liger-kernel 0.6.3__py3-none-any.whl → 0.6.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (101) hide show
  1. liger_kernel/chunked_loss/cosine_similarity_loss.py +20 -5
  2. liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
  3. liger_kernel/chunked_loss/fused_linear_ppo.py +21 -5
  4. liger_kernel/chunked_loss/grpo_loss.py +8 -5
  5. liger_kernel/chunked_loss/jsd_loss.py +39 -11
  6. liger_kernel/ops/__init__.py +141 -0
  7. liger_kernel/ops/backends/README.md +151 -0
  8. liger_kernel/ops/backends/__init__.py +13 -0
  9. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  10. liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +492 -0
  11. liger_kernel/ops/backends/_ascend/ops/__init__.py +61 -0
  12. liger_kernel/ops/backends/_ascend/ops/embedding.py +214 -0
  13. liger_kernel/ops/backends/_ascend/ops/geglu.py +191 -0
  14. liger_kernel/ops/backends/_ascend/ops/llama4_rope.py +298 -0
  15. liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +275 -0
  16. liger_kernel/ops/backends/_ascend/ops/rope.py +265 -0
  17. liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
  18. liger_kernel/ops/backends/_ascend/ops/tvd.py +223 -0
  19. liger_kernel/ops/backends/_ascend/ub_manager.py +367 -0
  20. liger_kernel/ops/backends/registry.py +61 -0
  21. liger_kernel/ops/cross_entropy.py +71 -11
  22. liger_kernel/ops/dyt.py +5 -2
  23. liger_kernel/ops/fused_add_rms_norm.py +21 -23
  24. liger_kernel/ops/fused_linear_cross_entropy.py +32 -5
  25. liger_kernel/ops/geglu.py +5 -3
  26. liger_kernel/ops/group_norm.py +12 -8
  27. liger_kernel/ops/grpo_loss.py +3 -1
  28. liger_kernel/ops/kl_div.py +8 -11
  29. liger_kernel/ops/layer_norm.py +89 -69
  30. liger_kernel/ops/poly_norm.py +19 -21
  31. liger_kernel/ops/rms_norm.py +149 -71
  32. liger_kernel/ops/tiled_mlp.py +136 -0
  33. liger_kernel/ops/utils.py +25 -0
  34. liger_kernel/transformers/__init__.py +25 -0
  35. liger_kernel/transformers/auto_model.py +21 -0
  36. liger_kernel/transformers/cross_entropy.py +9 -4
  37. liger_kernel/transformers/dyt.py +1 -1
  38. liger_kernel/transformers/experimental/embedding.py +1 -1
  39. liger_kernel/transformers/functional.py +44 -26
  40. liger_kernel/transformers/fused_add_rms_norm.py +1 -1
  41. liger_kernel/transformers/fused_linear_cross_entropy.py +9 -4
  42. liger_kernel/transformers/fused_linear_jsd.py +1 -1
  43. liger_kernel/transformers/fused_neighborhood_attention.py +1 -1
  44. liger_kernel/transformers/geglu.py +1 -1
  45. liger_kernel/transformers/group_norm.py +1 -1
  46. liger_kernel/transformers/grpo_loss.py +57 -2
  47. liger_kernel/transformers/jsd.py +1 -1
  48. liger_kernel/transformers/kl_div.py +1 -1
  49. liger_kernel/transformers/layer_norm.py +1 -1
  50. liger_kernel/transformers/llama4_rope.py +1 -1
  51. liger_kernel/transformers/model/exaone4.py +136 -0
  52. liger_kernel/transformers/model/falcon_h1.py +19 -5
  53. liger_kernel/transformers/model/gemma.py +17 -6
  54. liger_kernel/transformers/model/gemma2.py +17 -8
  55. liger_kernel/transformers/model/gemma3.py +35 -16
  56. liger_kernel/transformers/model/glm4.py +16 -4
  57. liger_kernel/transformers/model/glm4v.py +16 -4
  58. liger_kernel/transformers/model/glm4v_moe.py +23 -4
  59. liger_kernel/transformers/model/gpt_oss.py +211 -0
  60. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  61. liger_kernel/transformers/model/internvl.py +12 -5
  62. liger_kernel/transformers/model/llama.py +14 -5
  63. liger_kernel/transformers/model/llama4.py +16 -4
  64. liger_kernel/transformers/model/llava.py +12 -4
