liger-kernel 0.5.5__py3-none-any.whl → 0.5.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/functional.py +2 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +17 -2
- liger_kernel/chunked_loss/fused_linear_ppo.py +331 -0
- liger_kernel/chunked_loss/grpo_loss.py +103 -61
- liger_kernel/chunked_loss/jsd_loss.py +12 -7
- liger_kernel/ops/cross_entropy.py +3 -2
- liger_kernel/ops/dyt.py +225 -0
- liger_kernel/ops/fused_linear_jsd.py +2 -1
- liger_kernel/ops/jsd.py +30 -11
- liger_kernel/ops/kl_div.py +2 -2
- liger_kernel/transformers/__init__.py +3 -0
- liger_kernel/transformers/dyt.py +20 -0
- liger_kernel/transformers/functional.py +5 -0
- liger_kernel/transformers/model/gemma.py +8 -16
- liger_kernel/transformers/model/gemma2.py +7 -16
- liger_kernel/transformers/model/llama.py +8 -15
- liger_kernel/transformers/model/llava.py +369 -0
- liger_kernel/transformers/model/loss_utils.py +57 -0
- liger_kernel/transformers/model/mistral.py +9 -10
- liger_kernel/transformers/model/mixtral.py +8 -15
- liger_kernel/transformers/model/mllama.py +8 -15
- liger_kernel/transformers/model/olmo2.py +8 -16
- liger_kernel/transformers/model/paligemma.py +397 -0
- liger_kernel/transformers/model/phi3.py +8 -15
- liger_kernel/transformers/model/qwen2.py +8 -15
- liger_kernel/transformers/model/qwen2_5_vl.py +9 -10
- liger_kernel/transformers/model/qwen2_vl.py +9 -10
- liger_kernel/transformers/monkey_patch.py +219 -13
- {liger_kernel-0.5.5.dist-info → liger_kernel-0.5.6.dist-info}/METADATA +9 -6
- {liger_kernel-0.5.5.dist-info → liger_kernel-0.5.6.dist-info}/RECORD +34 -29
- {liger_kernel-0.5.5.dist-info → liger_kernel-0.5.6.dist-info}/WHEEL +1 -1
- liger_kernel/chunked_loss/fused_linear_rlhf.py +0 -240
- {liger_kernel-0.5.5.dist-info → liger_kernel-0.5.6.dist-info/licenses}/LICENSE +0 -0
- {liger_kernel-0.5.5.dist-info → liger_kernel-0.5.6.dist-info/licenses}/NOTICE +0 -0
- {liger_kernel-0.5.5.dist-info → liger_kernel-0.5.6.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,397 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from torch.nn import CrossEntropyLoss
|
|
9
|
+
from transformers.cache_utils import Cache
|
|
10
|
+
from transformers.models.paligemma.modeling_paligemma import _CONFIG_FOR_DOC
|
|
11
|
+
from transformers.models.paligemma.modeling_paligemma import PALIGEMMA_INPUTS_DOCSTRING
|
|
12
|
+
from transformers.models.paligemma.modeling_paligemma import PaliGemmaCausalLMOutputWithPast
|
|
13
|
+
from transformers.utils import add_start_docstrings_to_model_forward
|
|
14
|
+
from transformers.utils import is_torchdynamo_compiling
|
|
15
|
+
from transformers.utils import logging
|
|
16
|
+
from transformers.utils import replace_return_docstrings
|
|
17
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
|
18
|
+
|
|
19
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
20
|
+
|
|
21
|
+
logger = logging.get_logger(__name__)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
@add_start_docstrings_to_model_forward(PALIGEMMA_INPUTS_DOCSTRING)
|
|
25
|
+
@replace_return_docstrings(output_type=PaliGemmaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
26
|
+
def lce_forward_deprecated(
|
|
27
|
+
self,
|
|
28
|
+
input_ids: torch.LongTensor = None,
|
|
29
|
+
pixel_values: torch.FloatTensor = None,
