liger-kernel 0.6.3__py3-none-any.whl → 0.6.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/cosine_similarity_loss.py +13 -4
- liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
- liger_kernel/chunked_loss/fused_linear_ppo.py +21 -5
- liger_kernel/chunked_loss/grpo_loss.py +8 -5
- liger_kernel/chunked_loss/jsd_loss.py +18 -5
- liger_kernel/ops/cross_entropy.py +59 -9
- liger_kernel/ops/fused_linear_cross_entropy.py +30 -4
- liger_kernel/ops/grpo_loss.py +3 -1
- liger_kernel/ops/layer_norm.py +84 -65
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/transformers/__init__.py +19 -0
- liger_kernel/transformers/cross_entropy.py +8 -3
- liger_kernel/transformers/functional.py +24 -6
- liger_kernel/transformers/fused_linear_cross_entropy.py +8 -3
- liger_kernel/transformers/grpo_loss.py +56 -1
- liger_kernel/transformers/model/falcon_h1.py +19 -5
- liger_kernel/transformers/model/gemma.py +17 -6
- liger_kernel/transformers/model/gemma2.py +14 -5
- liger_kernel/transformers/model/gemma3.py +25 -12
- liger_kernel/transformers/model/glm4.py +16 -4
- liger_kernel/transformers/model/glm4v.py +16 -4
- liger_kernel/transformers/model/glm4v_moe.py +23 -4
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +12 -5
- liger_kernel/transformers/model/llama.py +14 -5
- liger_kernel/transformers/model/llama4.py +16 -4
- liger_kernel/transformers/model/llava.py +12 -4
- liger_kernel/transformers/model/loss_utils.py +31 -3
- liger_kernel/transformers/model/mistral.py +15 -6
- liger_kernel/transformers/model/mixtral.py +16 -7
- liger_kernel/transformers/model/mllama.py +12 -4
- liger_kernel/transformers/model/olmo2.py +16 -4
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +22 -5
- liger_kernel/transformers/model/phi3.py +14 -7
- liger_kernel/transformers/model/qwen2.py +16 -3
- liger_kernel/transformers/model/qwen2_5_vl.py +14 -6
- liger_kernel/transformers/model/qwen2_vl.py +16 -4
- liger_kernel/transformers/model/qwen3.py +20 -5
- liger_kernel/transformers/model/qwen3_moe.py +19 -5
- liger_kernel/transformers/model/qwen3_next.py +17 -5
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +15 -6
- liger_kernel/transformers/monkey_patch.py +398 -20
- liger_kernel/transformers/rope.py +43 -0
- liger_kernel/transformers/swiglu.py +17 -0
- liger_kernel/transformers/tiled_mlp.py +133 -0
- {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.4.dist-info}/METADATA +4 -1
- {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.4.dist-info}/RECORD +55 -48
- {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.4.dist-info}/WHEEL +0 -0
- {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.4.dist-info}/licenses/LICENSE +0 -0
- {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.4.dist-info}/licenses/NOTICE +0 -0
- {liger_kernel-0.6.3.dist-info → liger_kernel-0.6.4.dist-info}/top_level.txt +0 -0
|
@@ -5,10 +5,11 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import Qwen2_5_VLCausalLMOutputWithPast
|
|
9
8
|
from transformers.utils import can_return_tuple
|
|
10
9
|
|
|
11
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerQwen2_5_VLCausalLMOutputWithPast
|
|
12
13
|
|
|
13
14
|
|
|
14
15
|
@can_return_tuple
|
|
@@ -33,7 +34,7 @@ def lce_forward(
|
|
|
33
34
|
second_per_grid_ts: Optional[torch.Tensor] = None,
|
|
34
35
|
skip_logits: Optional[bool] = None,
|
|
35
36
|
**kwargs,
|
|
36
|
-
) -> Union[Tuple,
|
|
37
|
+
) -> Union[Tuple, LigerQwen2_5_VLCausalLMOutputWithPast]:
|
|
37
38
|
r"""
|
|
38
39
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
39
40
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -113,6 +114,7 @@ def lce_forward(
|
|
|
113
114
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