  65. liger_kernel/transformers/model/loss_utils.py +37 -3
  66. liger_kernel/transformers/model/mistral.py +15 -6
  67. liger_kernel/transformers/model/mixtral.py +16 -7
  68. liger_kernel/transformers/model/mllama.py +12 -4
  69. liger_kernel/transformers/model/olmo2.py +16 -4
  70. liger_kernel/transformers/model/olmo3.py +142 -0
  71. liger_kernel/transformers/model/output_classes.py +147 -0
  72. liger_kernel/transformers/model/paligemma.py +23 -5
  73. liger_kernel/transformers/model/phi3.py +14 -7
  74. liger_kernel/transformers/model/qwen2.py +16 -3
  75. liger_kernel/transformers/model/qwen2_5_vl.py +14 -6
  76. liger_kernel/transformers/model/qwen2_vl.py +16 -4
  77. liger_kernel/transformers/model/qwen3.py +20 -5
  78. liger_kernel/transformers/model/qwen3_moe.py +19 -5
  79. liger_kernel/transformers/model/qwen3_next.py +17 -5
  80. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  81. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  82. liger_kernel/transformers/model/smollm3.py +15 -6
  83. liger_kernel/transformers/monkey_patch.py +584 -49
  84. liger_kernel/transformers/multi_token_attention.py +1 -1
  85. liger_kernel/transformers/poly_norm.py +1 -1
  86. liger_kernel/transformers/qwen2vl_mrope.py +1 -1
  87. liger_kernel/transformers/rms_norm.py +8 -3
  88. liger_kernel/transformers/rope.py +45 -1
  89. liger_kernel/transformers/softmax.py +1 -1
  90. liger_kernel/transformers/sparsemax.py +1 -1
  91. liger_kernel/transformers/swiglu.py +18 -1
  92. liger_kernel/transformers/tiled_mlp.py +125 -0
  93. liger_kernel/transformers/tvd.py +1 -1
  94. liger_kernel/utils.py +54 -0
  95. {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.5.dist-info}/METADATA +14 -4
  96. liger_kernel-0.6.5.dist-info/RECORD +134 -0
  97. {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.5.dist-info}/WHEEL +1 -1
  98. liger_kernel-0.6.3.dist-info/RECORD +0 -111
  99. {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.5.dist-info}/licenses/LICENSE +0 -0
  100. {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.5.dist-info}/licenses/NOTICE +0 -0
  101. {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.5.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,136 @@
1
+ import math
2
+
3
+ from typing import Callable
4
+ from typing import List
5
+ from typing import Optional
6
+
7
+ import torch
8
+
9
+ from liger_kernel.ops.utils import ensure_contiguous
10
+
11
+
12
+ class LigerTiledMLPFunction(torch.autograd.Function):
13
+ """
14
+ Based on DeepSpeed's TiledMLP:
15
+ https://github.com/deepspeedai/DeepSpeed/blob/v0.18.2/deepspeed/runtime/sequence_parallel/ulysses_sp.py#L838
16
+
17
+ Perform a tiled MLP computation to massively reduce memory usage needed to compute MLP
18
+ when using very long sequence lengths.
19
+
20
+ This module re-computes `forward` in the `backward`. So the `forward` occurs twice each iteration.
21
+ And if you're using activation checkpointing it then occurs thrice.
22
+
23
+ Args:
24
+ fn: the function to call on sharded inputs (e.g., mlp.forward)
25
+ mlp_module: the MLP nn.Module object
26
+ x: the input to MLP.forward (hidden_states)
27
+ shards: how many shards to use
28
+ compute_params: a list of weights engaged in the compute
29
+
30
+ Returns:
31
+ the computed hidden_states
32
+ """
33
+
34
+ @staticmethod
35
+ @ensure_contiguous
36
+ def forward(
37
+ ctx,
38
+ fn: Callable,
39
+ mlp_module: torch.nn.Module,
40
+ x: torch.Tensor,
41
+ shards: int,
42
+ compute_params: Optional[List[torch.nn.Parameter]] = None,
43
+ ) -> torch.Tensor:
44
+ ctx.fn = fn
45
+ ctx.mlp_module = mlp_module
