liger-kernel 0.6.3__py3-none-any.whl → 0.6.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (55) hide show
  1. liger_kernel/chunked_loss/cosine_similarity_loss.py +13 -4
  2. liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
  3. liger_kernel/chunked_loss/fused_linear_ppo.py +21 -5
  4. liger_kernel/chunked_loss/grpo_loss.py +8 -5
  5. liger_kernel/chunked_loss/jsd_loss.py +18 -5
  6. liger_kernel/ops/cross_entropy.py +59 -9
  7. liger_kernel/ops/fused_linear_cross_entropy.py +30 -4
  8. liger_kernel/ops/grpo_loss.py +3 -1
  9. liger_kernel/ops/layer_norm.py +84 -65
  10. liger_kernel/ops/tiled_mlp.py +136 -0
  11. liger_kernel/transformers/__init__.py +19 -0
  12. liger_kernel/transformers/cross_entropy.py +8 -3
  13. liger_kernel/transformers/functional.py +24 -6
  14. liger_kernel/transformers/fused_linear_cross_entropy.py +8 -3
  15. liger_kernel/transformers/grpo_loss.py +56 -1
  16. liger_kernel/transformers/model/falcon_h1.py +19 -5
  17. liger_kernel/transformers/model/gemma.py +17 -6
  18. liger_kernel/transformers/model/gemma2.py +14 -5
  19. liger_kernel/transformers/model/gemma3.py +25 -12
  20. liger_kernel/transformers/model/glm4.py +16 -4
  21. liger_kernel/transformers/model/glm4v.py +16 -4
  22. liger_kernel/transformers/model/glm4v_moe.py +23 -4
  23. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  24. liger_kernel/transformers/model/internvl.py +12 -5
  25. liger_kernel/transformers/model/llama.py +14 -5
  26. liger_kernel/transformers/model/llama4.py +16 -4
  27. liger_kernel/transformers/model/llava.py +12 -4
  28. liger_kernel/transformers/model/loss_utils.py +31 -3
  29. liger_kernel/transformers/model/mistral.py +15 -6
  30. liger_kernel/transformers/model/mixtral.py +16 -7
  31. liger_kernel/transformers/model/mllama.py +12 -4
  32. liger_kernel/transformers/model/olmo2.py +16 -4
  33. liger_kernel/transformers/model/olmo3.py +142 -0
  34. liger_kernel/transformers/model/output_classes.py +147 -0
  35. liger_kernel/transformers/model/paligemma.py +22 -5
  36. liger_kernel/transformers/model/phi3.py +14 -7
  37. liger_kernel/transformers/model/qwen2.py +16 -3
  38. liger_kernel/transformers/model/qwen2_5_vl.py +14 -6
  39. liger_kernel/transformers/model/qwen2_vl.py +16 -4
  40. liger_kernel/transformers/model/qwen3.py +20 -5
  41. liger_kernel/transformers/model/qwen3_moe.py +19 -5
  42. liger_kernel/transformers/model/qwen3_next.py +17 -5
  43. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  44. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  45. liger_kernel/transformers/model/smollm3.py +15 -6
  46. liger_kernel/transformers/monkey_patch.py +398 -20
  47. liger_kernel/transformers/rope.py +43 -0
  48. liger_kernel/transformers/swiglu.py +17 -0
  49. liger_kernel/transformers/tiled_mlp.py +133 -0
  50. {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.4.dist-info}/METADATA +4 -1
  51. {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.4.dist-info}/RECORD +55 -48
  52. {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.4.dist-info}/WHEEL +0 -0
  53. {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.4.dist-info}/licenses/LICENSE +0 -0
  54. {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.4.dist-info}/licenses/NOTICE +0 -0
  55. {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.4.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,133 @@
1
+ from typing import Optional
2
+
3
+ import torch.nn as nn
4
+
5
+ from liger_kernel.ops.geglu import LigerGELUMulFunction
6
+ from liger_kernel.ops.swiglu import LigerSiLUMulFunction
7
+ from liger_kernel.ops.tiled_mlp import apply_tiled_mlp
8
+
9
+
10
+ class LigerTiledGEGLUMLP(nn.Module):
11
+ """
12
+ Memory-efficient GEGLU MLP using tiled computation.
13
+
14
+ This module combines GEGLU activation with tiled processing to handle
15
+ very long sequences efficiently. The forward pass is recomputed during
16
+ backward to save memory.
