liger-kernel 0.6.3__py3-none-any.whl → 0.6.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/cosine_similarity_loss.py +20 -5
- liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
- liger_kernel/chunked_loss/fused_linear_ppo.py +21 -5
- liger_kernel/chunked_loss/grpo_loss.py +8 -5
- liger_kernel/chunked_loss/jsd_loss.py +39 -11
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +492 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +61 -0
- liger_kernel/ops/backends/_ascend/ops/embedding.py +214 -0
- liger_kernel/ops/backends/_ascend/ops/geglu.py +191 -0
- liger_kernel/ops/backends/_ascend/ops/llama4_rope.py +298 -0
- liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +275 -0
- liger_kernel/ops/backends/_ascend/ops/rope.py +265 -0
- liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
- liger_kernel/ops/backends/_ascend/ops/tvd.py +223 -0
- liger_kernel/ops/backends/_ascend/ub_manager.py +367 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +71 -11
- liger_kernel/ops/dyt.py +5 -2
- liger_kernel/ops/fused_add_rms_norm.py +21 -23
- liger_kernel/ops/fused_linear_cross_entropy.py +32 -5
- liger_kernel/ops/geglu.py +5 -3
- liger_kernel/ops/group_norm.py +12 -8
- liger_kernel/ops/grpo_loss.py +3 -1
- liger_kernel/ops/kl_div.py +8 -11
- liger_kernel/ops/layer_norm.py +89 -69
- liger_kernel/ops/poly_norm.py +19 -21
- liger_kernel/ops/rms_norm.py +149 -71
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/utils.py +25 -0
- liger_kernel/transformers/__init__.py +25 -0
- liger_kernel/transformers/auto_model.py +21 -0
- liger_kernel/transformers/cross_entropy.py +9 -4
- liger_kernel/transformers/dyt.py +1 -1
- liger_kernel/transformers/experimental/embedding.py +1 -1
- liger_kernel/transformers/functional.py +44 -26
- liger_kernel/transformers/fused_add_rms_norm.py +1 -1
- liger_kernel/transformers/fused_linear_cross_entropy.py +9 -4
- liger_kernel/transformers/fused_linear_jsd.py +1 -1
- liger_kernel/transformers/fused_neighborhood_attention.py +1 -1
- liger_kernel/transformers/geglu.py +1 -1
- liger_kernel/transformers/group_norm.py +1 -1
- liger_kernel/transformers/grpo_loss.py +57 -2
- liger_kernel/transformers/jsd.py +1 -1
- liger_kernel/transformers/kl_div.py +1 -1
- liger_kernel/transformers/layer_norm.py +1 -1
- liger_kernel/transformers/llama4_rope.py +1 -1
- liger_kernel/transformers/model/exaone4.py +136 -0
- liger_kernel/transformers/model/falcon_h1.py +19 -5
- liger_kernel/transformers/model/gemma.py +17 -6
- liger_kernel/transformers/model/gemma2.py +17 -8
- liger_kernel/transformers/model/gemma3.py +35 -16
- liger_kernel/transformers/model/glm4.py +16 -4
- liger_kernel/transformers/model/glm4v.py +16 -4
- liger_kernel/transformers/model/glm4v_moe.py +23 -4
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +12 -5
- liger_kernel/transformers/model/llama.py +14 -5
- liger_kernel/transformers/model/llama4.py +16 -4
- liger_kernel/transformers/model/llava.py +12 -4
- liger_kernel/transformers/model/loss_utils.py +37 -3
- liger_kernel/transformers/model/mistral.py +15 -6
- liger_kernel/transformers/model/mixtral.py +16 -7
- liger_kernel/transformers/model/mllama.py +12 -4
- liger_kernel/transformers/model/olmo2.py +16 -4
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +23 -5
- liger_kernel/transformers/model/phi3.py +14 -7
- liger_kernel/transformers/model/qwen2.py +16 -3
- liger_kernel/transformers/model/qwen2_5_vl.py +14 -6
- liger_kernel/transformers/model/qwen2_vl.py +16 -4
- liger_kernel/transformers/model/qwen3.py +20 -5
- liger_kernel/transformers/model/qwen3_moe.py +19 -5
- liger_kernel/transformers/model/qwen3_next.py +17 -5
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +15 -6
- liger_kernel/transformers/monkey_patch.py +584 -49
- liger_kernel/transformers/multi_token_attention.py +1 -1
- liger_kernel/transformers/poly_norm.py +1 -1