46
+ ctx.shards = shards
47
+ ctx.save_for_backward(x)
48
+
49
+ # x.shape could be [bs, seqlen, hidden_size] or [seqlen, hidden_size] (moe experts)
50
+ x_shards = list(torch.chunk(x, chunks=shards, dim=-2))
51
+ with torch.no_grad():
52
+ output_shards = [fn(mlp_module, x_shard) for x_shard in x_shards]
53
+ output_unsharded = torch.cat(output_shards, dim=-2)
54
+
55
+ return output_unsharded
56
+
57
+ @staticmethod
58
+ @ensure_contiguous
59
+ def backward(ctx, *grads) -> tuple:
60
+ fn = ctx.fn
61
+ (x,) = ctx.saved_tensors
62
+ mlp_module = ctx.mlp_module
63
+ shards = ctx.shards
64
+
65
+ x_requires_grad = x.requires_grad
66
+ x = x.detach()
67
+ # detach() unsets x.requires_grad, so restore it
68
+ x.requires_grad_(x_requires_grad)
69
+
70
+ # x.shape could be [bs, seqlen, hidden_size] or [seqlen, hidden_size] (moe experts)
71
+ hidden_size = x.shape[-1]
72
+ x_shape_orig = x.shape
73
+
74
+ # flatten bs+seqlen to avoid having stride issues when narrowing into seqlen w/ bs>1
75
+ x = x.view(-1, hidden_size)
76
+ incoming_grad = grads[0].view(-1, hidden_size)
77
+ x_grad = torch.zeros_like(x)
78
+
79
+ x_shards = list(torch.chunk(x, chunks=shards, dim=0))
80
+
81
+ for i, x_shard in enumerate(x_shards):
82
+ x_shard.requires_grad_(x_requires_grad)
83
+
84
+ # if seqlen is not exactly divisible by shards the last step will be shorter than shard_step
85
+ shard_step = x_shards[i].shape[0]
86
+ shard_offset = i * x_shards[0].shape[0]
87
+
88
+ x_shard.grad = x_grad.narrow(0, shard_offset, shard_step).view_as(x_shard)
89
+ incoming_grad_shard = incoming_grad.narrow(0, shard_offset, shard_step).view_as(x_shard)
90
+
91
+ with torch.enable_grad():
92
+ output = fn(mlp_module, x_shard)
93
+ torch.autograd.backward(output, incoming_grad_shard)
94
+
95
+ # unflatten
96
+ x_grad = x_grad.view(x_shape_orig)
97
+
98
+ return (None, None, x_grad, None, None)
99
+
100
+
101
+ def apply_tiled_mlp(
102
+ fn: Callable,
103
+ mlp_module: torch.nn.Module,
104
+ x: torch.Tensor,
105
+ num_shards: Optional[int] = None,
106
+ compute_params: Optional[List[torch.nn.Parameter]] = None,
107
+ ) -> torch.Tensor:
108
+ """
109
+ Apply tiled MLP computation for memory efficiency.
110
+
111
+ Args:
112
+ fn: the function to call on sharded inputs (e.g., lambda module, x: module(x))
113
+ mlp_module: the MLP nn.Module object
114
+ x: the input tensor with shape [bs, seqlen, hidden_size] or [seqlen, hidden_size]
115
+ num_shards: number of shards to use. If None, automatically calculated as ceil(seqlen / hidden_size)
116
+ compute_params: list of parameters for DeepSpeed ZeRO optimization
117
+
118
+ Returns:
119
+ output tensor with the same shape as input
120
+ """
121
+ if num_shards is None:
122
+ # x.shape could be [bs, seqlen, hidden_size] or [seqlen, hidden_size]
123
+ hidden_size = x.shape[-1]
124
+ seqlen = x.shape[-2]
125
+ num_shards = math.ceil(seqlen / hidden_size)
126
+
127
+ # Ensure num_shards is at least 1
128
+ num_shards = max(1, num_shards)
129
+
130
+ return LigerTiledMLPFunction.apply(
131
+ fn,
132
+ mlp_module,
133
+ x,
134
+ num_shards,
135
+ compute_params,
136
+ )
liger_kernel/ops/utils.py CHANGED
@@ -78,6 +78,8 @@ def get_amp_custom_fwd_bwd() -> Callable:
78
78
  functools.partial(torch.amp.custom_fwd, device_type=device),
79
79
  functools.partial(torch.amp.custom_bwd, device_type=device),
80
80
  )
81
+ if hasattr(torch, "npu") and getattr(torch.npu, "amp", None) is not None:
82
+ return torch.npu.amp.custom_fwd, torch.npu.amp.custom_bwd
81
83
  return torch.cuda.amp.custom_fwd, torch.cuda.amp.custom_bwd
82
84
 