|
|
30
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
31
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
32
|
+
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
|
|
33
|
+
token_type_ids: Optional[torch.LongTensor] = None,
|
|
34
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
35
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
36
|
+
labels: Optional[torch.LongTensor] = None,
|
|
37
|
+
use_cache: Optional[bool] = None,
|
|
38
|
+
output_attentions: Optional[bool] = None,
|
|
39
|
+
output_hidden_states: Optional[bool] = None,
|
|
40
|
+
return_dict: Optional[bool] = None,
|
|
41
|
+
) -> Union[Tuple, PaliGemmaCausalLMOutputWithPast]:
|
|
42
|
+
r"""
|
|
43
|
+
Args:
|
|
44
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
45
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
46
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
47
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
48
|
+
|
|
49
|
+
Returns:
|
|
50
|
+
|
|
51
|
+
Example:
|
|
52
|
+
|
|
53
|
+
```python
|
|
54
|
+
>>> from PIL import Image
|
|
55
|
+
>>> import requests
|
|
56
|
+
>>> from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
|
57
|
+
|
|
58
|
+
>>> model = PaliGemmaForConditionalGeneration.from_pretrained("google/PaliGemma-test-224px-hf")
|
|
59
|
+
>>> processor = AutoProcessor.from_pretrained("google/PaliGemma-test-224px-hf")
|
|
60
|
+
|
|
61
|
+
>>> prompt = "answer en Where is the cow standing?"
|
|
62
|
+
>>> url = "https://huggingface.co/gv-hf/PaliGemma-test-224px-hf/resolve/main/cow_beach_1.png"
|
|
63
|
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
64
|
+
|
|
65
|
+
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
|
|
66
|
+
|
|
67
|
+
>>> # Generate
|
|
68
|
+
>>> generate_ids = model.generate(**inputs, max_length=30)
|
|
69
|
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
70
|
+
"answer en Where is the cow standing?\nbeach"
|
|
71
|
+
```"""
|
|
72
|
+
|
|
73
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
74
|
+
raise ValueError(
|
|
75
|
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
79
|
+
output_hidden_states = (
|
|
80
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
81
|
+
)
|
|
82
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
83
|
+
|
|
84
|
+
# the attention mask is turned 4d after, we keep track of the original one
|
|
85
|
+
input_attention_mask = attention_mask
|
|
86
|
+
|
|
87
|
+
if inputs_embeds is None:
|
|
88
|
+
# 1. Extra the input embeddings
|
|
89
|
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
|
90
|
+
|
|
91
|
+
# 2. Merge text and images
|
|
92
|
+
if pixel_values is not None and input_ids.shape[1] != 1:
|
|
93
|
+
image_outputs = self.vision_tower(pixel_values.to(inputs_embeds.dtype))
|
|
94
|
+
selected_image_feature = image_outputs.last_hidden_state
|
|
95
|
+
image_features = self.multi_modal_projector(selected_image_feature)
|
|
96
|
+
|
|
97
|
+
if cache_position is None:
|
|
98
|
+
cache_position = torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device)
|
|
99
|
+
inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
|
|
100
|
+
image_features, inputs_embeds, input_ids, attention_mask, labels, token_type_ids, cache_position
|
|
101
|
+
)
|
|
102
|
+
|
|
103
|
+
else:
|
|
104
|
+
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
|
|
105
|
+
# generation with cache
|
|
106
|
+
if past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
|
|
107
|
+
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
|
108
|
+
# that are set to 0
|
|
109
|
+
# TODO @molbap this will only work for dynamic cache.
|
|
110
|
+
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
|
111
|
+
|
|
112
|
+
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
|
113
|
+
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
|
|
114
|
+
|
|
115
|
+
# Get the target length
|
|
116
|
+
target_seqlen = cache_position[-1] + 1
|
|
117
|
+
extended_attention_mask = torch.ones(
|
|
118
|
+
(attention_mask.shape[0], target_seqlen - attention_mask.shape[1] + 1),
|
|
119
|
+
dtype=attention_mask.dtype,
|
|
120
|
+
device=attention_mask.device,
|
|
121
|
+
)
|
|
122
|
+
# Filter out only the tokens that can be un-attended, this can happen
|
|
123
|
+
# if one uses PaliGemma+ Fused modules where the cache on the
|
|
124
|
+
# first iteration is already big enough, or if one passes custom cache
|
|
125
|
+
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
|
|
126
|
+
new_batch_index = batch_index[valid_indices]
|
|
127
|
+
new_non_attended_tokens = non_attended_tokens[valid_indices]
|
|
128
|
+
|
|
129
|
+
# Zero-out the places where we don't need to attend
|
|
130
|
+
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
|
|
131
|
+
|
|
132
|
+
attention_mask = torch.cat((attention_mask, extended_attention_mask), dim=1)
|
|
133
|
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
|
134
|
+
|
|
135
|
+
attention_mask = attention_mask.to(inputs_embeds.dtype)
|
|
136
|
+
outputs = self.language_model.model(
|
|
137
|
+
attention_mask=attention_mask,
|
|
138
|
+
position_ids=position_ids,
|
|
139
|
+
past_key_values=past_key_values,
|
|
140
|
+
inputs_embeds=inputs_embeds,
|
|
141
|
+
use_cache=use_cache,
|
|
142
|
+
output_attentions=output_attentions,
|
|
143
|
+
output_hidden_states=output_hidden_states,
|
|
144
|
+
return_dict=return_dict,
|
|
145
|
+
cache_position=cache_position,
|
|
146
|
+
)
|
|
147
|
+
|
|
148
|
+
hidden_states = outputs[0]
|
|
149
|
+
|
|
150
|
+
loss = None
|
|
151
|
+
logits = None
|
|
152
|
+
|
|
153
|
+
if self.training and (labels is not None):
|
|
154
|
+
shift_hidden_states = hidden_states[..., :-1, :]
|
|
155
|
+
shift_labels = labels[..., 1:]
|
|
156
|
+
|
|
157
|
+
hidden_device = shift_hidden_states.device
|
|
158
|
+
|
|
159
|
+
if attention_mask is not None:
|
|
160
|
+
# we use the input attention mask to shift the hidden_states and labels, because it is 2D.
|
|
161
|
+
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
|
162
|
+
shift_attention_mask = attention_mask[:, -shift_hidden_states.shape[1] :].to(hidden_device)
|
|
163
|
+
shift_hidden_states = shift_hidden_states[shift_attention_mask.to(hidden_device) != 0].contiguous()
|
|
164
|
+
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
|
|
165
|
+
else:
|
|
166
|
+
shift_hidden_states = shift_hidden_states.contiguous()
|
|
167
|
+
shift_labels = shift_labels.contiguous()
|
|
168
|
+
|
|
169
|
+
# Flatten hidden state
|
|
170
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.text_config.hidden_size)
|
|
171
|
+
shift_labels = shift_labels.view(-1).to(hidden_device)
|
|
172
|
+
|
|
173
|
+
lce = LigerFusedLinearCrossEntropyLoss()
|
|
174
|
+
loss = lce(self.language_model.lm_head.weight, shift_hidden_states, shift_labels)
|
|
175
|
+
|
|
176
|
+
else:
|
|
177
|
+
logits = self.language_model.lm_head(hidden_states)
|
|
178
|
+
if labels is not None:
|
|
179
|
+
shift_logits = logits[..., :-1, :]
|
|
180
|
+
shift_labels = labels[..., 1:]
|
|
181
|
+
if input_attention_mask is not None:
|
|
182
|
+
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
|
183
|
+
shift_attention_mask = input_attention_mask[..., 1:]
|
|
184
|
+
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
|
|
185
|
+
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
|
|
186
|
+
else:
|
|
187
|
+
shift_logits = shift_logits.contiguous()
|
|
188
|
+
shift_labels = shift_labels.contiguous()
|
|
189
|
+
# Flatten the tokens
|
|
190
|
+
loss_fct = CrossEntropyLoss()
|
|
191
|
+
|
|
192
|
+
flat_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
193
|
+
flat_labels = shift_labels.view(-1).to(shift_logits.device)
|
|
194
|
+
loss = loss_fct(flat_logits, flat_labels)
|
|
195
|
+
if not return_dict:
|
|
196
|
+
output = (logits,) + outputs[1:]
|
|
197
|
+
return (loss,) + output if loss is not None else output
|
|
198
|
+
|
|
199
|
+
return PaliGemmaCausalLMOutputWithPast(
|
|
200
|
+
loss=loss,
|
|
201
|
+
logits=logits,
|
|
202
|
+
past_key_values=outputs.past_key_values,