114
115
|
loss = None
|
|
115
116
|
logits = None
|
|
117
|
+
token_accuracy = None
|
|
116
118
|
|
|
117
119
|
if skip_logits and labels is None and shift_labels is None:
|
|
118
120
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -120,8 +122,9 @@ def lce_forward(
|
|
|
120
122
|
if skip_logits is None:
|
|
121
123
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
122
124
|
|
|
125
|
+
# Compute loss
|
|
123
126
|
if skip_logits:
|
|
124
|
-
|
|
127
|
+
result = LigerForCausalLMLoss(
|
|
125
128
|
hidden_states=hidden_states,
|
|
126
129
|
lm_head_weight=self.lm_head.weight,
|
|
127
130
|
labels=labels,
|
|
@@ -129,6 +132,7 @@ def lce_forward(
|
|
|
129
132
|
hidden_size=self.config.hidden_size,
|
|
130
133
|
**kwargs,
|
|
131
134
|
)
|
|
135
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
132
136
|
else:
|
|
133
137
|
logits = self.lm_head(hidden_states)
|
|
134
138
|
|
|
@@ -142,14 +146,18 @@ def lce_forward(
|
|
|
142
146
|
)
|
|
143
147
|
|
|
144
148
|
if not return_dict:
|
|
145
|
-
|
|
146
|
-
|
|
149
|
+
output_tuple = (logits,) + outputs[1:]
|
|
150
|
+
output = (loss,) + output_tuple if loss is not None else output_tuple
|
|
151
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
152
|
+
return output
|
|
147
153
|
|
|
148
|
-
|
|
154
|
+
# Return Qwen2.5-VL output with token accuracy
|
|
155
|
+
return LigerQwen2_5_VLCausalLMOutputWithPast(
|
|
149
156
|
loss=loss,
|
|
150
157
|
logits=logits,
|
|
151
158
|
past_key_values=outputs.past_key_values,
|
|
152
159
|
hidden_states=outputs.hidden_states,
|
|
153
160
|
attentions=outputs.attentions,
|
|
154
161
|
rope_deltas=outputs.rope_deltas,
|
|
162
|
+
token_accuracy=token_accuracy,
|
|
155
163
|
)
|
|
@@ -5,10 +5,11 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLCausalLMOutputWithPast
|
|
9
8
|
from transformers.utils import can_return_tuple
|
|
10
9
|
|
|
11
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerQwen2VLCausalLMOutputWithPast
|
|
12
13
|
|
|
13
14
|
|
|
14
15
|
@can_return_tuple
|
|
@@ -32,7 +33,7 @@ def lce_forward(
|
|
|
32
33
|
cache_position: Optional[torch.LongTensor] = None,
|
|
33
34
|
skip_logits: Optional[bool] = None,
|
|
34
35
|
**kwargs,
|
|
35
|
-
) -> Union[Tuple,
|
|
36
|
+
) -> Union[Tuple, LigerQwen2VLCausalLMOutputWithPast]:
|
|
36
37
|
r"""
|
|
37
38
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
38
39
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -109,6 +110,7 @@ def lce_forward(
|
|
|
109
110
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
110
111
|
loss = None
|
|
111
112
|
logits = None
|
|
113
|
+
token_accuracy = None
|
|
112
114
|
|
|
113
115
|
if skip_logits and labels is None and shift_labels is None:
|
|
114
116
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -116,8 +118,9 @@ def lce_forward(
|
|
|
116
118
|
if skip_logits is None:
|
|
117
119
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
118
120
|
|
|
121
|
+
# Compute loss
|
|
119
122
|
if skip_logits:
|
|
120
|
-
|
|
123
|
+
result = LigerForCausalLMLoss(
|
|
121
124
|
hidden_states=hidden_states,
|
|
122
125
|
lm_head_weight=self.lm_head.weight,
|
|
123
126
|
labels=labels,
|
|
@@ -125,6 +128,7 @@ def lce_forward(
|
|
|
125
128
|
hidden_size=self.config.hidden_size,
|
|
126
129
|
**kwargs,
|
|
127
130
|
)
|
|
131
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
128
132
|
else:
|
|
129
133
|
logits = self.lm_head(hidden_states)
|
|
130
134
|
|
|
@@ -137,11 +141,19 @@ def lce_forward(
|
|
|
137
141
|
vocab_size=self.config.vocab_size,
|
|
138
142
|
)
|
|
139
143
|
|
|
140
|
-
|
|
144
|
+
if not return_dict:
|
|
145
|
+
output_tuple = (logits,) + outputs[1:]
|
|
146
|
+