83
85
 
@@ -125,3 +127,26 @@ def element_mul_kernel(
125
127
  X_offsets = i + tl.arange(0, BLOCK_SIZE)
126
128
  X_block = tl.load(X_ptr + X_offsets, mask=X_offsets < n_cols)
127
129
  tl.store(X_ptr + X_offsets, X_block * grad_output, mask=X_offsets < n_cols)
130
+
131
+
132
+ def get_npu_core_count(default: int = 20) -> int:
133
+ """Return NPU vector core count.
134
+ Fallback to `default` if Triton runtime or NPU device is unavailable.
135
+ """
136
+ try:
137
+ utils = triton.runtime.driver.active.utils
138
+ props = utils.get_device_properties(0)
139
+ return int(props.get("num_vectorcore", default))
140
+ except Exception:
141
+ return default
142
+
143
+
144
+ def set_large_grf_mode(kernel_args: dict):
145
+ """Set large GRF mode for XPU devices."""
146
+ # On XPU triton installed along with pytorch-xpu will be called `pytorch-triton-xpu`,
147
+ # triton XPU installed from source will be called `triton`.
148
+ if compare_version("pytorch-triton-xpu", operator.ge, "3.6.0") or compare_version("triton", operator.ge, "3.6.0"):
149
+ kernel_args["grf_mode"] = "256"
150
+ else:
151
+ # API was changed in https://github.com/intel/intel-xpu-backend-for-triton/pull/5430
152
+ kernel_args["grf_mode"] = "large"
@@ -24,6 +24,8 @@ from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F4
24
24
  from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
25
25
  from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
26
26
  from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
27
+ from liger_kernel.transformers.tiled_mlp import LigerTiledGEGLUMLP # noqa: F401
28
+ from liger_kernel.transformers.tiled_mlp import LigerTiledSwiGLUMLP # noqa: F401
27
29
  from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
28
30
 
29
31
  # Static-only imports for IDEs and type checkers
@@ -31,6 +33,7 @@ if TYPE_CHECKING:
31
33
  from liger_kernel.transformers.auto_model import AutoLigerKernelForCausalLM # noqa: F401
32
34
  from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa: F401
33
35
  from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
36
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_exaone4 # noqa: F401
34
37
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_falcon_h1 # noqa: F401
35
38
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
36
39
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
@@ -39,7 +42,10 @@ if TYPE_CHECKING:
39
42
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
40
43
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
41
44
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
45
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gpt_oss # noqa: F401
42
46
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
47
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_dense # noqa: F401
48
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_moe # noqa: F401
43
49
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
44
50
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
45
51
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
@@ -48,6 +54,7 @@ if TYPE_CHECKING:
48
54
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
49
55
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
50
56
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
57
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo3 # noqa: F401
51
58
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
52
59
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
53
60
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
@@ -56,6 +63,8 @@ if TYPE_CHECKING:
56
63
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
57
64
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
58
65
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_next # noqa: F401
66
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl # noqa: F401
67
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl_moe # noqa: F401
59
68
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
60
69
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smolvlm # noqa: F401
61
70
 
@@ -103,6 +112,7 @@ def __getattr__(name: str):
103
112
  "apply_liger_kernel_to_glm4",
104
113
  "apply_liger_kernel_to_glm4v",
105
114
  "apply_liger_kernel_to_glm4v_moe",
115
+ "apply_liger_kernel_to_gpt_oss",
106
116
  "apply_liger_kernel_to_granite",
107
117
  "apply_liger_kernel_to_internvl",
108
118
  "apply_liger_kernel_to_llama",
@@ -112,6 +122,7 @@ def __getattr__(name: str):
112
122
  "apply_liger_kernel_to_mixtral",
113
123
  "apply_liger_kernel_to_mllama",
114
124
  "apply_liger_kernel_to_olmo2",
125
+ "apply_liger_kernel_to_olmo3",
115
126
  "apply_liger_kernel_to_paligemma",
116
127
  "apply_liger_kernel_to_phi3",
117
128
  "apply_liger_kernel_to_qwen2",
@@ -120,8 +131,13 @@ def __getattr__(name: str):
120
131
  "apply_liger_kernel_to_qwen3",
121
132
  "apply_liger_kernel_to_qwen3_moe",
122
133
  "apply_liger_kernel_to_qwen3_next",
134
+ "apply_liger_kernel_to_qwen3_vl",
135
+ "apply_liger_kernel_to_qwen3_vl_moe",
123
136
  "apply_liger_kernel_to_smollm3",
124
137
  "apply_liger_kernel_to_smolvlm",
138
+ "apply_liger_kernel_to_hunyuan_v1_dense",
139
+ "apply_liger_kernel_to_hunyuan_v1_moe",
140
+ "apply_liger_kernel_to_exaone4",
125
141
  }
126
142
 