|
|
203
|
+
hidden_states=outputs.hidden_states,
|
|
204
|
+
attentions=outputs.attentions,
|
|
205
|
+
)
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
209
|
+
@add_start_docstrings_to_model_forward(PALIGEMMA_INPUTS_DOCSTRING)
|
|
210
|
+
@replace_return_docstrings(output_type=PaliGemmaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
211
|
+
def lce_forward(
|
|
212
|
+
self,
|
|
213
|
+
input_ids: torch.LongTensor = None,
|
|
214
|
+
pixel_values: torch.FloatTensor = None,
|
|
215
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
216
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
217
|
+
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
|
|
218
|
+
token_type_ids: Optional[torch.LongTensor] = None,
|
|
219
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
220
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
221
|
+
labels: Optional[torch.LongTensor] = None,
|
|
222
|
+
use_cache: Optional[bool] = None,
|
|
223
|
+
output_attentions: Optional[bool] = None,
|
|
224
|
+
output_hidden_states: Optional[bool] = None,
|
|
225
|
+
return_dict: Optional[bool] = None,
|
|
226
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
227
|
+
**lm_kwargs,
|
|
228
|
+
) -> Union[Tuple, PaliGemmaCausalLMOutputWithPast]:
|
|
229
|
+
r"""
|
|
230
|
+
Args:
|
|
231
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
232
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
233
|
+
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
234
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
|
|
235
|
+
|
|
236
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
237
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
238
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
239
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
240
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
241
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
242
|
+
|
|
243
|
+
Returns:
|
|
244
|
+
|
|
245
|
+
Example:
|
|
246
|
+
|
|
247
|
+
```python
|
|
248
|
+
>>> from PIL import Image
|
|
249
|
+
>>> import requests
|
|
250
|
+
>>> from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
|
251
|
+
|
|
252
|
+
>>> model = PaliGemmaForConditionalGeneration.from_pretrained("google/PaliGemma-test-224px-hf")
|
|
253
|
+
>>> processor = AutoProcessor.from_pretrained("google/PaliGemma-test-224px-hf")
|
|
254
|
+
|
|
255
|
+
>>> prompt = "answer en Where is the cow standing?"
|
|
256
|
+
>>> url = "https://huggingface.co/gv-hf/PaliGemma-test-224px-hf/resolve/main/cow_beach_1.png"
|
|
257
|
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
258
|
+
|
|
259
|
+
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
|
|
260
|
+
|
|
261
|
+
>>> # Generate
|
|
262
|
+
>>> generate_ids = model.generate(**inputs, max_length=30)
|
|
263
|
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
264
|
+
"answer en Where is the cow standing?\nbeach"
|
|
265
|
+
```"""
|
|
266
|
+
|
|
267
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
268
|
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
269
|
+
|
|
270
|
+
if pixel_values is not None and inputs_embeds is not None:
|
|
271
|
+
raise ValueError(
|
|
272
|
+
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
|
|
273
|
+
)
|
|
274
|
+
|
|
275
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
276
|
+
output_hidden_states = (
|
|
277
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
278
|
+
)
|
|
279
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
280
|
+
|
|
281
|
+
is_training = token_type_ids is not None and labels is not None
|
|
282
|
+
|
|
283
|
+
if inputs_embeds is None:
|
|
284
|
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
|
285
|
+
|
|
286
|
+
if cache_position is None:
|
|
287
|
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
288
|
+
cache_position = torch.arange(
|
|
289
|
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
290
|
+
)
|
|
291
|
+
|
|
292
|
+
if position_ids is None:
|
|
293
|
+
position_ids = cache_position.unsqueeze(0) + 1 # Paligemma positions are 1-indexed
|
|
294
|
+
|
|
295
|
+
# Merge text and images
|
|
296
|
+
if pixel_values is not None:
|
|
297
|
+
image_features = self.get_image_features(pixel_values)
|
|
298
|
+
|
|
299
|
+
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
|
|
300
|
+
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
|
301
|
+
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
|
|
302
|
+
image_tokens_in_text = torch.sum(input_ids == self.config.image_token_index)
|
|
303
|
+
raise ValueError(
|
|
304
|
+
f"Number of images does not match number of special image tokens in the input text. "
|
|
305
|
+
f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
|
|
306
|
+
"tokens from image embeddings."
