liger-kernel 0.5.5__py3-none-any.whl → 0.5.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. liger_kernel/chunked_loss/functional.py +2 -0
  2. liger_kernel/chunked_loss/fused_linear_distillation.py +17 -2
  3. liger_kernel/chunked_loss/fused_linear_ppo.py +331 -0
  4. liger_kernel/chunked_loss/grpo_loss.py +103 -61
  5. liger_kernel/chunked_loss/jsd_loss.py +12 -7
  6. liger_kernel/ops/cross_entropy.py +3 -2
  7. liger_kernel/ops/dyt.py +225 -0
  8. liger_kernel/ops/fused_linear_jsd.py +2 -1
  9. liger_kernel/ops/jsd.py +30 -11
  10. liger_kernel/ops/kl_div.py +2 -2
  11. liger_kernel/transformers/__init__.py +3 -0
  12. liger_kernel/transformers/dyt.py +20 -0
  13. liger_kernel/transformers/functional.py +5 -0
  14. liger_kernel/transformers/model/gemma.py +8 -16
  15. liger_kernel/transformers/model/gemma2.py +7 -16
  16. liger_kernel/transformers/model/llama.py +8 -15
  17. liger_kernel/transformers/model/llava.py +369 -0
  18. liger_kernel/transformers/model/loss_utils.py +57 -0
  19. liger_kernel/transformers/model/mistral.py +9 -10
  20. liger_kernel/transformers/model/mixtral.py +8 -15
  21. liger_kernel/transformers/model/mllama.py +8 -15
  22. liger_kernel/transformers/model/olmo2.py +8 -16
  23. liger_kernel/transformers/model/paligemma.py +397 -0
  24. liger_kernel/transformers/model/phi3.py +8 -15
  25. liger_kernel/transformers/model/qwen2.py +8 -15
  26. liger_kernel/transformers/model/qwen2_5_vl.py +9 -10
  27. liger_kernel/transformers/model/qwen2_vl.py +9 -10
  28. liger_kernel/transformers/monkey_patch.py +219 -13
  29. {liger_kernel-0.5.5.dist-info → liger_kernel-0.5.6.dist-info}/METADATA +9 -6
  30. {liger_kernel-0.5.5.dist-info → liger_kernel-0.5.6.dist-info}/RECORD +34 -29
  31. {liger_kernel-0.5.5.dist-info → liger_kernel-0.5.6.dist-info}/WHEEL +1 -1
  32. liger_kernel/chunked_loss/fused_linear_rlhf.py +0 -240
  33. {liger_kernel-0.5.5.dist-info → liger_kernel-0.5.6.dist-info/licenses}/LICENSE +0 -0
  34. {liger_kernel-0.5.5.dist-info → liger_kernel-0.5.6.dist-info/licenses}/NOTICE +0 -0
  35. {liger_kernel-0.5.5.dist-info → liger_kernel-0.5.6.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,369 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.models.llava.modeling_llava import _CONFIG_FOR_DOC
9
+ from transformers.models.llava.modeling_llava import LLAVA_INPUTS_DOCSTRING
10
+ from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast
11
+ from transformers.utils import add_start_docstrings_to_model_forward
12
+ from transformers.utils import is_torchdynamo_compiling
13
+ from transformers.utils import replace_return_docstrings
14
+ from transformers.utils.deprecation import deprecate_kwarg
15
+
16
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
17
+
18
+
19
+ @add_start_docstrings_to_model_forward(LLAVA_INPUTS_DOCSTRING)
20
+ @replace_return_docstrings(output_type=LlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
21
+ def lce_forward_deprecated(
22
+ self,
23
+ input_ids: torch.LongTensor = None,
24
+ pixel_values: torch.FloatTensor = None,
25
+ attention_mask: Optional[torch.Tensor] = None,
26
+ position_ids: Optional[torch.LongTensor] = None,
27
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
28
+ inputs_embeds: Optional[torch.FloatTensor] = None,
29
+ vision_feature_layer: Optional[int] = None,
30
+ vision_feature_select_strategy: Optional[str] = None,
31
+ labels: Optional[torch.LongTensor] = None,
32
+ use_cache: Optional[bool] = None,
33
+ output_attentions: Optional[bool] = None,
34
+ output_hidden_states: Optional[bool] = None,
35
+ return_dict: Optional[bool] = None,
36
+ ) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
37
+ r"""
38
+ Args:
39
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
40
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
41
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
42
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
43
+
44
+ num_logits_to_keep (`int`, *optional*):
45
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
46
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
47
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
48
+
49
+
50
+ Returns:
51
+
52
+ Example:
53
+
54
+ ```python
55
+ >>> from PIL import Image
56
+ >>> import requests
57
+ >>> from transformers import AutoProcessor, LlavaForConditionalGeneration
58
+
59
+ >>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf")
60
+ >>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
61
+
62
+ >>> prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:"
63
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
64
+ >>> image = Image.open(requests.get(url, stream=True).raw)