127
143
  if name in monkey_patch_symbols:
@@ -151,6 +167,8 @@ __all__ = [
151
167
  "LigerPhi3SwiGLUMLP",
152
168
  "LigerQwen3MoeSwiGLUMLP",
153
169
  "LigerSwiGLUMLP",
170
+ "LigerTiledGEGLUMLP",
171
+ "LigerTiledSwiGLUMLP",
154
172
  "LigerTVDLoss",
155
173
  "LigerKLDIVLoss",
156
174
  "LigerMultiTokenAttention",
@@ -173,6 +191,7 @@ if _TRANSFORMERS_AVAILABLE:
173
191
  "apply_liger_kernel_to_glm4",
174
192
  "apply_liger_kernel_to_glm4v",
175
193
  "apply_liger_kernel_to_glm4v_moe",
194
+ "apply_liger_kernel_to_gpt_oss",
176
195
  "apply_liger_kernel_to_granite",
177
196
  "apply_liger_kernel_to_internvl",
178
197
  "apply_liger_kernel_to_llama",
@@ -182,6 +201,7 @@ if _TRANSFORMERS_AVAILABLE:
182
201
  "apply_liger_kernel_to_mixtral",
183
202
  "apply_liger_kernel_to_mllama",
184
203
  "apply_liger_kernel_to_olmo2",
204
+ "apply_liger_kernel_to_olmo3",
185
205
  "apply_liger_kernel_to_paligemma",
186
206
  "apply_liger_kernel_to_phi3",
187
207
  "apply_liger_kernel_to_qwen2",
@@ -190,7 +210,12 @@ if _TRANSFORMERS_AVAILABLE:
190
210
  "apply_liger_kernel_to_qwen3",
191
211
  "apply_liger_kernel_to_qwen3_moe",
192
212
  "apply_liger_kernel_to_qwen3_next",
213
+ "apply_liger_kernel_to_qwen3_vl",
214
+ "apply_liger_kernel_to_qwen3_vl_moe",
193
215
  "apply_liger_kernel_to_smollm3",
194
216
  "apply_liger_kernel_to_smolvlm",
217
+ "apply_liger_kernel_to_hunyuan_v1_dense",
218
+ "apply_liger_kernel_to_hunyuan_v1_moe",
219
+ "apply_liger_kernel_to_exaone4",
195
220
  ]
196
221
  )
@@ -1,4 +1,5 @@
1
1
  import inspect
2
+ import logging
2
3
 
3
4
  from transformers import AutoConfig
4
5
  from transformers import AutoModelForCausalLM
@@ -6,6 +7,8 @@ from transformers import AutoModelForCausalLM
6
7
  from liger_kernel.transformers.monkey_patch import MODEL_TYPE_TO_APPLY_LIGER_FN
7
8
  from liger_kernel.transformers.monkey_patch import _apply_liger_kernel
8
9
 
10
+ logger = logging.getLogger(__name__)
11
+
9
12
 
10
13
  def _get_model_config(model_dir, **model_init_kwargs):
11
14
  config = AutoConfig.from_pretrained(model_dir, **model_init_kwargs)
@@ -36,3 +39,21 @@ class AutoLigerKernelForCausalLM(AutoModelForCausalLM):
36
39
  applicable_kwargs = {key: value for key, value in kwargs.items() if key not in apply_fn_signature.parameters}
37
40
 
38
41
  return super().from_pretrained(pretrained_model_name_or_path, *model_args, **applicable_kwargs)
42
+
43
+ @classmethod
44
+ def from_config(cls, config, **kwargs):
45
+ model_type = getattr(config, "model_type", None)
46
+ if not model_type:
47
+ logger.info("Model type could not be determined from model config. No Liger kernels will be applied.")
48
+ return
49
+ model_type = config.model_type
50
+
51
+ _apply_liger_kernel(model_type, **kwargs)
52
+
53
+ # Filter out kwargs that were passed to the apply_liger_* function, which will cause
54
+ # model initialization errors otherwise
55
+ apply_fn = MODEL_TYPE_TO_APPLY_LIGER_FN[model_type]
56
+ apply_fn_signature = inspect.signature(apply_fn)
57
+ applicable_kwargs = {key: value for key, value in kwargs.items() if key not in apply_fn_signature.parameters}
58
+
59
+ return super().from_config(config, **applicable_kwargs)
@@ -2,7 +2,8 @@ from typing import Optional
2
2
 
3
3
  import torch
4
4
 
5
- from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
5
+ from liger_kernel.ops import LigerCrossEntropyFunction
6
+ from liger_kernel.transformers.functional import CrossEntropyOutput
6
7
 
7
8
 
8
9
  class LigerCrossEntropyLoss(torch.nn.Module):
@@ -15,6 +16,7 @@ class LigerCrossEntropyLoss(torch.nn.Module):
15
16
  reduction: str = "mean",
16
17
  softcap: Optional[float] = None,
17
18
  return_z_loss: bool = False,
19
+ return_token_accuracy: bool = False,
18
20
  ):
19
21
  super().__init__()
20
22
  assert (label_smoothing >= 0) and (label_smoothing <= 1), (
@@ -33,9 +35,10 @@ class LigerCrossEntropyLoss(torch.nn.Module):
33
35
  self.reduction = reduction
34
36
  self.softcap = softcap
35
37
  self.return_z_loss = return_z_loss
38
+ self.return_token_accuracy = return_token_accuracy
36
39
 