output = (loss,) + output_tuple if loss is not None else output_tuple
|
|
147
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
148
|
+
return output
|
|
149
|
+
|
|
150
|
+
# Return Qwen2VL output with token accuracy
|
|
151
|
+
return LigerQwen2VLCausalLMOutputWithPast(
|
|
141
152
|
loss=loss,
|
|
142
153
|
logits=logits,
|
|
143
154
|
past_key_values=outputs.past_key_values,
|
|
144
155
|
hidden_states=outputs.hidden_states,
|
|
145
156
|
attentions=outputs.attentions,
|
|
146
157
|
rope_deltas=outputs.rope_deltas,
|
|
158
|
+
token_accuracy=token_accuracy,
|
|
147
159
|
)
|
|
@@ -4,9 +4,9 @@ from typing import Union
|
|
|
4
4
|
|
|
5
5
|
import torch
|
|
6
6
|
|
|
7
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
8
|
-
|
|
9
7
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
8
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
9
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
10
10
|
|
|
11
11
|
|
|
12
12
|
def lce_forward(
|
|
@@ -23,8 +23,9 @@ def lce_forward(
|
|
|
23
23
|
cache_position: Optional[torch.LongTensor] = None,
|
|
24
24
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
25
25
|
skip_logits: Optional[bool] = None,
|
|
26
|
+
return_dict: Optional[bool] = None,
|
|
26
27
|
**kwargs,
|
|
27
|
-
) ->
|
|
28
|
+
) -> LigerCausalLMOutputWithPast:
|
|
28
29
|
r"""
|
|
29
30
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
30
31
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -60,6 +61,7 @@ def lce_forward(
|
|
|
60
61
|
output_hidden_states = (
|
|
61
62
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
62
63
|
)
|
|
64
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
63
65
|
|
|
64
66
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
65
67
|
outputs = self.model(
|
|
@@ -81,8 +83,11 @@ def lce_forward(
|
|
|
81
83
|
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
82
84
|
|
|
83
85
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
86
|
+
# Remove output-control parameters that shouldn't be passed to loss functions
|
|
87
|
+
kwargs.pop("return_dict", None)
|
|
84
88
|
logits = None
|
|
85
89
|
loss = None
|
|
90
|
+
token_accuracy = None
|
|
86
91
|
|
|
87
92
|
if skip_logits and labels is None and shift_labels is None:
|
|
88
93
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -91,8 +96,9 @@ def lce_forward(
|
|
|
91
96
|
# By default, if in training mode, don't materialize logits
|
|
92
97
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
93
98
|
|
|
99
|
+
# Compute loss
|
|
94
100
|
if skip_logits:
|
|
95
|
-
|
|
101
|
+
result = LigerForCausalLMLoss(
|
|
96
102
|
hidden_states=kept_hidden_states,
|
|
97
103
|
lm_head_weight=self.lm_head.weight,
|
|
98
104
|
labels=labels,
|
|
@@ -100,6 +106,7 @@ def lce_forward(
|
|
|
100
106
|
hidden_size=self.config.hidden_size,
|
|
101
107
|
**kwargs,
|
|
102
108
|
)
|
|
109
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
103
110
|
|
|
104
111
|
else:
|
|
105
112
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -112,10 +119,18 @@ def lce_forward(
|
|
|
112
119
|
**kwargs,
|
|
113
120
|
)
|
|
114
121
|
|
|
115
|
-
|
|
122
|
+
if not return_dict:
|
|
123
|
+
output = (logits,) + outputs[1:]
|
|
124
|
+
output = ((loss,) + output) if loss is not None else output
|
|
125
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
126
|
+
return output
|
|
127
|
+
|
|
128
|
+
# Return custom output class with accuracy field
|
|
129
|
+
return LigerCausalLMOutputWithPast(
|
|
116
130
|
loss=loss,
|
|
117
131
|
logits=logits,
|
|
118
132
|
past_key_values=outputs.past_key_values,
|
|
119
133
|
hidden_states=outputs.hidden_states,
|
|
120
134
|
attentions=outputs.attentions,
|
|
135
|
+