17
+
18
+ Args:
19
+ config: Model configuration with hidden_size and intermediate_size attributes
20
+ num_shards: Number of shards to split the sequence. If None, automatically
21
+ calculated as ceil(seqlen / hidden_size)
22
+ """
23
+
24
+ def __init__(self, config, num_shards: Optional[int] = None):
25
+ super().__init__()
26
+ self.config = config
27
+ self.hidden_size = config.hidden_size
28
+ self.intermediate_size = config.intermediate_size
29
+ self.num_shards = num_shards
30
+
31
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
32
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
33
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
34
+
35
+ # Validate activation function
36
+ if hasattr(config, "hidden_act") and config.hidden_act not in [
37
+ "gelu",
38
+ "gelu_new",
39
+ "gelu_pytorch_tanh",
40
+ ]:
41
+ raise ValueError(f"LigerTiledGEGLUMLP requires GELU activation, got {config.hidden_act}")
42
+
43
+ def _mlp_forward(self, module, x):
44
+ """Internal MLP forward function for tiled computation."""
45
+ gate = module.gate_proj(x)
46
+ up = module.up_proj(x)
47
+ return module.down_proj(LigerGELUMulFunction.apply(gate, up))
48
+
49
+ def forward(self, x):
50
+ """
51
+ Forward pass with tiled computation.
52
+
53
+ Args:
54
+ x: Input tensor of shape [batch_size, seq_len, hidden_size]
55
+ or [seq_len, hidden_size]
56
+
57
+ Returns:
58
+ Output tensor of the same shape as input
59
+ """
60
+ compute_params = [
61
+ self.gate_proj.weight,
62
+ self.up_proj.weight,
63
+ self.down_proj.weight,
64
+ ]
65
+
66
+ return apply_tiled_mlp(
67
+ fn=self._mlp_forward,
68
+ mlp_module=self,
69
+ x=x,
70
+ num_shards=self.num_shards,
71
+ compute_params=compute_params,
72
+ )
73
+
74
+
75
+ class LigerTiledSwiGLUMLP(nn.Module):
76
+ """
77
+ Memory-efficient SwiGLU MLP using tiled computation.
78
+
79
+ This module combines SwiGLU activation with tiled processing to handle
80
+ very long sequences efficiently. The forward pass is recomputed during
81
+ backward to save memory.
82
+
83
+ Args:
84
+ config: Model configuration with hidden_size and intermediate_size attributes
85
+ num_shards: Number of shards to split the sequence. If None, automatically
86
+ calculated as ceil(seqlen / hidden_size)
87
+ """
88
+
89
+ def __init__(self, config, num_shards: Optional[int] = None):
90
+ super().__init__()
91
+ self.config = config
92
+ self.hidden_size = config.hidden_size
93
+ self.intermediate_size = config.intermediate_size
94
+ self.num_shards = num_shards
95
+
96
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
97
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
98
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
99
+
100
+ # Validate activation function
101
+ if hasattr(config, "hidden_act") and config.hidden_act not in ["silu", "swish"]:
102
+ raise ValueError(f"LigerTiledSwiGLUMLP requires SiLU/Swish activation, got {config.hidden_act}")
103
+
104
+ def _mlp_forward(self, module, x):
105
+ """Internal MLP forward function for tiled computation."""
106
+ gate = module.gate_proj(x)
107
+ up = module.up_proj(x)
108
+ return module.down_proj(LigerSiLUMulFunction.apply(gate, up))
109
+
110
+ def forward(self, x):
111
+ """
112
+ Forward pass with tiled computation.