65
+
66
+ >>> inputs = processor(images=image, text=prompt, return_tensors="pt")
67
+
68
+ >>> # Generate
69
+ >>> generate_ids = model.generate(**inputs, max_new_tokens=15)
70
+ >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
71
+ "USER: \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed"
72
+ ```"""
73
+
74
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
75
+ output_hidden_states = (
76
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
77
+ )
78
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
79
+ vision_feature_layer = (
80
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
81
+ )
82
+ vision_feature_select_strategy = (
83
+ vision_feature_select_strategy
84
+ if vision_feature_select_strategy is not None
85
+ else self.config.vision_feature_select_strategy
86
+ )
87
+
88
+ if (input_ids is None) ^ (inputs_embeds is not None):
89
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
90
+
91
+ if pixel_values is not None and inputs_embeds is not None:
92
+ raise ValueError(
93
+ "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
94
+ )
95
+
96
+ if inputs_embeds is None:
97
+ # 1. Extra the input embeddings
98
+ inputs_embeds = self.get_input_embeddings()(input_ids)
99
+
100
+ # 2. Merge text and images
101
+ if pixel_values is not None and input_ids.shape[1] != 1:
102
+ image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
103
+ # this is not memory efficient at all (output_hidden_states=True) will save all the hidden stated.
104
+ selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
105
+
106
+ if vision_feature_select_strategy == "default":
107
+ selected_image_feature = selected_image_feature[:, 1:]
108
+ elif vision_feature_select_strategy == "full":
109
+ selected_image_feature = selected_image_feature
110
+ else:
111
+ raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
112
+
113
+ image_features = self.multi_modal_projector(selected_image_feature)
114
+ inputs_embeds = inputs_embeds.to(image_features.dtype)
115
+ inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
116
+ image_features, inputs_embeds, input_ids, attention_mask, labels
117
+ )
118
+
119
+ # In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
120
+ # generation with cache
121
+ elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
122
+ # Retrieve the first layer to inspect the logits and mask out the hidden states
123
+ # that are set to 0
124
+ first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
125
+
126
+ # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
127
+ batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
128
+
129
+ # Get the target length
130
+ target_length = input_ids.shape[1]
131
+ past_length = first_layer_past_key_value.shape[-1]
132
+
133
+ extended_attention_mask = torch.ones(
134
+ (attention_mask.shape[0], past_length),
135
+ dtype=attention_mask.dtype,
136
+ device=attention_mask.device,
137
+ )
138
+
139
+ # Filter out only the tokens that can be un-attended, this can happen
140
+ # if one uses Llava + Fused modules where the cache on the
141
+ # first iteration is already big enough, or if one passes custom cache
142
+ valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
143
+ new_batch_index = batch_index[valid_indices]
144
+ new_non_attended_tokens = non_attended_tokens[valid_indices]
145
+
146
+ # Zero-out the places where we don't need to attend
147
+ extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
148
+
149
+ attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
150
+ position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
151
+
152
+ # TODO: @raushan retain only the new behavior after v4.47
153
+ elif image_features is not None:
154
+ n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
155
+ n_image_features = image_features.shape[0] * image_features.shape[1]
156
+
157
+ if n_image_tokens != n_image_features:
158
+ raise ValueError(
159
+ f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
160
+ )
161
+ special_image_mask = (
162
+ (input_ids == self.config.image_token_index).unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
163
+ )
164
+ image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
165
+ inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
166
+
167
+ outputs = self.language_model.model(
168
+ attention_mask=attention_mask,
169
+ position_ids=position_ids,
170
+ past_key_values=past_key_values,
171
+ inputs_embeds=inputs_embeds,
172
+ use_cache=use_cache,
173
+ output_attentions=output_attentions,
174
+ output_hidden_states=output_hidden_states,
175
+ return_dict=return_dict,
176
+ )
177
+ hidden_states = outputs[0]
178
+