token_accuracy=token_accuracy,
|
|
121
136
|
)
|
|
@@ -4,11 +4,12 @@ from typing import Union
|
|
|
4
4
|
|
|
5
5
|
import torch
|
|
6
6
|
|
|
7
|
-
from transformers.modeling_outputs import MoeCausalLMOutputWithPast
|
|
8
7
|
from transformers.modeling_outputs import MoeModelOutputWithPast
|
|
9
8
|
from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func
|
|
10
9
|
|
|
11
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerMoeCausalLMOutputWithPast
|
|
12
13
|
|
|
13
14
|
|
|
14
15
|
def lce_forward(
|
|
@@ -26,8 +27,9 @@ def lce_forward(
|
|
|
26
27
|
cache_position: Optional[torch.LongTensor] = None,
|
|
27
28
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
28
29
|
skip_logits: Optional[bool] = None,
|
|
30
|
+
return_dict: Optional[bool] = None,
|
|
29
31
|
**kwargs,
|
|
30
|
-
) ->
|
|
32
|
+
) -> LigerMoeCausalLMOutputWithPast:
|
|
31
33
|
r"""
|
|
32
34
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
33
35
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -64,10 +66,10 @@ def lce_forward(
|
|
|
64
66
|
output_router_logits = (
|
|
65
67
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
|
66
68
|
)
|
|
67
|
-
|
|
68
69
|
output_hidden_states = (
|
|
69
70
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
70
71
|
)
|
|
72
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
71
73
|
|
|
72
74
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
73
75
|
outputs: MoeModelOutputWithPast = self.model(
|
|
@@ -92,12 +94,14 @@ def lce_forward(
|
|
|
92
94
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
93
95
|
logits = None
|
|
94
96
|
loss = None
|
|
97
|
+
token_accuracy = None
|
|
95
98
|
|
|
96
99
|
if skip_logits is None:
|
|
97
100
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
98
101
|
|
|
102
|
+
# Compute loss
|
|
99
103
|
if skip_logits:
|
|
100
|
-
|
|
104
|
+
result = LigerForCausalLMLoss(
|
|
101
105
|
hidden_states=kept_hidden_states,
|
|
102
106
|
lm_head_weight=self.lm_head.weight,
|
|
103
107
|
labels=labels,
|
|
@@ -105,6 +109,7 @@ def lce_forward(
|
|
|
105
109
|
hidden_size=self.config.hidden_size,
|
|
106
110
|
**kwargs,
|
|
107
111
|
)
|
|
112
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
108
113
|
else: # if in inference model materialize logits
|
|
109
114
|
logits = self.lm_head(kept_hidden_states)
|
|
110
115
|
if labels is not None or shift_labels is not None:
|
|
@@ -127,7 +132,15 @@ def lce_forward(
|
|
|
127
132
|
if labels is not None:
|
|
128
133
|
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
|
129
134
|
|
|
130
|
-
|
|
135
|
+
if not return_dict:
|
|
136
|
+
output = (logits,) + outputs[1:]
|
|
137
|
+
output = ((aux_loss,) + output) if aux_loss is not None else output
|
|
138
|
+
output = ((loss,) + output) if loss is not None else output
|
|
139
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
140
|
+
return output
|
|
141
|
+
|
|
142
|
+
# Return custom output class with accuracy field
|
|
143
|
+
return LigerMoeCausalLMOutputWithPast(
|
|
131
144
|
loss=loss,
|
|
132
145
|
aux_loss=aux_loss,
|
|
133
146
|
logits=logits,
|
|
@@ -135,4 +148,5 @@ def lce_forward(
|
|
|
135
148
|
hidden_states=outputs.hidden_states,
|
|
136
149
|
attentions=outputs.attentions,
|
|
137
150
|
router_logits=outputs.router_logits,
|
|
151
|
+
token_accuracy=token_accuracy,
|
|
138
152
|
)
|
|
@@ -5,13 +5,14 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from transformers.modeling_outputs import MoeCausalLMOutputWithPast
|
|
9
8
|
from transformers.modeling_outputs import MoeModelOutputWithPast
|
|
10
9
|
|
|
11
10
|
if TYPE_CHECKING:
|
|
12
11
|
from transformers.models.qwen3_next.modeling_qwen3_next import load_balancing_loss_func