113
+
114
+ Args:
115
+ x: Input tensor of shape [batch_size, seq_len, hidden_size]
116
+ or [seq_len, hidden_size]
117
+
118
+ Returns:
119
+ Output tensor of the same shape as input
120
+ """
121
+ compute_params = [
122
+ self.gate_proj.weight,
123
+ self.up_proj.weight,
124
+ self.down_proj.weight,
125
+ ]
126
+
127
+ return apply_tiled_mlp(
128
+ fn=self._mlp_forward,
129
+ mlp_module=self,
130
+ x=x,
131
+ num_shards=self.num_shards,
132
+ compute_params=compute_params,
133
+ )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: liger_kernel
3
- Version: 0.6.3
3
+ Version: 0.6.4
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -313,8 +313,11 @@ loss.backward()
313
313
  | Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
314
314
  | Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
315
315
  | OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
316
+ | Olmo3 | `liger_kernel.transformers.apply_liger_kernel_to_olmo3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
316
317
  | GLM-4 | `liger_kernel.transformers.apply_liger_kernel_to_glm4` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
317
318
  | InternVL3 | `liger_kernel.transformers.apply_liger_kernel_to_internvl` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
319
+ | HunyuanV1 | `liger_kernel.transformers.apply_liger_kernel_to_hunyuan_v1_dense` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
320
+ | HunyuanV1 MoE | `liger_kernel.transformers.apply_liger_kernel_to_hunyuan_v1_moe` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
318
321
 
319
322
 
320
323
  ## Low-level APIs
@@ -3,32 +3,32 @@ liger_kernel/env_report.py,sha256=uhdEC8OydxoZlb7B6YYcAaBF3crGFdIck-4cxaW4NJY,17
3
3
  liger_kernel/utils.py,sha256=BQleeZWHSZPNuPcYcoZTOp1kcNEZONZilPP5-AmjgWI,2024
4
4
  liger_kernel/chunked_loss/README.md,sha256=0FmkFC3hKBqyoDT5uTlIYmrvRkF-EOCR1y-EBU1LpWU,2248
5
5
  liger_kernel/chunked_loss/__init__.py,sha256=J5_jNnzZ4gZmA38W5f_4oab7xMoNk1Xy-yh3X_Xlf-s,714
6
- liger_kernel/chunked_loss/cosine_similarity_loss.py,sha256=pZ07OQ6RI-c8uk96tDRlUXdt31-da7yWhfwircZlKRw,4198
6
+ liger_kernel/chunked_loss/cosine_similarity_loss.py,sha256=x2nprTHPraU8Ya2NMZtaDk9r-s-1NKJwCTrzQIdmg-8,4680
7
7
  liger_kernel/chunked_loss/cpo_loss.py,sha256=Gzz1eU4kgcbdubFVRy55e8A1Cr-r45UgNicXwZIjmBU,5454
8
8
  liger_kernel/chunked_loss/dpo_loss.py,sha256=I83khNs3QQjuhr8U3NIOAACkbse6DNiBV-TulPZ0lXw,9006
9
9
  liger_kernel/chunked_loss/functional.py,sha256=-XPDbLml9dHmvoSU2VNTUrBDFehuzvuAGPikVetBMtI,1132
10
- liger_kernel/chunked_loss/fused_linear_distillation.py,sha256=ooR-qnZCyWJN935oHCSWLaKKKyaYERyhNczRGi1VOiw,11935
11
- liger_kernel/chunked_loss/fused_linear_ppo.py,sha256=ZjpNP5VC-tXXIKb4AckkQ3iWWQeej-JoG4StJq3N0wg,13650
10
+ liger_kernel/chunked_loss/fused_linear_distillation.py,sha256=yRtolfFGfKB-SxGQQyF68GYXd11Zlvh1InLdGeWNFIE,12652
11
+ liger_kernel/chunked_loss/fused_linear_ppo.py,sha256=baU19PwqO1FTVxwlB-eyJv6gOLtL7baXGzSncYQ8Ktc,14296