- liger_kernel/transformers/qwen2vl_mrope.py +1 -1
- liger_kernel/transformers/rms_norm.py +8 -3
- liger_kernel/transformers/rope.py +45 -1
- liger_kernel/transformers/softmax.py +1 -1
- liger_kernel/transformers/sparsemax.py +1 -1
- liger_kernel/transformers/swiglu.py +18 -1
- liger_kernel/transformers/tiled_mlp.py +125 -0
- liger_kernel/transformers/tvd.py +1 -1
- liger_kernel/utils.py +54 -0
- {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.5.dist-info}/METADATA +14 -4
- liger_kernel-0.6.5.dist-info/RECORD +134 -0
- {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.5.dist-info}/WHEEL +1 -1
- liger_kernel-0.6.3.dist-info/RECORD +0 -111
- {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.5.dist-info}/licenses/LICENSE +0 -0
- {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.5.dist-info}/licenses/NOTICE +0 -0
- {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.5.dist-info}/top_level.txt +0 -0
|
@@ -5,7 +5,7 @@ Supports both text and vision RoPE variants with fused operations for optimal pe
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from liger_kernel.ops
|
|
8
|
+
from liger_kernel.ops import LigerLlama4RopeFunction
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
def liger_llama4_text_rotary_pos_emb(
|
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Union
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
8
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
9
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def lce_forward(
|
|
13
|
+
self,
|
|
14
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
15
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
16
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
17
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
18
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
19
|
+
labels: Optional[torch.LongTensor] = None,
|
|
20
|
+
use_cache: Optional[bool] = None,
|
|
21
|
+
output_attentions: Optional[bool] = None,
|
|
22
|
+
output_hidden_states: Optional[bool] = None,
|
|
23
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
24
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
25
|
+
skip_logits: Optional[bool] = None,
|
|
26
|
+
return_dict: Optional[bool] = None,
|
|
27
|
+
**kwargs,
|
|
28
|
+
) -> LigerCausalLMOutputWithPast:
|
|
29
|
+
r"""
|
|
30
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
31
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
32
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
33
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
34
|
+
|
|
35
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
36
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
37
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
38
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
39
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
40
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
41
|
+
|
|
42
|
+
Returns:
|
|
43
|
+
|
|
44
|
+
Example:
|
|
45
|
+
|
|
46
|
+
````python
|
|
47
|
+
>>> from transformers import AutoTokenizer, Exaone4ForCausalLM
|
|
48
|
+
|
|
49
|
+
>>> model = Exaone4ForCausalLM.from_pretrained("LGAI-EXAONE/EXAONE-4.0-1.2B")
|
|
50
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-4.0-1.2B")
|
|
51
|
+
|
|
52
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
53
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
54
|
+
|
|
55
|
+
>>> # Generate
|
|
56
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
57
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
58
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
59
|
+
```"""
|
|
60
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
61
|
+
output_hidden_states = (
|
|
62
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
63
|
+
)
|
|
64
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
65
|
+
|
|
66
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