37
40
  def forward(self, _input: torch.Tensor, target: torch.Tensor):
38
- loss, z_loss = LigerCrossEntropyFunction.apply(
41
+ loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
39
42
  _input,
40
43
  target,
41
44
  self.weight,
@@ -45,7 +48,9 @@ class LigerCrossEntropyLoss(torch.nn.Module):
45
48
  self.reduction,
46
49
  self.softcap,
47
50
  self.return_z_loss,
51
+ self.return_token_accuracy,
48
52
  )
49
- if not self.return_z_loss:
53
+ if not self.return_z_loss and not self.return_token_accuracy:
50
54
  return loss
51
- return loss, z_loss
55
+
56
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
3
 
4
- from liger_kernel.ops.dyt import LigerDyTFunction
4
+ from liger_kernel.ops import LigerDyTFunction
5
5
 
6
6
 
7
7
  class LigerDyT(nn.Module):
@@ -3,7 +3,7 @@ from typing import Optional
3
3
  import torch
4
4
  import torch.nn as nn
5
5
 
6
- from liger_kernel.ops.experimental.embedding import LigerEmbeddingFunction
6
+ from liger_kernel.ops import LigerEmbeddingFunction
7
7
 
8
8
 
9
9
  class LigerEmbedding(nn.Module):
@@ -1,25 +1,35 @@
1
+ from dataclasses import dataclass
1
2
  from typing import Optional
2
3
 
3
- from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
4
- from liger_kernel.ops.dyt import LigerDyTFunction
5
- from liger_kernel.ops.fused_add_rms_norm import LigerFusedAddRMSNormFunction
6
- from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
7
- from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
8
- from liger_kernel.ops.fused_neighborhood_attention import LigerFusedNeighborhoodAttentionFunction
9
- from liger_kernel.ops.geglu import LigerGELUMulFunction
10
- from liger_kernel.ops.group_norm import LigerGroupNormFunction
11
- from liger_kernel.ops.jsd import LigerJSDFunction
12
- from liger_kernel.ops.kl_div import LigerKLDivLossFunction
13
- from liger_kernel.ops.layer_norm import LigerLayerNormFunction
14
- from liger_kernel.ops.multi_token_attention import LigerMultiTokenAttentionFunction
15
- from liger_kernel.ops.poly_norm import LigerPolyNormFunction
16
- from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
17
- from liger_kernel.ops.rms_norm import LigerRMSNormFunction
18
- from liger_kernel.ops.rope import LigerRopeFunction
19
- from liger_kernel.ops.softmax import LigerSoftmaxFunction
20
- from liger_kernel.ops.sparsemax import LigerSparsemaxFunction
21
- from liger_kernel.ops.swiglu import LigerSiLUMulFunction
22
- from liger_kernel.ops.tvd import LigerTVDLossFunction
4
+ import torch
5
+
6
+ from liger_kernel.ops import LigerCrossEntropyFunction
7
+ from liger_kernel.ops import LigerDyTFunction
8
+ from liger_kernel.ops import LigerFusedAddRMSNormFunction
9
+ from liger_kernel.ops import LigerFusedLinearCrossEntropyFunction
10
+ from liger_kernel.ops import LigerFusedLinearJSDFunction
11
+ from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
12
+ from liger_kernel.ops import LigerGELUMulFunction
13
+ from liger_kernel.ops import LigerGroupNormFunction
14
+ from liger_kernel.ops import LigerJSDFunction
15
+ from liger_kernel.ops import LigerKLDivLossFunction
16
+ from liger_kernel.ops import LigerLayerNormFunction
17
+ from liger_kernel.ops import LigerMultiTokenAttentionFunction
18
+ from liger_kernel.ops import LigerPolyNormFunction
19
+ from liger_kernel.ops import LigerQwen2VLMRopeFunction
20
+ from liger_kernel.ops import LigerRMSNormFunction
21
+ from liger_kernel.ops import LigerRopeFunction
22
+ from liger_kernel.ops import LigerSiLUMulFunction
23
+ from liger_kernel.ops import LigerSoftmaxFunction
24
+ from liger_kernel.ops import LigerSparsemaxFunction
25
+ from liger_kernel.ops import LigerTVDLossFunction
26
+
27
+
28
+ @dataclass
29
+ class CrossEntropyOutput:
30
+ loss: torch.Tensor
31
+ z_loss: Optional[torch.Tensor] = None
32
+ token_accuracy: Optional[torch.Tensor] = None
23
33
 