12
12
  liger_kernel/chunked_loss/fused_linear_preference.py,sha256=FIH85uUXAOgYx5Ax8MjFhJHVu-2pKtY7wSegd0zSyyY,18336
13
13
  liger_kernel/chunked_loss/fused_linear_unpaired_preference.py,sha256=RiuK3UtRwH9T6jZ36sA8Urj-TVuOLOO2syLg_JOQapY,13437
14
- liger_kernel/chunked_loss/grpo_loss.py,sha256=SkZuKoW8K94UbWR-OtfopsQkuQ8tFOr_90AGR6_Mhes,12844
15
- liger_kernel/chunked_loss/jsd_loss.py,sha256=gRhnmB8xwuz7FcMJi5v5eyBsq01owaCbcyyrF4rYtY0,7133
14
+ liger_kernel/chunked_loss/grpo_loss.py,sha256=bmuZaNgqNbJ5pJGFDXWE-B4BGYF7xWVSN15UyCfuq_s,13079
15
+ liger_kernel/chunked_loss/jsd_loss.py,sha256=G0RghPYYelyZ6DOEiwS8we9TT5MY2iHpiFqzZ2Xy87g,8038
16
16
  liger_kernel/chunked_loss/kto_loss.py,sha256=llVCe6DkcpCo57seGWoMikaQVFApx764jsmSbQyqwQY,7529
17
17
  liger_kernel/chunked_loss/orpo_loss.py,sha256=nu9UYG16dcMw93lvHi4_hYs3Q0FK1KnlmMRj7OpYU8s,4872
18
18
  liger_kernel/chunked_loss/simpo_loss.py,sha256=fy2w8KbhMrBv7b1jdIeH3bBFxY52bPQPZb3KwBvmurM,5385
19
19
  liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
- liger_kernel/ops/cross_entropy.py,sha256=CEgAeX97ezIBRhK3dPQRKsEQiwgnBDOewtDoqKXzw_Q,19605
20
+ liger_kernel/ops/cross_entropy.py,sha256=-fd8qVxn_66MGSLs-Gs8yGmWlkET5YAoyb__Bolfz4c,22617
21
21
  liger_kernel/ops/dyt.py,sha256=gCLz4S8aul8SY9nvIGaoK67aGb7U9MJRQdo3ONqmQYs,5417
22
22
  liger_kernel/ops/fused_add_rms_norm.py,sha256=UBqmlqFCmhSAIpkNKd8rrfXatX7Z4J9bp2dX9A0lrJQ,14017
23
- liger_kernel/ops/fused_linear_cross_entropy.py,sha256=rL6PyM4_9CLj7OL6qHa_ssFdJn0JEZlE12znF7T5cvM,14521
23
+ liger_kernel/ops/fused_linear_cross_entropy.py,sha256=YepeWqX37gKc1-FUrzkDTzXYdOvmBmfv4KgL__KN_UI,16158
24
24
  liger_kernel/ops/fused_linear_jsd.py,sha256=CSoprxb-YcJy-YUKiTcYkxN8sb9h2kdk_iHuncvSV5c,9683
25
25
  liger_kernel/ops/fused_neighborhood_attention.py,sha256=vPi5xbnh6wxyZehaqo6Tuilqo2fN5SGDiONjnNmIKqs,35556
26
26
  liger_kernel/ops/geglu.py,sha256=r0WSq9E93zzynL44Wh8femzOWK07_SseBM_pJUyxT3s,4144
27
27
  liger_kernel/ops/group_norm.py,sha256=qD4D4lSjSgVtO52EBNLC2iTseALRgPgqXE50U2woggk,10837
28
- liger_kernel/ops/grpo_loss.py,sha256=anRnv7k1-AV3pCC6_TqP0GMg78YYUfRAJrbpx6PVhl0,9448
28
+ liger_kernel/ops/grpo_loss.py,sha256=2SyOujtF9I3xiNo4wFf4s6MeiDotE_qeYfRWgj_bOBE,9573
29
29
  liger_kernel/ops/jsd.py,sha256=onHp5T3MbvJaVz5Vup7Ww6EQp_HTaZeayTjJk6FgQMY,7042
30
30
  liger_kernel/ops/kl_div.py,sha256=ZjGdDLKWksHT9dZ0xF_TDgAkj5cuMTwwT5tr9E-_24o,8734
31
- liger_kernel/ops/layer_norm.py,sha256=WmiORsIyufOhazmYZTPjeSc5Z-xTAYwXAKqUcCv_dlY,9807
31
+ liger_kernel/ops/layer_norm.py,sha256=OMaex1MDsM9kaFs0-q5Pnx3DrMVjongQoZ5-iFIOy00,10523
32
32
  liger_kernel/ops/llama4_rope.py,sha256=-aqdZzllklTN8b9--e-TsWY_ntGCN8-tyseT4x0bd8s,8223
33
33
  liger_kernel/ops/multi_token_attention.py,sha256=Oz_RXDp-OSS_R_HuGmaETHdAJ7Toda_70OfE7TXMUlY,7645
34
34
  liger_kernel/ops/poly_norm.py,sha256=MLgI8Ea93fugKibHCUauQ2ASYVXCvpPZe5v3kQZU6po,11152