67
|
+
outputs = self.model(
|
|
68
|
+
input_ids=input_ids,
|
|
69
|
+
attention_mask=attention_mask,
|
|
70
|
+
position_ids=position_ids,
|
|
71
|
+
past_key_values=past_key_values,
|
|
72
|
+
inputs_embeds=inputs_embeds,
|
|
73
|
+
use_cache=use_cache,
|
|
74
|
+
output_attentions=output_attentions,
|
|
75
|
+
output_hidden_states=output_hidden_states,
|
|
76
|
+
cache_position=cache_position,
|
|
77
|
+
**kwargs,
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
hidden_states = outputs[0]
|
|
81
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
82
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
83
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
84
|
+
|
|
85
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
86
|
+
# Remove output-control parameters that shouldn't be passed to loss functions
|
|
87
|
+
kwargs.pop("return_dict", None)
|
|
88
|
+
logits = None
|
|
89
|
+
loss = None
|
|
90
|
+
token_accuracy = None
|
|
91
|
+
|
|
92
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
93
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
94
|
+
|
|
95
|
+
if skip_logits is None:
|
|
96
|
+
# By default, if in training mode, don't materialize logits
|
|
97
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
98
|
+
|
|
99
|
+
# Compute loss
|
|
100
|
+
if skip_logits:
|
|
101
|
+
result = LigerForCausalLMLoss(
|
|
102
|
+
hidden_states=kept_hidden_states,
|
|
103
|
+
lm_head_weight=self.lm_head.weight,
|
|
104
|
+
labels=labels,
|
|
105
|
+
shift_labels=shift_labels,
|
|
106
|
+
hidden_size=self.config.hidden_size,
|
|
107
|
+
**kwargs,
|
|
108
|
+
)
|
|
109
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
110
|
+
|
|
111
|
+
else:
|
|
112
|
+
logits = self.lm_head(kept_hidden_states)
|
|
113
|
+
if labels is not None or shift_labels is not None:
|
|
114
|
+
loss = self.loss_function(
|
|
115
|
+
logits=logits,
|
|
116
|
+
labels=labels,
|
|
117
|
+
shift_labels=shift_labels,
|
|
118
|
+
vocab_size=self.config.vocab_size,
|
|
119
|
+
**kwargs,
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
if not return_dict:
|
|
123
|
+
output = (logits,) + outputs[1:]
|
|
124
|
+
output = ((loss,) + output) if loss is not None else output
|
|
125
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
126
|
+
return output
|
|
127
|
+
|
|
128
|
+
# Return custom output class with accuracy field
|
|
129
|
+
return LigerCausalLMOutputWithPast(
|
|
130
|
+
loss=loss,
|
|
131
|
+
logits=logits,
|
|
132
|
+
past_key_values=outputs.past_key_values,
|
|
133
|
+
hidden_states=outputs.hidden_states,
|
|
134
|
+
attentions=outputs.attentions,
|
|
135
|
+
token_accuracy=token_accuracy,
|
|
136
|
+
)
|
|
@@ -4,12 +4,12 @@ from typing import Union
|
|
|
4
4
|
|
|
5
5
|
import torch
|
|
6
6
|
|
|
7
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
8
|
-
|
|
9
7
|
if TYPE_CHECKING:
|
|
10
8
|
from transformers.models.falcon_h1.modeling_falcon_h1 import FalconHybridMambaAttentionDynamicCache
|
|
11
9
|
|
|
12
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
13
13
|
|
|
14
14
|
|
|
15
15
|
def lce_forward(
|
|
@@ -26,8 +26,9 @@ def lce_forward(
|
|
|
26
26
|
cache_position: Optional[torch.LongTensor] = None,
|
|
27
27
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
28
28
|
skip_logits: Optional[bool] = None,
|
|
29
|
+
return_dict: Optional[bool] = None,
|
|
29
30
|
**kwargs,
|
|
30
|
-
) -> Union[tuple,
|
|
31
|
+
) -> Union[tuple, LigerCausalLMOutputWithPast]:
|
|
31
32
|
r"""
|
|
32
33
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
33
34
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -54,6 +55,7 @@ def lce_forward(
|
|
|
54
55
|
output_hidden_states = (
|
|
55
56
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
56
57
|
)
|
|
58
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
57
59
|
|
|
58
60
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