24
34
 
25
35
  # conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
@@ -36,8 +46,9 @@ def liger_cross_entropy(
36
46
  lse_square_scale: float = 0.0,
37
47
  softcap: Optional[float] = None,
38
48
  return_z_loss: bool = False,
49
+ return_token_accuracy: bool = False,
39
50
  ):
40
- loss, z_loss = LigerCrossEntropyFunction.apply(
51
+ loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
41
52
  input,
42
53
  target,
43
54
  weight,
@@ -47,10 +58,13 @@ def liger_cross_entropy(
47
58
  reduction,
48
59
  softcap,
49
60
  return_z_loss,
61
+ return_token_accuracy,
50
62
  )
51
- if not return_z_loss:
63
+
64
+ if not return_z_loss and not return_token_accuracy:
52
65
  return loss
53
- return loss, z_loss
66
+
67
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
54
68
 
55
69
 
56
70
  def liger_fused_linear_cross_entropy(
@@ -67,8 +81,9 @@ def liger_fused_linear_cross_entropy(
67
81
  return_z_loss: bool = False,
68
82
  accum_dtype=None,
69
83
  use_token_scaling: bool = False,
84
+ return_token_accuracy: bool = False,
70
85
  ):
71
- loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
86
+ loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
72
87
  input,
73
88
  weight,
74
89
  target,
@@ -82,10 +97,13 @@ def liger_fused_linear_cross_entropy(
82
97
  return_z_loss,
83
98
  accum_dtype,
84
99
  use_token_scaling,
100
+ return_token_accuracy,
85
101
  )
86
- if not return_z_loss:
102
+
103
+ if not return_z_loss and not return_token_accuracy:
87
104
  return loss
88
- return loss, z_loss
105
+
106
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
89
107
 
90
108
 
91
109
  def liger_fused_linear_jsd(
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
3
 
4
- from liger_kernel.ops.fused_add_rms_norm import LigerFusedAddRMSNormFunction
4
+ from liger_kernel.ops import LigerFusedAddRMSNormFunction
5
5
 
6
6
 
7
7
  class LigerFusedAddRMSNorm(nn.Module):
@@ -2,7 +2,8 @@ from typing import Optional
2
2
 
3
3
  import torch
4
4
 
5
- from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
5
+ from liger_kernel.ops import LigerFusedLinearCrossEntropyFunction
6
+ from liger_kernel.transformers.functional import CrossEntropyOutput
6
7
 
7
8
 
8
9
  class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
@@ -17,6 +18,7 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
17
18
  return_z_loss: bool = False,
18
19
  accum_dtype: Optional[torch.dtype] = None,
19
20
  use_token_scaling: bool = False,
21
+ return_token_accuracy: bool = False,
20
22
  ):
21
23
  super().__init__()
22
24
  assert (label_smoothing >= 0) and (label_smoothing <= 1), (
@@ -37,9 +39,10 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
37
39
  self.return_z_loss = return_z_loss
38
40
  self.accum_dtype = accum_dtype
39
41
  self.use_token_scaling = use_token_scaling
42
+ self.return_token_accuracy = return_token_accuracy
40
43
 
41
44
  def forward(self, lin_weight, _input, target, bias=None):
42
- loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
45
+ loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
43
46
  _input,
44
47
  lin_weight,
45
48
  target,
@@ -53,7 +56,9 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
53
56
  self.return_z_loss,
54
57
  self.accum_dtype,
55
58
  self.use_token_scaling,
59
+ self.return_token_accuracy,
56
60
  )
57
- if not self.return_z_loss:
61
+ if not self.return_z_loss and not self.return_token_accuracy:
58
62
  return loss
59
- return loss, z_loss
63
+
64
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
@@ -2,7 +2,7 @@ from typing import Optional
2
2
 
3
3
  import torch
4
4
 
5
- from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
5
+ from liger_kernel.ops import LigerFusedLinearJSDFunction
6
6
 
7
7
 
8
8
  class LigerFusedLinearJSD(torch.nn.Module):
@@ -5,7 +5,7 @@ from typing import Optional
5
5
  import torch
6
6
  import torch.nn as nn
7
7
 
8
- from liger_kernel.ops.fused_neighborhood_attention import LigerFusedNeighborhoodAttentionFunction
8
+ from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
9
9
 
10
10
 
11
11
  class LigerFusedNeighborhoodAttention(nn.Module):
@@ -1,6 +1,6 @@
1
1
  import torch.nn as nn
2
2
 