@@ -38,74 +38,81 @@ liger_kernel/ops/rope.py,sha256=v-7JHRrv-5ImoROkpKfl30WwWI4qTa2tAl7zQeB4ml4,8956
38
38
  liger_kernel/ops/softmax.py,sha256=tgORx6MK1IDDtZKqGarj0IPIVjqAIEUXXYPiinhRdtI,5864
39
39
  liger_kernel/ops/sparsemax.py,sha256=AeWe1xgkHJFEKWTj2vu_0hj7LztGvjqXAps-QTpCY0U,5087
40
40
  liger_kernel/ops/swiglu.py,sha256=D7nd4u_LInwsIRNCDdY77lqnTz8-W5dJrpEAt8zEO_A,3033
41
+ liger_kernel/ops/tiled_mlp.py,sha256=eyMFsFFgHch8a_6R6IYRG24_jqKg5GF_BQUoQuAG8SY,4529
41
42
  liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
42
43
  liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
43
44
  liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
44
45
  liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
45
- liger_kernel/transformers/__init__.py,sha256=MAAd-YqPdG-j_sbrIE43nrICpA4xTg-dx6M06KWLMFU,9486
46
+ liger_kernel/transformers/__init__.py,sha256=CgwhrY5cdx6OcRgR2ZZJbOIkLswQWPTr-BAaoxDNNOY,10687
46
47
  liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
47
- liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
48
+ liger_kernel/transformers/cross_entropy.py,sha256=DMtHkKrVJDSsels7KgGQJqrXkEAd6Zopcdr-5oRmQgE,2010
48
49
  liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
49
50
  liger_kernel/transformers/fsdp.py,sha256=CUiyjTmjkjY7pLXQv8ly9rnzgXw6529csd9pvtJNMYc,3096
50
- liger_kernel/transformers/functional.py,sha256=a8EGYjHDg34rhnaD4JpU8I20XJ7xiqJvqqjoh4NcwYk,8022
51
+ liger_kernel/transformers/functional.py,sha256=OqEmsDkaV3YiXaw1zqjDvHcC9_tU5TBrmhCNPOdgHQY,8590
51
52
  liger_kernel/transformers/fused_add_rms_norm.py,sha256=7_Bzg-x6lLe6W1qG2DtjDALhEpNZlC6N5GppEs9cTYY,1199
52
- liger_kernel/transformers/fused_linear_cross_entropy.py,sha256=toa54dpmJduoZLhU3lJA-HPZ03MYcMKekDWPcdYjvYA,2020
53
+ liger_kernel/transformers/fused_linear_cross_entropy.py,sha256=Hhp9XGgMKZhvlkjHY5Jkl_T7fSyJoCL9m5c3z_9mflQ,2347
53
54
  liger_kernel/transformers/fused_linear_jsd.py,sha256=bZ4otCvWBuOnA5XdQL-FzZVItJlDt-ht9e_pG7PG93E,3999
54
55
  liger_kernel/transformers/fused_neighborhood_attention.py,sha256=TxYDUAt9B6WSP14aJP66C_2Mbds2sSIPGnamhUSTrC8,7957
55
56
  liger_kernel/transformers/geglu.py,sha256=mrgqzIUVd6lN7fkDKLkw5YaESDxDtFgbot430WwPVOQ,1107
56
57
  liger_kernel/transformers/group_norm.py,sha256=6qMAWOprr4SzP0YhNVNGQIBpM5aUHplUD2VuGJrMBz0,2173
57
- liger_kernel/transformers/grpo_loss.py,sha256=uAkUNKSnUGEOqa82L9w2e6AI1kcmG8K45-QxyaT8zhM,3897
58
+ liger_kernel/transformers/grpo_loss.py,sha256=QS6Ycct1E2yMfqoHPBa2sUAu5cmweNPK_-Q_KJE8hb4,6098
58
59
  liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
59
60
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
60
61
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
61
62
  liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
62
- liger_kernel/transformers/monkey_patch.py,sha256=NWinrSt9_h4aF2Uax8jZ3of_z1LGmJY_yW9fW6EDieU,115774
63
+ liger_kernel/transformers/monkey_patch.py,sha256=4LV6LSz_AAop6HWk1spZm1QigPN9nUDPJu9tK21-jIo,132446