|
|
13
12
|
|
|
14
13
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
14
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
15
|
+
from liger_kernel.transformers.model.output_classes import LigerMoeCausalLMOutputWithPast
|
|
15
16
|
|
|
16
17
|
|
|
17
18
|
def lce_forward(
|
|
@@ -29,8 +30,9 @@ def lce_forward(
|
|
|
29
30
|
cache_position: Optional[torch.LongTensor] = None,
|
|
30
31
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
31
32
|
skip_logits: Optional[bool] = None,
|
|
33
|
+
return_dict: Optional[bool] = None,
|
|
32
34
|
**kwargs,
|
|
33
|
-
) ->
|
|
35
|
+
) -> LigerMoeCausalLMOutputWithPast:
|
|
34
36
|
r"""
|
|
35
37
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
36
38
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -66,10 +68,10 @@ def lce_forward(
|
|
|
66
68
|
output_router_logits = (
|
|
67
69
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
|
68
70
|
)
|
|
69
|
-
|
|
70
71
|
output_hidden_states = (
|
|
71
72
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
72
73
|
)
|
|
74
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
73
75
|
|
|
74
76
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
75
77
|
outputs: MoeModelOutputWithPast = self.model(
|
|
@@ -94,12 +96,13 @@ def lce_forward(
|
|
|
94
96
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
95
97
|
logits = None
|
|
96
98
|
loss = None
|
|
99
|
+
token_accuracy = None
|
|
97
100
|
|
|
98
101
|
if skip_logits is None:
|
|
99
102
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
100
103
|
|
|
101
104
|
if skip_logits:
|
|
102
|
-
|
|
105
|
+
result = LigerForCausalLMLoss(
|
|
103
106
|
hidden_states=kept_hidden_states,
|
|
104
107
|
lm_head_weight=self.lm_head.weight,
|
|
105
108
|
labels=labels,
|
|
@@ -107,6 +110,7 @@ def lce_forward(
|
|
|
107
110
|
hidden_size=self.config.hidden_size,
|
|
108
111
|
**kwargs,
|
|
109
112
|
)
|
|
113
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
110
114
|
else: # if in inference model materialize logits
|
|
111
115
|
logits = self.lm_head(kept_hidden_states)
|
|
112
116
|
if labels is not None or shift_labels is not None:
|
|
@@ -123,7 +127,14 @@ def lce_forward(
|
|
|
123
127
|
if labels is not None:
|
|
124
128
|
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
|
125
129
|
|
|
126
|
-
|
|
130
|
+
if not return_dict:
|
|
131
|
+
output = (logits,) + outputs[1:]
|
|
132
|
+
output = ((aux_loss,) + output) if aux_loss is not None else output
|
|
133
|
+
output = ((loss,) + output) if loss is not None else output
|
|
134
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
135
|
+
return output
|
|
136
|
+
|
|
137
|
+
return LigerMoeCausalLMOutputWithPast(
|
|
127
138
|
loss=loss,
|
|
128
139
|
aux_loss=aux_loss,
|
|
129
140
|
logits=logits,
|
|
@@ -131,4 +142,5 @@ def lce_forward(
|
|
|
131
142
|
hidden_states=outputs.hidden_states,
|
|
132
143
|
attentions=outputs.attentions,
|
|
133
144
|
router_logits=outputs.router_logits,
|
|
145
|
+
token_accuracy=token_accuracy,
|
|
134
146
|
)
|
|
@@ -0,0 +1,150 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from transformers.utils import can_return_tuple
|
|
9
|
+
|
|
10
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerQwen3VLCausalLMOutputWithPast
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@can_return_tuple
|
|
16
|
+
def lce_forward(
|
|
17
|
+
self,
|
|
18
|
+
input_ids: torch.LongTensor = None,
|
|
19
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
20
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
21
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
22
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
23
|
+
labels: Optional[torch.LongTensor] = None,