179
+ loss = None
180
+ logits = None
181
+
182
+ if self.training and (labels is not None):
183
+ # Shift so that tokens < n predict n
184
+ if attention_mask is not None:
185
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
186
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
187
+ shift_attention_mask = attention_mask[:, -(hidden_states.shape[1] - 1) :].to(hidden_states.device)
188
+ shift_hidden_states = hidden_states[..., :-1, :][
189
+ shift_attention_mask.to(hidden_states.device) != 0
190
+ ].contiguous()
191
+ shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
192
+ else:
193
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
194
+ shift_labels = labels[..., 1:].contiguous()
195
+
196
+ lce = LigerFusedLinearCrossEntropyLoss()
197
+ loss = lce(self.language_model.lm_head.weight, shift_hidden_states, shift_labels)
198
+
199
+ if not return_dict:
200
+ # NOTE: This part has not been tested.
201
+ output = outputs[1:]
202
+ return (loss,) + output if loss is not None else output
203
+
204
+ return LlavaCausalLMOutputWithPast(
205
+ loss=loss,
206
+ logits=logits,
207
+ past_key_values=outputs.past_key_values,
208
+ hidden_states=outputs.hidden_states,
209
+ attentions=outputs.attentions,
210
+ )
211
+
212
+
213
+ @add_start_docstrings_to_model_forward(LLAVA_INPUTS_DOCSTRING)
214
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
215
+ @replace_return_docstrings(output_type=LlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
216
+ def lce_forward(
217
+ self,
218
+ input_ids: torch.LongTensor = None,
219
+ pixel_values: torch.FloatTensor = None,
220
+ attention_mask: Optional[torch.Tensor] = None,
221
+ position_ids: Optional[torch.LongTensor] = None,
222
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
223
+ inputs_embeds: Optional[torch.FloatTensor] = None,
224
+ vision_feature_layer: Optional[int] = None,
225
+ vision_feature_select_strategy: Optional[str] = None,
226
+ labels: Optional[torch.LongTensor] = None,
227
+ use_cache: Optional[bool] = None,
228
+ output_attentions: Optional[bool] = None,
229
+ output_hidden_states: Optional[bool] = None,
230
+ return_dict: Optional[bool] = None,
231
+ cache_position: Optional[torch.LongTensor] = None,
232
+ logits_to_keep: Union[int, torch.Tensor] = 0,
233
+ image_sizes: torch.Tensor = None,
234
+ **lm_kwargs,
235
+ ) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
236
+ r"""
237
+ Args:
238
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
239
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
240
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
241
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
242
+
243
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
244
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
245
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
246
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
247
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
248
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
249
+
250
+
251
+ Returns:
252
+
253
+ Example:
254
+
255
+ ```python
256
+ >>> from PIL import Image
257
+ >>> import requests
258
+ >>> from transformers import AutoProcessor, LlavaForConditionalGeneration
259
+
260
+ >>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf")
261
+ >>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
262
+
263
+ >>> prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:"
264
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
265
+ >>> image = Image.open(requests.get(url, stream=True).raw)
266
+
267
+ >>> inputs = processor(images=image, text=prompt, return_tensors="pt")
268
+
269
+ >>> # Generate
270
+ >>> generate_ids = model.generate(**inputs, max_new_tokens=15)
271
+ >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
272
+ "USER: \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed"
273
+ ```"""
274
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
275
+ output_hidden_states = (
276
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
277
+ )
278
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
279
+ vision_feature_layer = (
280
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
281
+ )
282
+ vision_feature_select_strategy = (
283
+ vision_feature_select_strategy
284
+ if vision_feature_select_strategy is not None
285
+ else self.config.vision_feature_select_strategy
286
+ )
287
+
288
+ if (input_ids is None) ^ (inputs_embeds is not None):
289
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
290
+
291
+ if pixel_values is not None and inputs_embeds is not None:
292
+ raise ValueError(
293
+ "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