59
61
|
outputs = self.model(
|
|
@@ -77,6 +79,8 @@ def lce_forward(
|
|
|
77
79
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
78
80
|
logits = None
|
|
79
81
|
loss = None
|
|
82
|
+
token_accuracy = None
|
|
83
|
+
|
|
80
84
|
# if in training mode, don't materialize logits
|
|
81
85
|
if skip_logits and labels is None:
|
|
82
86
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -85,8 +89,9 @@ def lce_forward(
|
|
|
85
89
|
# By default, if in training mode, don't materialize logits
|
|
86
90
|
skip_logits = self.training and labels is not None
|
|
87
91
|
|
|
92
|
+
# Compute loss
|
|
88
93
|
if skip_logits:
|
|
89
|
-
|
|
94
|
+
result = LigerForCausalLMLoss(
|
|
90
95
|
hidden_states=kept_hidden_states,
|
|
91
96
|
lm_head_weight=self.lm_head.weight,
|
|
92
97
|
labels=labels,
|
|
@@ -94,15 +99,24 @@ def lce_forward(
|
|
|
94
99
|
hidden_size=self.config.hidden_size,
|
|
95
100
|
**kwargs,
|
|
96
101
|
)
|
|
102
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
97
103
|
else:
|
|
98
104
|
logits = self.lm_head(kept_hidden_states)
|
|
99
105
|
if labels is not None or shift_labels is not None:
|
|
100
106
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
|
101
107
|
|
|
102
|
-
|
|
108
|
+
if not return_dict:
|
|
109
|
+
output = (logits,) + outputs[1:]
|
|
110
|
+
output = ((loss,) + output) if loss is not None else output
|
|
111
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
112
|
+
return output
|
|
113
|
+
|
|
114
|
+
# Return custom output class with token_accuracy field
|
|
115
|
+
return LigerCausalLMOutputWithPast(
|
|
103
116
|
loss=loss,
|
|
104
117
|
logits=logits,
|
|
105
118
|
past_key_values=outputs.past_key_values,
|
|
106
119
|
hidden_states=outputs.hidden_states,
|
|
107
120
|
attentions=outputs.attentions,
|
|
121
|
+
token_accuracy=token_accuracy,
|
|
108
122
|
)
|
|
@@ -12,6 +12,8 @@ from transformers.utils.deprecation import deprecate_kwarg
|
|
|
12
12
|
|
|
13
13
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
14
14
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
15
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
16
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
15
17
|
|
|
16
18
|
|
|
17
19
|
def lce_forward_deprecated(
|
|
@@ -147,7 +149,7 @@ def lce_forward(
|
|
|
147
149
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
148
150
|
skip_logits: Optional[bool] = None,
|
|
149
151
|
**kwargs,
|
|
150
|
-
) -> Union[Tuple,
|
|
152
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
151
153
|
r"""
|
|
152
154
|
Args:
|
|
153
155
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -209,6 +211,7 @@ def lce_forward(
|
|
|
209
211
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
210
212
|
logits = None
|
|
211
213
|
loss = None
|
|
214
|
+
token_accuracy = None
|
|
212
215
|
|
|
213
216
|
if skip_logits and labels is None and shift_labels is None:
|
|
214
217
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -217,8 +220,9 @@ def lce_forward(
|
|
|
217
220
|
# By default, if in training mode, don't materialize logits
|
|
218
221
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
219
222
|
|
|
223
|
+
# Compute loss
|
|
220
224
|
if skip_logits:
|
|
221
|
-
|
|
225
|
+
result = LigerForCausalLMLoss(
|
|
222
226
|
hidden_states=kept_hidden_states,
|
|
223
227
|
lm_head_weight=self.lm_head.weight,
|
|
224
228
|
labels=labels,
|
|
@@ -226,6 +230,7 @@ def lce_forward(
|
|
|
226
230
|
hidden_size=self.config.hidden_size,
|
|
227
231
|
**kwargs,
|
|
228
232
|
)
|
|
233
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
229
234
|
else:
|
|
230
235
|
logits = self.lm_head(kept_hidden_states)
|
|
231
236
|
if labels is not None or shift_labels is not None:
|
|
@@ -238,13 +243,19 @@ def lce_forward(
|
|
|
238
243
|
)
|
|
239
244
|
|
|
240
245
|
if not return_dict:
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