|
|
24
|
+
use_cache: Optional[bool] = None,
|
|
25
|
+
output_attentions: Optional[bool] = None,
|
|
26
|
+
output_hidden_states: Optional[bool] = None,
|
|
27
|
+
return_dict: Optional[bool] = None,
|
|
28
|
+
pixel_values: Optional[torch.Tensor] = None,
|
|
29
|
+
pixel_values_videos: Optional[torch.FloatTensor] = None,
|
|
30
|
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
|
31
|
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
|
32
|
+
rope_deltas: Optional[torch.LongTensor] = None,
|
|
33
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
34
|
+
second_per_grid_ts: Optional[torch.Tensor] = None,
|
|
35
|
+
skip_logits: Optional[bool] = None,
|
|
36
|
+
**kwargs,
|
|
37
|
+
) -> Union[Tuple, LigerQwen3VLCausalLMOutputWithPast]:
|
|
38
|
+
"""
|
|
39
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
40
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
41
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
42
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
43
|
+
pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
|
|
44
|
+
The tensors corresponding to the input videos. Pixel values can be obtained using
|
|
45
|
+
[`AutoImageProcessor`]. See [`Qwen2_5_VLImageProcessor.__call__`] for details. [`Qwen2_5_VLProcessor`] uses
|
|
46
|
+
[`Qwen2_5_VLImageProcessor`] for processing videos.
|
|
47
|
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
48
|
+
The temporal, height and width of feature shape of each image in LLM.
|
|
49
|
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
|
50
|
+
The temporal, height and width of feature shape of each video in LLM.
|
|
51
|
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
|
52
|
+
The rope index difference between sequence length and multimodal rope.
|
|
53
|
+
second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*):
|
|
54
|
+
The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs.
|
|
55
|
+
Example:
|
|
56
|
+
```python
|
|
57
|
+
>>> from PIL import Image
|
|
58
|
+
>>> import requests
|
|
59
|
+
>>> from transformers import AutoProcessor, Qwen3VLForConditionalGeneration
|
|
60
|
+
>>> model = Qwen3VLForConditionalGeneration.from_pretrained("Qwen/Qwen3-VL")
|
|
61
|
+
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen3-VL")
|
|
62
|
+
>>> messages = [
|
|
63
|
+
{
|
|
64
|
+
"role": "user",
|
|
65
|
+
"content": [
|
|
66
|
+
{"type": "image"},
|
|
67
|
+
{"type": "text", "text": "What is shown in this image?"},
|
|
68
|
+
],
|
|
69
|
+
},
|
|
70
|
+
]
|
|
71
|
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
|
72
|
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
73
|
+
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
74
|
+
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
|
|
75
|
+
>>> # Generate
|
|
76
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
77
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
78
|
+
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
|
|
79
|
+
```"""
|
|
80
|
+
|
|
81
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
82
|
+
output_hidden_states = (
|
|
83
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
84
|
+
)
|
|
85
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
86
|
+
|
|
87
|
+
outputs = self.model(
|
|
88
|
+
input_ids=input_ids,
|
|
89
|
+
pixel_values=pixel_values,
|
|
90
|
+
pixel_values_videos=pixel_values_videos,
|
|
91
|
+
image_grid_thw=image_grid_thw,
|
|
92
|
+
video_grid_thw=video_grid_thw,
|
|
93
|
+
second_per_grid_ts=second_per_grid_ts,
|
|
94
|
+
position_ids=position_ids,
|
|
95
|
+
attention_mask=attention_mask,
|
|
96
|
+
past_key_values=past_key_values,
|
|
97
|
+
inputs_embeds=inputs_embeds,
