|
293
|
+
embedding_config: typing.Optional[EmbeddingConfig] = OMIT,
|
|
294
|
+
transform_config: typing.Optional[PipelineUpdateTransformConfig] = OMIT,
|
|
281
295
|
configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]] = OMIT,
|
|
282
296
|
data_sink_id: typing.Optional[str] = OMIT,
|
|
283
297
|
data_sink: typing.Optional[DataSinkCreate] = OMIT,
|
|
@@ -293,7 +307,11 @@ class PipelinesClient:
|
|
|
293
307
|
Parameters:
|
|
294
308
|
- pipeline_id: str.
|
|
295
309
|
|
|
296
|
-
-
|
|
310
|
+
- embedding_config: typing.Optional[EmbeddingConfig]. Configuration for the embedding model.
|
|
311
|
+
|
|
312
|
+
- transform_config: typing.Optional[PipelineUpdateTransformConfig]. Configuration for the transformation.
|
|
313
|
+
|
|
314
|
+
- configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]]. List of configured transformations.
|
|
297
315
|
|
|
298
316
|
- data_sink_id: typing.Optional[str]. Data sink ID. When provided instead of data_sink, the data sink will be looked up by ID.
|
|
299
317
|
|
|
@@ -312,6 +330,8 @@ class PipelinesClient:
|
|
|
312
330
|
from llama_cloud import (
|
|
313
331
|
ConfigurableDataSinkNames,
|
|
314
332
|
DataSinkCreate,
|
|
333
|
+
EmbeddingConfig,
|
|
334
|
+
EmbeddingConfigType,
|
|
315
335
|
EvalExecutionParams,
|
|
316
336
|
FilterCondition,
|
|
317
337
|
LlamaParseParameters,
|
|
@@ -327,6 +347,9 @@ class PipelinesClient:
|
|
|
327
347
|
)
|
|
328
348
|
client.pipelines.update_existing_pipeline(
|
|
329
349
|
pipeline_id="string",
|
|
350
|
+
embedding_config=EmbeddingConfig(
|
|
351
|
+
type=EmbeddingConfigType.OPENAI_EMBEDDING,
|
|
352
|
+
),
|
|
330
353
|
data_sink=DataSinkCreate(
|
|
331
354
|
name="string",
|
|
332
355
|
sink_type=ConfigurableDataSinkNames.CHROMA,
|
|
@@ -345,6 +368,10 @@ class PipelinesClient:
|
|
|
345
368
|
)
|
|
346
369
|
"""
|
|
347
370
|
_request: typing.Dict[str, typing.Any] = {}
|
|
371
|
+
if embedding_config is not OMIT:
|
|
372
|
+
_request["embedding_config"] = embedding_config
|
|
373
|
+
if transform_config is not OMIT:
|
|
374
|
+
_request["transform_config"] = transform_config
|
|
348
375
|
if configured_transformations is not OMIT:
|
|
349
376
|
_request["configured_transformations"] = configured_transformations
|
|
350
377
|
if data_sink_id is not OMIT:
|
|
@@ -1281,6 +1308,7 @@ class PipelinesClient:
|
|
|
1281
1308
|
from llama_cloud import (
|
|
1282
1309
|
ChatData,
|
|
1283
1310
|
FilterCondition,
|
|
1311
|
+
LlmParameters,
|
|
1284
1312
|
MetadataFilters,
|
|
1285
1313
|
PresetRetrievalParams,
|
|
1286
1314
|
RetrievalMode,
|
|
@@ -1301,6 +1329,7 @@ class PipelinesClient:
|
|
|
1301
1329
|
),
|
|
1302
1330
|
retrieval_mode=RetrievalMode.CHUNKS,
|
|
1303
1331
|
),
|
|
1332
|
+
llm_parameters=LlmParameters(),
|
|
1304
1333
|
),