63
64
  liger_kernel/transformers/multi_token_attention.py,sha256=K3NIY9_5TPgZ4_Rahn0xnkMXxD_fmlJHK4CWGYvGQp0,1752
64
65
  liger_kernel/transformers/poly_norm.py,sha256=g5tC75i3qy1_N26ZUP-jfpct7ivQAEdJfIfx8IXzeyE,1377
65
66
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
66
67
  liger_kernel/transformers/rms_norm.py,sha256=HwddVqrqS58jE-M2_4NkFGARtCDBhGnkKyjBN9b3FYI,3004
67
- liger_kernel/transformers/rope.py,sha256=ZTrTORSAyfcFIKjk6XEeYmk4ROH7xXED9L4g2NFntlE,999
68
+ liger_kernel/transformers/rope.py,sha256=VMlDZI6zss9mLaLcN5XCE_ktmYRwAi_Eh4TIgO6NrIQ,2361
68
69
  liger_kernel/transformers/softmax.py,sha256=yadlAgE4V2JByMwrDDa2s5SUBp8Jgd57xwnVvAWoBaI,264
69
70
  liger_kernel/transformers/sparsemax.py,sha256=0lQA0UEOs4mu8CMruZ3VLhImxQVXJWhPsAKUsYA7vj8,403
70
- liger_kernel/transformers/swiglu.py,sha256=LZ8YeLIdv2k46JleZMjzubGk98smt6t780kSgcVLsQk,3454
71
+ liger_kernel/transformers/swiglu.py,sha256=dRR69wDWSWfdjtnsTECyxQqWVo5QkdXdXm9SpSQ4Jvw,4291
72
+ liger_kernel/transformers/tiled_mlp.py,sha256=J51-kpzwikDMMhT5bX-RZCKMaXBK6zZc1bhgRYTK5F0,4651
71
73
  liger_kernel/transformers/trainer_integration.py,sha256=W3ON51O5GkyzNJsItz0y5rKx-uy2f2cFfveZpqbUdhw,123
72
74
  liger_kernel/transformers/tvd.py,sha256=XrRfyJIqN6HFxXk8MYyFVZM1OLz3mtSbRZvWfZ_JerQ,450
73
75
  liger_kernel/transformers/experimental/__init__.py,sha256=oQqk-f32JYgWEP9DJCj6ty6bbJSGrdXsFDQFwGeX6vI,127
74
76
  liger_kernel/transformers/experimental/embedding.py,sha256=2P0QYdlFyFrG5OqTzTa1wcRgDSyjBMv5i1a7BrDPDQw,881
75
77
  liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
76
- liger_kernel/transformers/model/falcon_h1.py,sha256=DTzfT-5OzQ6I-pU80Vn5e5ibd1EOEbJV5cMTJFhfwFg,4302
77
- liger_kernel/transformers/model/gemma.py,sha256=WryzpVmCm2H_XgLKNu3jJ6gVawjQDjapTetg4WHlbR4,10078
78
- liger_kernel/transformers/model/gemma2.py,sha256=eOQEfJBKezJNNrirhkPSagGxr9qj_y4lENOZgjUZKpE,11471
79
- liger_kernel/transformers/model/gemma3.py,sha256=-tvZw88S-STqmvdim-xrZZRJ17KLWoge_73ilIvhpIU,14157
80
- liger_kernel/transformers/model/glm4.py,sha256=2TBM5-4URpj6uX96G1AZ_DrjAmQtgLwXGzBvaXtfwdk,5328
81
- liger_kernel/transformers/model/glm4v.py,sha256=nlgEMOBjFEOu7a-cwwp9mWhTFqIs3QrOvcxW-uaPq-s,6022
82
- liger_kernel/transformers/model/glm4v_moe.py,sha256=q3-R_FoQPayS85AriJWWebblXB6Ix9fvxhSrI3mHiz4,6237
83
- liger_kernel/transformers/model/internvl.py,sha256=Uv8KGXOz9NhiKVZDeRNzAJH5kRuMZikUbswWM9u5KM0,6069
84
- liger_kernel/transformers/model/llama.py,sha256=L_VuaxxFJpzEmpLnaqwBbI5-Q14Qgfj-ufhLydCWgdk,12903
85
- liger_kernel/transformers/model/llama4.py,sha256=epEO_VD1gJCDovabSIQLxxncoh-TQTBfj-UgIlR5c7U,4281
86
- liger_kernel/transformers/model/llava.py,sha256=t6kMiyBkteVam-ltiod2f1mevj8l8ZHxYDvfu9C_lEk,15196
87
- liger_kernel/transformers/model/loss_utils.py,sha256=02RVkPI7Qs4ZP4yU_udCAvD_2hgIaHmxremRKe3N7EE,1885
88
- liger_kernel/transformers/model/mistral.py,sha256=XmM4N21RIOkJ9PJ4PZ3DcRUhGUczn_lbx0plf1zeHb0,5571