294
+ )
295
+
296
+ if inputs_embeds is None:
297
+ inputs_embeds = self.get_input_embeddings()(input_ids)
298
+
299
+ if pixel_values is not None:
300
+ image_features = self.get_image_features(
301
+ pixel_values=pixel_values,
302
+ vision_feature_layer=vision_feature_layer,
303
+ vision_feature_select_strategy=vision_feature_select_strategy,
304
+ image_sizes=image_sizes,
305
+ )
306
+
307
+ special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
308
+ special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
309
+ if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
310
+ n_image_tokens = (input_ids == self.config.image_token_index).sum()
311
+ n_image_features = image_features.shape[0] * image_features.shape[1]
312
+ raise ValueError(
313
+ f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
314
+ )
315
+ image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
316
+ inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
317
+
318
+ outputs = self.language_model.model(
319
+ attention_mask=attention_mask,
320
+ position_ids=position_ids,
321
+ past_key_values=past_key_values,
322
+ inputs_embeds=inputs_embeds,
323
+ use_cache=use_cache,
324
+ output_attentions=output_attentions,
325
+ output_hidden_states=output_hidden_states,
326
+ return_dict=return_dict,
327
+ cache_position=cache_position,
328
+ logits_to_keep=logits_to_keep,
329
+ **lm_kwargs,
330
+ )
331
+ hidden_states = outputs[0]
332
+
333
+ loss = None
334
+ logits = None
335
+
336
+ if self.training and (labels is not None):
337
+ # Shift so that tokens < n predict n
338
+ if attention_mask is not None:
339
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
340
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
341
+ shift_attention_mask = attention_mask[:, -(hidden_states.shape[1] - 1) :].to(hidden_states.device)
342
+ shift_hidden_states = hidden_states[..., :-1, :][
343
+ shift_attention_mask.to(hidden_states.device) != 0
344
+ ].contiguous()
345
+ shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
346
+ else:
347
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
348
+ shift_labels = labels[..., 1:].contiguous()
349
+
350
+ lce = LigerFusedLinearCrossEntropyLoss()
351
+ loss = lce(
352
+ self.language_model.lm_head.weight,
353
+ shift_hidden_states.view(-1, shift_hidden_states.size(-1)),
354
+ shift_labels.view(-1).to(shift_hidden_states.device),
355
+ )
356
+
357
+ if not return_dict:
358
+ # NOTE: This part has not been tested.
359
+ output = outputs[1:]
360
+ return (loss,) + output if loss is not None else output
361
+
362
+ return LlavaCausalLMOutputWithPast(
363
+ loss=loss,
364
+ logits=logits,
365
+ past_key_values=outputs.past_key_values,
366
+ hidden_states=outputs.hidden_states,
367
+ attentions=outputs.attentions,
368
+ image_hidden_states=image_features if pixel_values is not None else None,
369
+ )
@@ -0,0 +1,57 @@
1
+ import torch.nn as nn
2
+
3
+ import liger_kernel.transformers.functional as F
4
+
5
+
6
+ def fixed_fused_linear_cross_entropy(
7
+ hidden_states,
8
+ lm_head_weight,
9
+ target,
10
+ num_items_in_batch: int = None,
11
+ ignore_index: int = -100,
12
+ **kwargs,
13
+ ):
14
+ reduction = "sum" if num_items_in_batch is not None else "mean"
15
+ loss = F.liger_fused_linear_cross_entropy(
16
+ hidden_states,
17
+ lm_head_weight,
18
+ target,
19
+ reduction=reduction,
20
+ ignore_index=ignore_index,
21
+ **kwargs,
22
+ )
23
+ if reduction == "sum":
24
+ loss = loss / num_items_in_batch
25
+
26
+ return loss
27
+
28
+
29
+ def LigerForCausalLMLoss(
30
+ hidden_states,
31
+ lm_head_weight,
32
+ labels,
33
+ hidden_size: int,
34
+ num_items_in_batch: int = None,
35
+ ignore_index: int = -100,
36
+ **kwargs,
37
+ ):
38
+ # Skip upcast since intermediate values for the loss are all fp32 in kernel
39
+ labels = labels.to(hidden_states.device)
40
+ # Shift so that token < n predict n
41
+ labels = nn.functional.pad(labels, (0, 1), value=ignore_index)
42
+ shift_labels = labels[..., 1:].contiguous()
43
+
44
+ # Flatten the tokens
45
+ hidden_states = hidden_states.view(-1, hidden_size)
46
+ shift_labels = shift_labels.view(-1)
47
+ # Enable model parallelism
48
+ shift_labels = shift_labels.to(hidden_states.device)
49
+ loss = fixed_fused_linear_cross_entropy(
50
+ hidden_states,
51
+ lm_head_weight,
52
+ shift_labels,
53
+ num_items_in_batch,
54
+ ignore_index,
55
+ **kwargs,
56
+ )
57
+ return loss
@@ -13,7 +13,7 @@ from transformers.models.mistral.modeling_mistral import MISTRAL_INPUTS_DOCSTRIN
13
13
  from transformers.utils import add_start_docstrings_to_model_forward
14
14
  from transformers.utils import replace_return_docstrings
15
15
 