|
|
98
|
+
use_cache=use_cache,
|
|
99
|
+
output_attentions=output_attentions,
|
|
100
|
+
output_hidden_states=output_hidden_states,
|
|
101
|
+
return_dict=return_dict,
|
|
102
|
+
cache_position=cache_position,
|
|
103
|
+
**kwargs,
|
|
104
|
+
)
|
|
105
|
+
|
|
106
|
+
hidden_states = outputs[0]
|
|
107
|
+
|
|
108
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
109
|
+
loss = None
|
|
110
|
+
logits = None
|
|
111
|
+
token_accuracy = None
|
|
112
|
+
|
|
113
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
114
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
115
|
+
|
|
116
|
+
if skip_logits is None:
|
|
117
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
118
|
+
|
|
119
|
+
if skip_logits:
|
|
120
|
+
result = LigerForCausalLMLoss(
|
|
121
|
+
hidden_states=hidden_states,
|
|
122
|
+
lm_head_weight=self.lm_head.weight,
|
|
123
|
+
labels=labels,
|
|
124
|
+
shift_labels=shift_labels,
|
|
125
|
+
hidden_size=self.config.text_config.hidden_size,
|
|
126
|
+
**kwargs,
|
|
127
|
+
)
|
|
128
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
129
|
+
else:
|
|
130
|
+
logits = self.lm_head(hidden_states)
|
|
131
|
+
|
|
132
|
+
loss = None
|
|
133
|
+
if labels is not None:
|
|
134
|
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size)
|
|
135
|
+
|
|
136
|
+
if not return_dict:
|
|
137
|
+
output = (logits,) + outputs[1:]
|
|
138
|
+
output = (loss,) + output if loss is not None else output
|
|
139
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
140
|
+
return output
|
|
141
|
+
|
|
142
|
+
return LigerQwen3VLCausalLMOutputWithPast(
|
|
143
|
+
loss=loss,
|
|
144
|
+
logits=logits,
|
|
145
|
+
past_key_values=outputs.past_key_values,
|
|
146
|
+
hidden_states=outputs.hidden_states,
|
|
147
|
+
attentions=outputs.attentions,
|
|
148
|
+
rope_deltas=outputs.rope_deltas,
|
|
149
|
+
token_accuracy=token_accuracy,
|
|
150
|
+
)
|
|
@@ -0,0 +1,126 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from transformers.models.qwen3_vl_moe.modeling_qwen3_vl_moe import load_balancing_loss_func
|
|
9
|
+
from transformers.utils import can_return_tuple
|
|
10
|
+
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
12
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
13
|
+
from liger_kernel.transformers.model.output_classes import LigerQwen3VLMoeCausalLMOutputWithPast
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
@can_return_tuple
|
|
17
|
+
def lce_forward(
|
|
18
|
+
self,
|
|
19
|
+
input_ids: torch.LongTensor = None,
|
|
20
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
21
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
22
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
23
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
24
|
+
labels: Optional[torch.LongTensor] = None,
|
|
25
|
+
use_cache: Optional[bool] = None,
|
|
26
|
+
output_attentions: Optional[bool] = None,
|
|
27
|
+
output_hidden_states: Optional[bool] = None,
|
|
28
|
+
return_dict: Optional[bool] = None,
|
|
29
|
+
pixel_values: Optional[torch.Tensor] = None,
|
|
30
|
+
pixel_values_videos: Optional[torch.FloatTensor] = None,
|
|
31
|
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
|
32
|
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
|
33
|
+
rope_deltas: Optional[torch.LongTensor] = None,
|
|
34
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
35
|
+
second_per_grid_ts: Optional[torch.Tensor] = None,
|
|
36
|
+
skip_logits: Optional[bool] = None,
|
|
37
|
+
**kwargs,
|
|
38
|
+
) -> Union[Tuple, LigerQwen3VLMoeCausalLMOutputWithPast]:
|
|
39
|
+
"""
|
|
40
|
+
Qwen3-VL-MoE forward with fused linear cross entropy support mirroring Qwen3-VL behaviour.