89
- liger_kernel/transformers/model/mixtral.py,sha256=SLdLO81AZL7zror0LXLkn2PHqKzjwMMs4kALNqoaT00,11571
90
- liger_kernel/transformers/model/mllama.py,sha256=5q8q2BxQR_8hNZ83XrJIbndw-l6T7ZyFLM7OCv_uPK0,11593
91
- liger_kernel/transformers/model/olmo2.py,sha256=9O1Cze2B6ON-i1jgjQwjpS_WsDEK0PzL003s-MkevWA,5330
92
- liger_kernel/transformers/model/paligemma.py,sha256=mnTnSmEDla_bbVmPFmqhNVT__Cuf-TM-KLGFUa1sU-4,19967
93
- liger_kernel/transformers/model/phi3.py,sha256=L4gG8htOABmaxzcmHph0bBFCACRvL9r6wuDVFXi2o7Q,4117
94
- liger_kernel/transformers/model/qwen2.py,sha256=lgn0X6EzAZUhOv17ZDD9choIDdaPVIAsIrrdvwzWXqs,10033
95
- liger_kernel/transformers/model/qwen2_5_vl.py,sha256=Ea3zvL1FJfjlaerpeXCq-1zmorrajwNsR-XsgWr4fFQ,6465
96
- liger_kernel/transformers/model/qwen2_vl.py,sha256=ZeasFPGs-bxm2Y_E15mo0YNx5wwtKYDV-bjVKjkLPBk,6018
97
- liger_kernel/transformers/model/qwen3.py,sha256=Q2aOg5erPrgVgRcqJm8sefLSDtvU1AD5B7aJnP7mRMM,4956
98
- liger_kernel/transformers/model/qwen3_moe.py,sha256=1CwTMCNFDYsjGoa_aHFBagtC5HuJTV-s0__5UvcjD3A,5686
99
- liger_kernel/transformers/model/qwen3_next.py,sha256=7To7azriAogxeE7oEvByKztH9154dnDiDVNHHm7PZK4,5632
100
- liger_kernel/transformers/model/smollm3.py,sha256=0KWVkDtXbjsBKhJnaquV6vUUYyLtfmNwYH0sxJt-qTk,7667
78
+ liger_kernel/transformers/model/falcon_h1.py,sha256=heUZ4wUt2ATmtBtmv8Rcro3pQl6fV9T0pburjTTW7os,5004
79
+ liger_kernel/transformers/model/gemma.py,sha256=pAri4PYpknsFfkvyo8Ez2NNlqrUDW-KkExUXTGZAcH4,10621
80
+ liger_kernel/transformers/model/gemma2.py,sha256=qa9Ok42vFojVGNmASTH3Ek566Vu507kjd--ZpZDKX9M,12024
81
+ liger_kernel/transformers/model/gemma3.py,sha256=mEV3Kuy-dqfTk_b899Vb-InuD4_DvwH0nm5xgbG-0MM,14911
82
+ liger_kernel/transformers/model/glm4.py,sha256=bSp22iPIjsli4-c_usUOsyh1Bs2gIK8X6ynS0azseUs,5900
83
+ liger_kernel/transformers/model/glm4v.py,sha256=dd-BQpccDCp1SbIxcJ5rG8xcwYQK3KOv1Tgm9TGnZc4,6594
84
+ liger_kernel/transformers/model/glm4v_moe.py,sha256=zKhMdOOrRhlrvCSFaeVYfddL1ubpY8edEO91TN81n98,7135
85
+ liger_kernel/transformers/model/hunyuan_v1.py,sha256=MJvP9xkUFePIV0HLETJM4YPbVCEPkAE1ZI5Jxyiebh0,5731
86
+ liger_kernel/transformers/model/internvl.py,sha256=OOutracs9qrPHSU7FVYar08yinvGrHQVPvo39JEws6w,6473
87
+ liger_kernel/transformers/model/llama.py,sha256=kqZeONzwTBzudoChlKMzq1w23BtYGbxWZC1l1V__JTw,13410
88
+ liger_kernel/transformers/model/llama4.py,sha256=PfkynGVI0xxMs3EtyYpCgaALI6stu25OIrTIymE-pvg,4853
89
+ liger_kernel/transformers/model/llava.py,sha256=yoADM_BuIEummtTDiwWqjfUjXUMZD78VJzS0TRj5GJ4,15687
90
+ liger_kernel/transformers/model/loss_utils.py,sha256=mAV6NsE1xR2smQMlr_n9afh4ek3BhIfieZdTn1Z-9Fw,2836
91
+ liger_kernel/transformers/model/mistral.py,sha256=OcwOzVDMwwDbVccVPv-AaocznzWwzLT3aRaKK5SMaAg,6030
92
+ liger_kernel/transformers/model/mixtral.py,sha256=YcBDoTEJDgLFJ_RTo180DYGxR8D5Ad9-idumif7kCPE,12130
93