|
|
307
|
+
)
|
|
308
|
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
|
309
|
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
|
310
|
+
|
|
311
|
+
# mask out pad-token-ids in labels for BC
|
|
312
|
+
if labels is not None and self.pad_token_id in labels:
|
|
313
|
+
logger.warning_once(
|
|
314
|
+
"`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. "
|
|
315
|
+
"You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.",
|
|
316
|
+
)
|
|
317
|
+
labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels)
|
|
318
|
+
|
|
319
|
+
causal_mask = self._update_causal_mask(
|
|
320
|
+
attention_mask, token_type_ids, past_key_values, cache_position, inputs_embeds, is_training
|
|
321
|
+
)
|
|
322
|
+
|
|
323
|
+
outputs = self.language_model.model(
|
|
324
|
+
attention_mask=causal_mask,
|
|
325
|
+
position_ids=position_ids,
|
|
326
|
+
past_key_values=past_key_values,
|
|
327
|
+
inputs_embeds=inputs_embeds,
|
|
328
|
+
use_cache=use_cache,
|
|
329
|
+
output_attentions=output_attentions,
|
|
330
|
+
output_hidden_states=output_hidden_states,
|
|
331
|
+
return_dict=return_dict,
|
|
332
|
+
cache_position=cache_position,
|
|
333
|
+
logits_to_keep=logits_to_keep,
|
|
334
|
+
**lm_kwargs,
|
|
335
|
+
)
|
|
336
|
+
|
|
337
|
+
hidden_states = outputs[0]
|
|
338
|
+
|
|
339
|
+
loss = None
|
|
340
|
+
logits = None
|
|
341
|
+
|
|
342
|
+
if self.training and (labels is not None):
|
|
343
|
+
shift_hidden_states = hidden_states[..., :-1, :]
|
|
344
|
+
shift_labels = labels[..., 1:]
|
|
345
|
+
|
|
346
|
+
hidden_device = shift_hidden_states.device
|
|
347
|
+
|
|
348
|
+
if attention_mask is not None:
|
|
349
|
+
# we use the input attention mask to shift the hidden_states and labels, because it is 2D.
|
|
350
|
+
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
|
351
|
+
shift_attention_mask = attention_mask[:, -shift_hidden_states.shape[1] :].to(hidden_device)
|
|
352
|
+
shift_hidden_states = shift_hidden_states[shift_attention_mask.to(hidden_device) != 0].contiguous()
|
|
353
|
+
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
|
|
354
|
+
else:
|
|
355
|
+
shift_hidden_states = shift_hidden_states.contiguous()
|
|
356
|
+
shift_labels = shift_labels.contiguous()
|
|
357
|
+
|
|
358
|
+
# Flatten hidden state
|
|
359
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.text_config.hidden_size)
|
|
360
|
+
shift_labels = shift_labels.view(-1).to(hidden_device)
|
|
361
|
+
|
|
362
|
+
lce = LigerFusedLinearCrossEntropyLoss()
|
|
363
|
+
loss = lce(self.language_model.lm_head.weight, shift_hidden_states, shift_labels)
|
|
364
|
+
else:
|
|
365
|
+
logits = self.language_model.lm_head(hidden_states)
|
|
366
|
+
if labels is not None:
|
|
367
|
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
|
368
|
+
logits = logits.float()
|
|
369
|
+
shift_logits = logits[..., :-1, :]
|
|
370
|
+
shift_labels = labels[..., 1:]
|
|
371
|
+
if attention_mask is not None:
|
|
372
|
+
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
|
373
|
+
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
|
374
|
+
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
|
|
375
|
+
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
|
|
376
|
+
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
|
|
377
|
+
else:
|
|
378
|
+
shift_logits = shift_logits.contiguous()
|
|
379
|
+
shift_labels = shift_labels.contiguous()
|
|
380
|
+
# Flatten the tokens
|
|
381
|
+
loss_fct = CrossEntropyLoss()
|
|
382
|
+
|
|
383
|
+
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
|
|
384
|
+
flat_labels = shift_labels.view(-1).to(shift_logits.device)