3
- from liger_kernel.ops.geglu import LigerGELUMulFunction
3
+ from liger_kernel.ops import LigerGELUMulFunction
4
4
 
5
5
 
6
6
  class LigerGEGLUMLP(nn.Module):
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
3
 
4
- from liger_kernel.ops.group_norm import LigerGroupNormFunction
4
+ from liger_kernel.ops import LigerGroupNormFunction
5
5
 
6
6
 
7
7
  class LigerGroupNorm(nn.Module):
@@ -1,4 +1,7 @@
1
- from liger_kernel.ops.grpo_loss import GrpoLossFunction
1
+ import torch
2
+
3
+ from liger_kernel.chunked_loss.fused_linear_ppo import LigerFusedLinearPPOBase
4
+ from liger_kernel.ops import GrpoLossFunction
2
5
 
3
6
 
4
7
  def triton_grpo_loss(
@@ -13,12 +16,20 @@ def triton_grpo_loss(
13
16
  eps_low=0.2,
14
17
  eps_high=0.4,
15
18
  inplace=True,
19
+ loss_type="dapo",
20
+ max_completion_length=None,
21
+ importance_sampling_level="token",
22
+ reduce=False,
16
23
  ):
17
24
  assert logits is not None and completion_ids is not None and advantages is not None, (
18
25
  "must provide logits、completion_ids and advantages"
19
26
  )
27
+ if importance_sampling_level != "token":
28
+ raise ValueError(
29
+ f"Triton GRPO loss only supports token-level importance sampling. Got {importance_sampling_level}."
30
+ )
20
31
 
21
- return GrpoLossFunction.apply(
32
+ per_token_loss, per_token_kl, is_clipped = GrpoLossFunction.apply(
22
33
  logits,
23
34
  old_logp,
24
35
  ref_logp,
@@ -31,6 +42,50 @@ def triton_grpo_loss(
31
42
  eps_high,
32
43
  inplace,
33
44
  )
45
+ if not reduce:
46
+ return per_token_loss, per_token_kl, is_clipped
47
+
48
+ loss = _reduce_grpo_loss(
49
+ per_token_loss,
50
+ completion_mask,
51
+ loss_type=loss_type,
52
+ max_completion_length=max_completion_length,
53
+ )
54
+
55
+ metrics = []
56
+ if beta != 0.0 and per_token_kl is not None:
57
+ metrics.append(_masked_mean(per_token_kl, completion_mask))
58
+ metrics.append(_masked_mean(is_clipped.float(), completion_mask))
59
+ return loss, metrics
60
+
61
+
62
+ def _reduce_grpo_loss(per_token_loss, completion_mask, loss_type, max_completion_length):
63
+ mask = completion_mask
64
+ if mask is None:
65
+ mask = torch.ones_like(per_token_loss, dtype=per_token_loss.dtype, device=per_token_loss.device)
66
+ mask = mask.to(per_token_loss.dtype)
67
+
68
+ if loss_type == "grpo":
69
+ per_seq = (per_token_loss * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)
70
+ return per_seq.mean()
71
+ if loss_type == "bnpo":
72
+ return (per_token_loss * mask).sum() / mask.sum().clamp(min=1.0)
73
+ if loss_type == "dr_grpo":
74
+ if max_completion_length is None:
75
+ raise ValueError("max_completion_length must be provided when using loss_type='dr_grpo'")
76
+ batch = per_token_loss.shape[0]
77
+ return (per_token_loss * mask).sum() / (batch * max_completion_length)
78
+ if loss_type == "dapo":
79
+ normalizer = LigerFusedLinearPPOBase._compute_dapo_normalizer(mask)
80
+ return (per_token_loss * mask).sum() / normalizer
81
+ raise ValueError(f"Unsupported loss_type '{loss_type}' for Triton GRPO loss.")
82
+
83
+
84
+ def _masked_mean(values, mask):
85
+ if mask is None:
86
+ mask = torch.ones_like(values, dtype=values.dtype, device=values.device)
87
+ mask = mask.to(values.dtype)
88
+ return (values * mask).sum() / mask.sum().clamp(min=1.0)
34
89
 
35
90
 
36
91
  # This is a demo how to use grpo_loss in GRPOTrainer. The Trl version must be 0.16
@@ -2,7 +2,7 @@ from typing import Optional
2
2
 
3
3
  import torch
4
4
 
5
- from liger_kernel.ops.jsd import LigerJSDFunction
5
+ from liger_kernel.ops import LigerJSDFunction
6
6
 
7
7
 
8
8
  class LigerJSD(torch.nn.Module):