|
|
41
|
+
"""
|
|
42
|
+
|
|
43
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
44
|
+
output_hidden_states = (
|
|
45
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
46
|
+
)
|
|
47
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
48
|
+
|
|
49
|
+
outputs = self.model(
|
|
50
|
+
input_ids=input_ids,
|
|
51
|
+
pixel_values=pixel_values,
|
|
52
|
+
pixel_values_videos=pixel_values_videos,
|
|
53
|
+
image_grid_thw=image_grid_thw,
|
|
54
|
+
video_grid_thw=video_grid_thw,
|
|
55
|
+
second_per_grid_ts=second_per_grid_ts,
|
|
56
|
+
position_ids=position_ids,
|
|
57
|
+
attention_mask=attention_mask,
|
|
58
|
+
past_key_values=past_key_values,
|
|
59
|
+
inputs_embeds=inputs_embeds,
|
|
60
|
+
use_cache=use_cache,
|
|
61
|
+
output_attentions=output_attentions,
|
|
62
|
+
output_hidden_states=output_hidden_states,
|
|
63
|
+
return_dict=return_dict,
|
|
64
|
+
cache_position=cache_position,
|
|
65
|
+
**kwargs,
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
hidden_states = outputs[0]
|
|
69
|
+
|
|
70
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
71
|
+
loss = None
|
|
72
|
+
logits = None
|
|
73
|
+
token_accuracy = None
|
|
74
|
+
|
|
75
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
76
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
77
|
+
|
|
78
|
+
if skip_logits is None:
|
|
79
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
80
|
+
|
|
81
|
+
if skip_logits:
|
|
82
|
+
result = LigerForCausalLMLoss(
|
|
83
|
+
hidden_states=hidden_states,
|
|
84
|
+
lm_head_weight=self.lm_head.weight,
|
|
85
|
+
labels=labels,
|
|
86
|
+
shift_labels=shift_labels,
|
|
87
|
+
hidden_size=self.config.text_config.hidden_size,
|
|
88
|
+
**kwargs,
|
|
89
|
+
)
|
|
90
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
91
|
+
else:
|
|
92
|
+
logits = self.lm_head(hidden_states)
|
|
93
|
+
|
|
94
|
+
if labels is not None:
|
|
95
|
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size)
|
|
96
|
+
|
|
97
|
+
# Compute auxiliary load-balancing loss for MoE when requested
|
|
98
|
+
aux_loss = None
|
|
99
|
+
if kwargs.get("output_router_logits", False):
|
|
100
|
+
aux_loss = load_balancing_loss_func(
|
|
101
|
+
outputs.router_logits,
|
|
102
|
+
self.config.text_config.num_experts,
|
|
103
|
+
self.config.text_config.num_experts_per_tok,
|
|
104
|
+
attention_mask,
|
|
105
|
+
)
|
|
106
|
+
# If we computed training loss, add the scaled aux loss to it
|
|
107
|
+
if loss is not None and aux_loss is not None:
|
|
108
|
+
loss = loss + self.config.text_config.router_aux_loss_coef * aux_loss.to(loss.device)
|
|
109
|
+
|
|
110
|
+
if not return_dict:
|
|
111
|
+
output = (logits,) + outputs[1:]
|
|
112
|
+
output = (loss,) + output if loss is not None else output
|
|
113
|
+
output = output + (aux_loss,) if aux_loss is not None else output
|
|
114
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
115
|
+
return output
|
|
116
|
+
|
|
117
|
+
return LigerQwen3VLMoeCausalLMOutputWithPast(
|
|
118
|
+
loss=loss,
|
|
119
|
+
logits=logits,
|
|
120
|
+
past_key_values=outputs.past_key_values,
|
|
121
|
+
hidden_states=outputs.hidden_states,
|
|
122
|
+
attentions=outputs.attentions,
|
|
123
|
+
rope_deltas=outputs.rope_deltas,
|
|
124
|
+
aux_loss=aux_loss,
|
|
125
|
+
token_accuracy=token_accuracy,
|
|
126
|
+
)
|