|
|
385
|
+
loss = loss_fct(flat_logits, flat_labels)
|
|
386
|
+
if not return_dict:
|
|
387
|
+
output = (logits,) + outputs[1:]
|
|
388
|
+
return (loss,) + output if loss is not None else output
|
|
389
|
+
|
|
390
|
+
return PaliGemmaCausalLMOutputWithPast(
|
|
391
|
+
loss=loss,
|
|
392
|
+
logits=logits,
|
|
393
|
+
past_key_values=outputs.past_key_values,
|
|
394
|
+
hidden_states=outputs.hidden_states,
|
|
395
|
+
attentions=outputs.attentions,
|
|
396
|
+
image_hidden_states=image_features if pixel_values is not None else None,
|
|
397
|
+
)
|
|
@@ -13,6 +13,7 @@ from transformers.utils import add_start_docstrings_to_model_forward
|
|
|
13
13
|
from transformers.utils import replace_return_docstrings
|
|
14
14
|
|
|
15
15
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
16
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
16
17
|
|
|
17
18
|
|
|
18
19
|
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
|
@@ -213,21 +214,13 @@ def lce_forward(
|
|
|
213
214
|
loss = None
|
|
214
215
|
# if in training mode, don't materialize logits
|
|
215
216
|
if self.training and (labels is not None):
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
shift_labels = shift_labels.view(-1)
|
|
224
|
-
|
|
225
|
-
reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
|
|
226
|
-
lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
|
|
227
|
-
|
|
228
|
-
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
229
|
-
if reduction == "sum":
|
|
230
|
-
loss /= loss_kwargs["num_items_in_batch"]
|
|
217
|
+
loss = LigerForCausalLMLoss(
|
|
218
|
+
hidden_states=hidden_states,
|
|
219
|
+
lm_head_weight=self.lm_head.weight,
|
|
220
|
+
labels=labels,
|
|
221
|
+
hidden_size=self.config.hidden_size,
|
|
222
|
+
**loss_kwargs,
|
|
223
|
+
)
|
|
231
224
|
|
|
232
225
|
else: # if in inference mode materialize logits
|
|
233
226
|
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
|
@@ -13,6 +13,7 @@ from transformers.utils import add_start_docstrings_to_model_forward
|
|
|
13
13
|
from transformers.utils import replace_return_docstrings
|
|
14
14
|
|
|
15
15
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
16
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
16
17
|
|
|
17
18
|
|
|
18
19
|
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
|
@@ -199,21 +200,13 @@ def lce_forward(
|
|
|
199
200
|
loss = None
|
|
200
201
|
# if in training mode, don't materialize logits
|
|
201
202
|
if self.training and (labels is not None):
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
shift_labels = shift_labels.view(-1)
|
|
210
|
-
|
|
211
|
-
reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
|
|
212
|
-
lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
|
|
213
|
-
|
|
214
|
-
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
215
|
-
if reduction == "sum":
|
|
216
|
-
loss /= loss_kwargs["num_items_in_batch"]
|
|
203
|
+
loss = LigerForCausalLMLoss(
|
|
204
|
+
hidden_states=hidden_states,
|
|
205
|
+
lm_head_weight=self.lm_head.weight,
|
|
206
|
+
labels=labels,
|
|
207
|
+
hidden_size=self.config.hidden_size,
|
|
208
|
+
**loss_kwargs,
|
|
209
|
+
)
|
|
217
210
|
|
|
218
211
|
else: # if in inference mode materialize logits
|
|
219
212
|
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
|
@@ -12,7 +12,7 @@ from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import Qwen2_5_VLCausalL
|
|
|
12
12
|
from transformers.utils import add_start_docstrings_to_model_forward
|
|
13
13
|
from transformers.utils import replace_return_docstrings
|
|
14
14
|
|
|
15
|
-
from liger_kernel.transformers.