246
|
+
output_tuple = (logits,) + outputs[1:]
|
|
247
|
+
if loss is not None:
|
|
248
|
+
output_tuple = (loss,) + output_tuple
|
|
249
|
+
if token_accuracy is not None:
|
|
250
|
+
output_tuple = output_tuple + (token_accuracy,)
|
|
251
|
+
return output_tuple
|
|
252
|
+
|
|
253
|
+
# Return custom output class with token_accuracy field
|
|
254
|
+
return LigerCausalLMOutputWithPast(
|
|
245
255
|
loss=loss,
|
|
246
256
|
logits=logits,
|
|
247
257
|
past_key_values=outputs.past_key_values,
|
|
248
258
|
hidden_states=outputs.hidden_states,
|
|
249
259
|
attentions=outputs.attentions,
|
|
260
|
+
token_accuracy=token_accuracy,
|
|
250
261
|
)
|
|
@@ -7,12 +7,14 @@ from typing import Union
|
|
|
7
7
|
import torch
|
|
8
8
|
|
|
9
9
|
from torch.nn import CrossEntropyLoss
|
|
10
|
-
from transformers.cache_utils import
|
|
10
|
+
from transformers.cache_utils import Cache
|
|
11
11
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
12
12
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
13
13
|
|
|
14
14
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
15
15
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
16
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
17
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
16
18
|
|
|
17
19
|
logger = logging.getLogger(__name__)
|
|
18
20
|
|
|
@@ -22,7 +24,7 @@ def lce_forward_deprecated(
|
|
|
22
24
|
input_ids: torch.LongTensor = None,
|
|
23
25
|
attention_mask: Optional[torch.Tensor] = None,
|
|
24
26
|
position_ids: Optional[torch.LongTensor] = None,
|
|
25
|
-
past_key_values: Optional[
|
|
27
|
+
past_key_values: Optional[Cache] = None,
|
|
26
28
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
27
29
|
labels: Optional[torch.LongTensor] = None,
|
|
28
30
|
use_cache: Optional[bool] = None,
|
|
@@ -147,7 +149,7 @@ def lce_forward(
|
|
|
147
149
|
input_ids: torch.LongTensor = None,
|
|
148
150
|
attention_mask: Optional[torch.Tensor] = None,
|
|
149
151
|
position_ids: Optional[torch.LongTensor] = None,
|
|
150
|
-
past_key_values: Optional[
|
|
152
|
+
past_key_values: Optional[Cache] = None,
|
|
151
153
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
152
154
|
labels: Optional[torch.LongTensor] = None,
|
|
153
155
|
use_cache: Optional[bool] = None,
|
|
@@ -158,7 +160,7 @@ def lce_forward(
|
|
|
158
160
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
159
161
|
skip_logits: Optional[bool] = None,
|
|
160
162
|
**kwargs,
|
|
161
|
-
) -> Union[Tuple,
|
|
163
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
162
164
|
r"""
|
|
163
165
|
Args:
|
|
164
166
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -225,6 +227,7 @@ def lce_forward(
|
|
|
225
227
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
226
228
|
logits = None
|
|
227
229
|
loss = None
|
|
230
|
+
token_accuracy = None
|
|
228
231
|
|
|
229
232
|
if skip_logits and labels is None and shift_labels is None:
|
|
230
233
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -233,8 +236,9 @@ def lce_forward(
|
|
|
233
236
|
# By default, if in training mode, don't materialize logits
|
|
234
237
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
235
238
|
|
|
239
|
+
# Compute loss
|
|
236
240
|
if skip_logits:
|
|
237
|
-
|
|
241
|
+
result = LigerForCausalLMLoss(
|
|
238
242
|
hidden_states=kept_hidden_states,
|
|
239
243
|
lm_head_weight=self.lm_head.weight,
|
|
240
244
|
labels=labels,
|
|
@@ -243,6 +247,7 @@ def lce_forward(
|
|
|
243
247
|
final_logit_softcapping=self.config.final_logit_softcapping,
|
|
244
248
|
**kwargs,
|
|
245
249
|
)
|
|
250
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
246
251
|
|
|
247
252
|
else:
|
|
248
253
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -262,13 +267,17 @@ def lce_forward(
|
|
|
262
267
|
)
|
|
263
268
|
|
|
264
269
|
if not return_dict:
|
|