|
|
1305
1334
|
)
|
|
1306
1335
|
"""
|
|
@@ -1678,6 +1707,8 @@ class AsyncPipelinesClient:
|
|
|
1678
1707
|
from llama_cloud import (
|
|
1679
1708
|
ConfigurableDataSinkNames,
|
|
1680
1709
|
DataSinkCreate,
|
|
1710
|
+
EmbeddingConfig,
|
|
1711
|
+
EmbeddingConfigType,
|
|
1681
1712
|
EvalExecutionParams,
|
|
1682
1713
|
FilterCondition,
|
|
1683
1714
|
LlamaParseParameters,
|
|
@@ -1695,6 +1726,9 @@ class AsyncPipelinesClient:
|
|
|
1695
1726
|
)
|
|
1696
1727
|
await client.pipelines.create_pipeline(
|
|
1697
1728
|
request=PipelineCreate(
|
|
1729
|
+
embedding_config=EmbeddingConfig(
|
|
1730
|
+
type=EmbeddingConfigType.OPENAI_EMBEDDING,
|
|
1731
|
+
),
|
|
1698
1732
|
data_sink=DataSinkCreate(
|
|
1699
1733
|
name="string",
|
|
1700
1734
|
sink_type=ConfigurableDataSinkNames.CHROMA,
|
|
@@ -1746,6 +1780,8 @@ class AsyncPipelinesClient:
|
|
|
1746
1780
|
from llama_cloud import (
|
|
1747
1781
|
ConfigurableDataSinkNames,
|
|
1748
1782
|
DataSinkCreate,
|
|
1783
|
+
EmbeddingConfig,
|
|
1784
|
+
EmbeddingConfigType,
|
|
1749
1785
|
EvalExecutionParams,
|
|
1750
1786
|
FilterCondition,
|
|
1751
1787
|
LlamaParseParameters,
|
|
@@ -1763,6 +1799,9 @@ class AsyncPipelinesClient:
|
|
|
1763
1799
|
)
|
|
1764
1800
|
await client.pipelines.upsert_pipeline(
|
|
1765
1801
|
request=PipelineCreate(
|
|
1802
|
+
embedding_config=EmbeddingConfig(
|
|
1803
|
+
type=EmbeddingConfigType.OPENAI_EMBEDDING,
|
|
1804
|
+
),
|
|
1766
1805
|
data_sink=DataSinkCreate(
|
|
1767
1806
|
name="string",
|
|
1768
1807
|
sink_type=ConfigurableDataSinkNames.CHROMA,
|
|
@@ -1837,6 +1876,8 @@ class AsyncPipelinesClient:
|
|
|
1837
1876
|
self,
|
|
1838
1877
|
pipeline_id: str,
|
|
1839
1878
|
*,
|
|
1879
|
+
embedding_config: typing.Optional[EmbeddingConfig] = OMIT,
|
|
1880
|
+
transform_config: typing.Optional[PipelineUpdateTransformConfig] = OMIT,
|
|
1840
1881
|
configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]] = OMIT,
|
|
1841
1882
|
data_sink_id: typing.Optional[str] = OMIT,
|
|
1842
1883
|
data_sink: typing.Optional[DataSinkCreate] = OMIT,
|
|
@@ -1852,7 +1893,11 @@ class AsyncPipelinesClient:
|
|
|
1852
1893
|
Parameters:
|
|
1853
1894
|
- pipeline_id: str.
|
|
1854
1895
|
|
|
1855
|
-
-
|
|
1896
|
+
- embedding_config: typing.Optional[EmbeddingConfig]. Configuration for the embedding model.
|
|
1897
|
+
|
|
1898
|
+
- transform_config: typing.Optional[PipelineUpdateTransformConfig]. Configuration for the transformation.
|
|
1899
|
+
|
|
1900
|
+
- configured_transformations: typing.Optional[typing.List[ConfiguredTransformationItem]]. List of configured transformations.
|
|
1856
1901
|
|
|
1857
1902
|
- data_sink_id: typing.Optional[str]. Data sink ID. When provided instead of data_sink, the data sink will be looked up by ID.