|
|
15
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
16
16
|
|
|
17
17
|
|
|
18
18
|
@add_start_docstrings_to_model_forward(QWEN2_5_VL_INPUTS_DOCSTRING)
|
|
@@ -36,6 +36,7 @@ def lce_forward(
|
|
|
36
36
|
rope_deltas: Optional[torch.LongTensor] = None,
|
|
37
37
|
cache_position: Optional[torch.LongTensor] = None,
|
|
38
38
|
second_per_grid_ts: Optional[torch.Tensor] = None,
|
|
39
|
+
**loss_kwargs,
|
|
39
40
|
) -> Union[Tuple, Qwen2_5_VLCausalLMOutputWithPast]:
|
|
40
41
|
r"""
|
|
41
42
|
Copy paste Qwen2_5_VL's forward but replace torch cross entropy with liger fused linear cross entropy
|
|
@@ -166,15 +167,13 @@ def lce_forward(
|
|
|
166
167
|
logits = None
|
|
167
168
|
|
|
168
169
|
if self.training and (labels is not None):
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
lce = LigerFusedLinearCrossEntropyLoss()
|
|
177
|
-
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
170
|
+
loss = LigerForCausalLMLoss(
|
|
171
|
+
hidden_states=hidden_states,
|
|
172
|
+
lm_head_weight=self.lm_head.weight,
|
|
173
|
+
labels=labels,
|
|
174
|
+
hidden_size=self.config.hidden_size,
|
|
175
|
+
**loss_kwargs,
|
|
176
|
+
)
|
|
178
177
|
else:
|
|
179
178
|
logits = self.lm_head(hidden_states)
|
|
180
179
|
if labels is not None:
|
|
@@ -14,7 +14,7 @@ from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLCausalLMOutput
|
|
|
14
14
|
from transformers.utils import add_start_docstrings_to_model_forward
|
|
15
15
|
from transformers.utils import replace_return_docstrings
|
|
16
16
|
|
|
17
|
-
from liger_kernel.transformers.
|
|
17
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
18
18
|
|
|
19
19
|
|
|
20
20
|
@add_start_docstrings_to_model_forward(QWEN2_VL_INPUTS_DOCSTRING)
|
|
@@ -37,6 +37,7 @@ def lce_forward(
|
|
|
37
37
|
video_grid_thw: Optional[torch.LongTensor] = None,
|
|
38
38
|
rope_deltas: Optional[torch.LongTensor] = None,
|
|
39
39
|
cache_position: Optional[torch.LongTensor] = None,
|
|
40
|
+
**loss_kwargs,
|
|
40
41
|
) -> Union[Tuple, Qwen2VLCausalLMOutputWithPast]:
|
|
41
42
|
r"""
|
|
42
43
|
Copy paste Qwen2VL's forward but replace torch cross entropy with liger fused linear cross entropy
|
|
@@ -170,15 +171,13 @@ def lce_forward(
|
|
|
170
171
|
logits = None
|
|
171
172
|
|
|
172
173
|
if self.training and (labels is not None):
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
lce = LigerFusedLinearCrossEntropyLoss()
|
|
181
|
-
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
174
|
+
loss = LigerForCausalLMLoss(
|
|
175
|
+
hidden_states=hidden_states,
|
|
176
|
+
lm_head_weight=self.lm_head.weight,
|
|
177
|
+
labels=labels,
|
|
178
|
+
hidden_size=self.config.hidden_size,
|
|
179
|
+
**loss_kwargs,
|
|
180
|
+
)
|
|
182
181
|
else:
|
|
183
182
|
logits = self.lm_head(hidden_states)
|
|
184
183
|
if labels is not None:
|