265
|
-
|
|
266
|
-
|
|
270
|
+
output_tuple = (logits,) + outputs[1:]
|
|
271
|
+
output_tuple = (loss,) + output_tuple if loss is not None else output_tuple
|
|
272
|
+
output_tuple = output_tuple + (token_accuracy,) if token_accuracy is not None else output_tuple
|
|
273
|
+
return output_tuple
|
|
267
274
|
|
|
268
|
-
|
|
275
|
+
# Return custom output class with token_accuracy field
|
|
276
|
+
return LigerCausalLMOutputWithPast(
|
|
269
277
|
loss=loss,
|
|
270
278
|
logits=logits,
|
|
271
279
|
past_key_values=outputs.past_key_values,
|
|
272
280
|
hidden_states=outputs.hidden_states,
|
|
273
281
|
attentions=outputs.attentions,
|
|
282
|
+
token_accuracy=token_accuracy,
|
|
274
283
|
)
|
|
@@ -6,13 +6,12 @@ import torch
|
|
|
6
6
|
import torch.nn as nn
|
|
7
7
|
|
|
8
8
|
from transformers.cache_utils import Cache
|
|
9
|
-
from transformers.cache_utils import HybridCache
|
|
10
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
11
|
-
from transformers.models.gemma3.modeling_gemma3 import Gemma3CausalLMOutputWithPast
|
|
12
9
|
from transformers.utils import logging
|
|
13
10
|
|
|
14
|
-
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
15
11
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
12
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
13
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
14
|
+
from liger_kernel.transformers.model.output_classes import LigerGemma3CausalLMOutputWithPast
|
|
16
15
|
|
|
17
16
|
logger = logging.get_logger(__name__)
|
|
18
17
|
|
|
@@ -22,7 +21,7 @@ def causal_forward(
|
|
|
22
21
|
input_ids: torch.LongTensor = None,
|
|
23
22
|
attention_mask: Optional[torch.Tensor] = None,
|
|
24
23
|
position_ids: Optional[torch.LongTensor] = None,
|
|
25
|
-
past_key_values: Optional[
|
|
24
|
+
past_key_values: Optional[Cache] = None,
|
|
26
25
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
27
26
|
labels: Optional[torch.LongTensor] = None,
|
|
28
27
|
use_cache: Optional[bool] = None,
|
|
@@ -33,7 +32,7 @@ def causal_forward(
|
|
|
33
32
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
34
33
|
skip_logits: Optional[bool] = None,
|
|
35
34
|
**loss_kwargs,
|
|
36
|
-
) -> Union[Tuple,
|
|
35
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
37
36
|
r"""
|
|
38
37
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
39
38
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -98,12 +97,14 @@ def causal_forward(
|
|
|
98
97
|
shift_labels = loss_kwargs.pop("shift_labels", None)
|
|
99
98
|
loss = None
|
|
100
99
|
logits = None
|
|
100
|
+
token_accuracy = None
|
|
101
101
|
|
|
102
102
|
if skip_logits is None:
|
|
103
103
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
104
104
|
|
|
105
|
+
# Compute loss
|
|
105
106
|
if skip_logits:
|
|
106
|
-
|
|
107
|
+
result = LigerForCausalLMLoss(
|
|
107
108
|
hidden_states=kept_hidden_states,
|
|
108
109
|
lm_head_weight=self.lm_head.weight,
|
|
109
110
|
labels=labels,
|
|
@@ -112,7 +113,7 @@ def causal_forward(
|
|
|
112
113
|
final_logit_softcapping=self.config.final_logit_softcapping,
|
|
113
114
|
**loss_kwargs,
|
|
114
115
|
)
|
|
115
|
-
|
|
116
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
116
117
|
else:
|
|
117
118
|
logits = self.lm_head(kept_hidden_states)
|
|
118
119
|
if self.config.final_logit_softcapping is not None:
|
|
@@ -129,15 +130,19 @@ def causal_forward(
|
|
|
129
130
|
)
|
|
130
131
|
|
|
131
132
|
if not return_dict:
|
|
132
|
-
|
|
133
|
-
|
|
133
|
+
output_tuple = (logits,) + outputs[1:]
|
|
134
|
+
output_tuple = (loss,) + output_tuple if loss is not None else output_tuple
|
|
135
|
+
output_tuple = output_tuple + (token_accuracy,) if token_accuracy is not None else output_tuple
|
|
136
|
+
return output_tuple
|
|
134
137
|
|
|
135
|
-
|
|
138
|
+
# Return custom output class with token_accuracy field
|
|
139
|
+