|
|
1858
1903
|
|
|
@@ -1871,6 +1916,8 @@ class AsyncPipelinesClient:
|
|
|
1871
1916
|
from llama_cloud import (
|
|
1872
1917
|
ConfigurableDataSinkNames,
|
|
1873
1918
|
DataSinkCreate,
|
|
1919
|
+
EmbeddingConfig,
|
|
1920
|
+
EmbeddingConfigType,
|
|
1874
1921
|
EvalExecutionParams,
|
|
1875
1922
|
FilterCondition,
|
|
1876
1923
|
LlamaParseParameters,
|
|
@@ -1886,6 +1933,9 @@ class AsyncPipelinesClient:
|
|
|
1886
1933
|
)
|
|
1887
1934
|
await client.pipelines.update_existing_pipeline(
|
|
1888
1935
|
pipeline_id="string",
|
|
1936
|
+
embedding_config=EmbeddingConfig(
|
|
1937
|
+
type=EmbeddingConfigType.OPENAI_EMBEDDING,
|
|
1938
|
+
),
|
|
1889
1939
|
data_sink=DataSinkCreate(
|
|
1890
1940
|
name="string",
|
|
1891
1941
|
sink_type=ConfigurableDataSinkNames.CHROMA,
|
|
@@ -1904,6 +1954,10 @@ class AsyncPipelinesClient:
|
|
|
1904
1954
|
)
|
|
1905
1955
|
"""
|
|
1906
1956
|
_request: typing.Dict[str, typing.Any] = {}
|
|
1957
|
+
if embedding_config is not OMIT:
|
|
1958
|
+
_request["embedding_config"] = embedding_config
|
|
1959
|
+
if transform_config is not OMIT:
|
|
1960
|
+
_request["transform_config"] = transform_config
|
|
1907
1961
|
if configured_transformations is not OMIT:
|
|
1908
1962
|
_request["configured_transformations"] = configured_transformations
|
|
1909
1963
|
if data_sink_id is not OMIT:
|
|
@@ -2842,6 +2896,7 @@ class AsyncPipelinesClient:
|
|
|
2842
2896
|
from llama_cloud import (
|
|
2843
2897
|
ChatData,
|
|
2844
2898
|
FilterCondition,
|
|
2899
|
+
LlmParameters,
|
|
2845
2900
|
MetadataFilters,
|
|
2846
2901
|
PresetRetrievalParams,
|
|
2847
2902
|
RetrievalMode,
|
|
@@ -2862,6 +2917,7 @@ class AsyncPipelinesClient:
|
|
|
2862
2917
|
),
|
|
2863
2918
|
retrieval_mode=RetrievalMode.CHUNKS,
|
|
2864
2919
|
),
|
|
2920
|
+
llm_parameters=LlmParameters(),
|
|
2865
2921
|
),
|
|
2866
2922
|
)
|
|
2867
2923
|
"""
|
|
@@ -1,5 +1,15 @@
|
|
|
1
1
|
# This file was auto-generated by Fern from our API Definition.
|
|
2
2
|
|
|
3
3
|
from .pipeline_file_update_custom_metadata_value import PipelineFileUpdateCustomMetadataValue
|
|
4
|
+
from .pipeline_update_transform_config import (
|
|
5
|
+
PipelineUpdateTransformConfig,
|
|
6
|
+
PipelineUpdateTransformConfig_Advanced,
|
|
7
|
+
PipelineUpdateTransformConfig_Auto,
|
|
8
|
+
)
|
|
4
9
|
|
|
5
|
-
__all__ = [
|
|
10
|
+
__all__ = [
|
|
11
|
+
"PipelineFileUpdateCustomMetadataValue",
|
|
12
|
+
"PipelineUpdateTransformConfig",
|
|
13
|
+
"PipelineUpdateTransformConfig_Advanced",
|
|
14
|
+
"PipelineUpdateTransformConfig_Auto",
|
|
15
|
+
]
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import typing
|
|
6
|
+
|
|
7
|
+
import typing_extensions
|
|
8
|
+
|
|
9
|
+
from ....types.advanced_mode_transform_config import AdvancedModeTransformConfig
|
|
10
|
+
from ....types.auto_transform_config import AutoTransformConfig
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class PipelineUpdateTransformConfig_Auto(AutoTransformConfig):
|
|
14
|
+
mode: typing_extensions.Literal["auto"]
|
|
15
|
+
|
|
16
|
+
class Config:
|
|
17
|
+
frozen = True
|
|
18
|
+
smart_union = True
|
|
19
|
+
allow_population_by_field_name = True
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class PipelineUpdateTransformConfig_Advanced(AdvancedModeTransformConfig):
|
|
23
|
+
mode: typing_extensions.Literal["advanced"]
|
|
24
|
+
|
|
25
|
+
class Config:
|
|
26
|
+
frozen = True
|
|
27
|
+
smart_union = True
|
|
28
|
+
allow_population_by_field_name = True
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
PipelineUpdateTransformConfig = typing.Union[PipelineUpdateTransformConfig_Auto, PipelineUpdateTransformConfig_Advanced]
|