+ liger_kernel/transformers/model/mllama.py,sha256=vAHwCm63sn4kpAY0rDGf_N0HR7KRTBVpBYDVTPOaZTg,12079
94
+ liger_kernel/transformers/model/olmo2.py,sha256=-h2bUOeuPfY1MdShdRvq5_wFDHKP4PEimgIl0fL-BT4,5902
95
+ liger_kernel/transformers/model/olmo3.py,sha256=k2zYOlS8U_b5MwjdToB3tDRQ0bH_mWapVQqJcH8-qAo,6007
96
+ liger_kernel/transformers/model/output_classes.py,sha256=0BGXVR4dYQpSHLkSqpRoXuHMryrceGSlTYRu6pvd8ZY,4542
97
+ liger_kernel/transformers/model/paligemma.py,sha256=r0smHLADkEwfLS6d6ArWoSWEeLt2d_8pmgOO5F04b1o,20793
98
+ liger_kernel/transformers/model/phi3.py,sha256=PT7Kw6yySg-7TsssWfi82eVMN3SWujCqzCqHigAdfeQ,4574
99
+ liger_kernel/transformers/model/qwen2.py,sha256=ojqdJpD3A9A5uCS0N_rSq8gyNYWSsHfuvx3Z3ObC7ss,10686
100
+ liger_kernel/transformers/model/qwen2_5_vl.py,sha256=FbIZDcg9cOr4PtBLNN8yVubN-gu2clndjSIzfi8NMos,6894
101
+ liger_kernel/transformers/model/qwen2_vl.py,sha256=967Ex4Scm0ehhiVxOtjwfj396nD9xkAwFwHcoURH6-o,6578
102
+ liger_kernel/transformers/model/qwen3.py,sha256=1fvioVmq5CRZSIuTd7uuLet-fti9ee3r8eLibvfNTcQ,5769
103
+ liger_kernel/transformers/model/qwen3_moe.py,sha256=yljJO4kyeM5U2Q4pXH3Mmq71ZFEC_Z73qgBx1-an-o8,6457
104
+ liger_kernel/transformers/model/qwen3_next.py,sha256=TayfD91GVLA1-fJwtVl6vMZgkUTYLQYURMRGBdCtnFc,6331
105
+ liger_kernel/transformers/model/qwen3_vl.py,sha256=sUIdJ-32IlFm_4pHv6PpLgVafqBS0QeJm_91tY67NdY,6646
106
+ liger_kernel/transformers/model/qwen3_vl_moe.py,sha256=CJEFcwBqItSEw9NA0mhEozlDTgIuJQ6VTjgkh5iLZ78,4856
107
+ liger_kernel/transformers/model/smollm3.py,sha256=1ewDY-99UAFJEfoeqfZxDcxjkqKYUSr5b7X-E_2BLLs,8126
101
108
  liger_kernel/transformers/model/smolvlm.py,sha256=yFpPKawLVo3zXzLjM7Y_T8FyRrPxVyp-YPFMM8m3k0c,6734
102
109
  liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7HHWHwku25A-GYL0WU,193
103
110
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
104
111
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
105
112
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
106
- liger_kernel-0.6.3.dist-info/licenses/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
107
- liger_kernel-0.6.3.dist-info/licenses/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
108
- liger_kernel-0.6.3.dist-info/METADATA,sha256=n9tHig7KRoszPUoLj3yvGp89iubHb2wDwXAsrg7XPFo,24820
109
- liger_kernel-0.6.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
110
- liger_kernel-0.6.3.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
111
- liger_kernel-0.6.3.dist-info/RECORD,,
113
+ liger_kernel-0.6.4.dist-info/licenses/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
114
+ liger_kernel-0.6.4.dist-info/licenses/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
115
+ liger_kernel-0.6.4.dist-info/METADATA,sha256=NnRXjH2DzVC_HejG1qKfyd7vjOlgqQ4uqMwFujom3Uo,25281
116
+ liger_kernel-0.6.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
117
+ liger_kernel-0.6.4.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
118
+ liger_kernel-0.6.4.dist-info/RECORD,,