return LigerCausalLMOutputWithPast(
|
|
136
140
|
loss=loss,
|
|
137
141
|
logits=logits,
|
|
138
142
|
past_key_values=outputs.past_key_values,
|
|
139
143
|
hidden_states=outputs.hidden_states,
|
|
140
144
|
attentions=outputs.attentions,
|
|
145
|
+
token_accuracy=token_accuracy,
|
|
141
146
|
)
|
|
142
147
|
|
|
143
148
|
|
|
@@ -159,7 +164,7 @@ def multimodal_forward(
|
|
|
159
164
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
160
165
|
skip_logits: Optional[bool] = None,
|
|
161
166
|
**lm_kwargs,
|
|
162
|
-
) -> Union[tuple,
|
|
167
|
+
) -> Union[tuple, LigerGemma3CausalLMOutputWithPast]:
|
|
163
168
|
r"""
|
|
164
169
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
165
170
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -228,6 +233,7 @@ def multimodal_forward(
|
|
|
228
233
|
**lm_kwargs,
|
|
229
234
|
)
|
|
230
235
|
|
|
236
|
+
shift_labels = lm_kwargs.pop("shift_labels", None)
|
|
231
237
|
hidden_states = outputs[0]
|
|
232
238
|
|
|
233
239
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
@@ -235,6 +241,7 @@ def multimodal_forward(
|
|
|
235
241
|
|
|
236
242
|
loss = None
|
|
237
243
|
logits = None
|
|
244
|
+
token_accuracy = None
|
|
238
245
|
if skip_logits and labels is None:
|
|
239
246
|
raise ValueError("skip_logits is True, but labels is None")
|
|
240
247
|
|
|
@@ -260,8 +267,17 @@ def multimodal_forward(
|
|
|
260
267
|
shift_hidden_states = shift_hidden_states.view(-1, self.config.text_config.hidden_size)
|
|
261
268
|
shift_labels = shift_labels.view(-1).to(hidden_device)
|
|
262
269
|
|
|
263
|
-
|
|
264
|
-
|
|
270
|
+
result = LigerForCausalLMLoss(
|
|
271
|
+
hidden_states=shift_hidden_states,
|
|
272
|
+
lm_head_weight=self.lm_head.weight,
|
|
273
|
+
labels=shift_labels,
|
|
274
|
+
hidden_size=self.config.text_config.hidden_size,
|
|
275
|
+
shift_labels=shift_labels,
|
|
276
|
+
final_logit_softcapping=getattr(self.config.text_config, "final_logit_softcapping", None),
|
|
277
|
+
**lm_kwargs,
|
|
278
|
+
)
|
|
279
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
280
|
+
|
|
265
281
|
else:
|
|
266
282
|
logits = self.lm_head(kept_hidden_states)
|
|
267
283
|
if labels is not None:
|
|
@@ -306,13 +322,16 @@ def multimodal_forward(
|
|
|
306
322
|
|
|
307
323
|
if not return_dict:
|
|
308
324
|
output = (logits,) + outputs[1:]
|
|
309
|
-
|
|
325
|
+
output = (loss,) + output if loss is not None else output
|
|
326
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
327
|
+
return output
|
|
310
328
|
|
|
311
|
-
return
|
|
329
|
+
return LigerGemma3CausalLMOutputWithPast(
|
|
312
330
|
loss=loss,
|
|
313
331
|
logits=logits,
|
|
314
332
|
past_key_values=outputs.past_key_values,
|
|
315
333
|
hidden_states=outputs.hidden_states,
|
|
316
334
|
attentions=outputs.attentions,
|
|
317
335
|
image_hidden_states=outputs.image_hidden_states,
|
|
336
|
+
token_accuracy=token_accuracy,
|
|
318
337
|
)
|
|
@@ -5,10 +5,11 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
9
8
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
10
9
|
|
|
11
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
12
13
|
|
|
13
14
|
|
|
14
15
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
@@ -28,7 +29,7 @@ def lce_forward(
|
|
|
28
29
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
29
30
|
skip_logits: Optional[bool] = None,
|
|
30
31
|
**kwargs,
|
|
31
|
-
) -> Union[Tuple,
|
|
32
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
32
33
|
r"""
|
|
33
34
|
Args:
|
|
34
35
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -91,6 +92,7 @@ def lce_forward(
|
|
|
91
92
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
92
93
|
logits = None
|
|
93
94
|
loss = None
|
|
95
|
+
token_accuracy = None
|
|
94
96
|
|
|
95
97
|
if skip_logits and labels is None and shift_labels is None:
|
|
96
98
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -99,8 +101,9 @@ def lce_forward(
|
|
|
99
101
|
# By default, if in training mode, don't materialize logits
|
|
100
102
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
101
103
|
|
|
104
|
+
# Compute loss
|
|
102
105
|
if skip_logits:
|
|
103
|
-
|
|
106
|
+
result = LigerForCausalLMLoss(
|
|
104
107
|
hidden_states=kept_hidden_states,
|
|
105
108
|
lm_head_weight=self.lm_head.weight,
|
|
106
109
|
labels=labels,
|
|
@@ -108,6 +111,7 @@ def lce_forward(
|
|
|
108
111
|
hidden_size=self.config.hidden_size,
|
|
109
112
|
**kwargs,
|
|
110
113
|
)
|
|
114
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
111
115
|
|
|
112
116
|
else:
|
|
113
117
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -120,10 +124,18 @@ def lce_forward(
|
|
|
120
124
|
**kwargs,
|
|
121
125
|
)
|
|
122
126
|
|
|
123
|
-
|
|
127
|
+
if not return_dict:
|
|
128
|
+
output = (logits,) + outputs[1:]
|
|
129
|
+
output = ((loss,) + output) if loss is not None else output
|
|
130
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
131
|
+
return output
|
|
132
|
+
|
|
133
|
+
# Return custom output class with token_accuracy field
|
|
134
|
+
return LigerCausalLMOutputWithPast(
|
|
124
135
|
loss=loss,
|
|
125
136
|
logits=logits,
|
|
126
137
|
past_key_values=outputs.past_key_values,
|
|
127
138
|
hidden_states=outputs.hidden_states,
|
|
128
139
|
attentions=outputs.attentions,
|
|
140
|
+
token_accuracy=token_accuracy,
|
|
129
141
|
)
|
|
@@ -5,10 +5,11 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
9
8
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
10
9
|
|
|
11
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
12
13
|
|
|
13
14
|
|
|
14
15
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
@@ -28,7 +29,7 @@ def lce_forward(
|
|
|
28
29
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
29
30
|
skip_logits: Optional[bool] = None,
|
|
30
31
|
**kwargs,
|
|
31
|
-
) -> Union[Tuple,
|
|
32
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
32
33
|
r"""
|
|
33
34
|
Args:
|
|
34
35
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -113,6 +114,7 @@ def lce_forward(
|
|
|
113
114
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
114
115
|
logits = None
|
|
115
116
|
loss = None
|
|
117
|
+
token_accuracy = None
|
|
116
118
|
|
|
117
119
|
if skip_logits and labels is None and shift_labels is None:
|
|
118
120
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -121,8 +123,9 @@ def lce_forward(
|
|
|
121
123
|
# By default, if in training mode, don't materialize logits
|
|
122
124
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
123
125
|
|
|
126
|
+
# Compute loss
|
|
124
127
|
if skip_logits:
|
|
125
|
-
|
|
128
|
+
result = LigerForCausalLMLoss(
|
|
126
129
|
hidden_states=kept_hidden_states,
|
|
127
130
|
lm_head_weight=self.lm_head.weight,
|
|
128
131
|
labels=labels,
|
|
@@ -130,6 +133,7 @@ def lce_forward(
|
|
|
130
133
|
hidden_size=self.config.hidden_size,
|
|
131
134
|
**kwargs,
|
|
132
135
|
)
|
|
136
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
133
137
|
|
|
134
138
|
else:
|
|
135
139
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -142,10 +146,18 @@ def lce_forward(
|
|
|
142
146
|
**kwargs,
|
|
143
147
|
)
|
|
144
148
|
|
|
145
|
-
|
|
149
|
+
if not return_dict:
|
|
150
|
+
output = (logits,) + outputs[1:]
|
|
151
|
+
output = ((loss,) + output) if loss is not None else output
|
|
152
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
153
|
+
return output
|
|
154
|
+
|
|
155
|
+
# Return custom output class with token_accuracy field
|
|
156
|
+
return LigerCausalLMOutputWithPast(
|
|
146
157
|
loss=loss,
|
|
147
158
|
logits=logits,
|
|
148
159
|
past_key_values=outputs.past_key_values,
|
|
149
160
|
hidden_states=outputs.hidden_states,
|
|
150
161
|
attentions=outputs.attentions,
|
|
162
|
+
token_accuracy=token_accuracy,
|
|
151
163
|
)
|