16
- from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
16
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
17
17
 
18
18
 
19
19
  @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
@@ -31,6 +31,7 @@ def lce_forward(
31
31
  output_hidden_states: Optional[bool] = None,
32
32
  return_dict: Optional[bool] = None,
33
33
  cache_position: Optional[torch.LongTensor] = None,
34
+ **loss_kwargs,
34
35
  ) -> Union[Tuple, CausalLMOutputWithPast]:
35
36
  r"""
36
37
  Copy paste Mistral's forward but replace torch cross entropy with liger fused linear cross entropy
@@ -87,15 +88,13 @@ def lce_forward(
87
88
  logits = None
88
89
 
89
90
  if self.training and (labels is not None):
90
- shift_hidden_states = hidden_states[..., :-1, :].contiguous()
91
- shift_labels = labels[..., 1:].contiguous()
92
-
93
- # flatten tokens
94
- shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
95
- shift_labels = shift_labels.view(-1)
96
-
97
- lce = LigerFusedLinearCrossEntropyLoss()
98
- loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
91
+ loss = LigerForCausalLMLoss(
92
+ hidden_states=hidden_states,
93
+ lm_head_weight=self.lm_head.weight,
94
+ labels=labels,
95
+ hidden_size=self.config.hidden_size,
96
+ **loss_kwargs,
97
+ )
99
98
 
100
99
  else:
101
100
  logits = self.lm_head(hidden_states)
@@ -14,6 +14,7 @@ from transformers.utils import add_start_docstrings_to_model_forward
14
14
  from transformers.utils import replace_return_docstrings
15
15
 
16
16
  from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
17
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
17
18
 
18
19
 
19
20
  @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
@@ -225,21 +226,13 @@ def lce_forward(
225
226
  loss = None
226
227
  # if in training mode, don't materialize logits
227
228
  if self.training and (labels is not None):
228
- # We do the same thing as ForCausalLMLoss but using Liger FLCE
229
-
230
- shift_hidden_states = hidden_states[..., :-1, :].contiguous()
231
- shift_labels = labels[..., 1:].contiguous()
232
-
233
- # flatten tokens
234
- shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
235
- shift_labels = shift_labels.view(-1)
236
-
237
- reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
238
- lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
239
-
240
- loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
241
- if reduction == "sum":
242
- loss /= loss_kwargs["num_items_in_batch"]
229
+ loss = LigerForCausalLMLoss(
230
+ hidden_states=hidden_states,
231
+ lm_head_weight=self.lm_head.weight,
232
+ labels=labels,
233
+ hidden_size=self.config.hidden_size,
234
+ **loss_kwargs,
235
+ )
243
236
 
244
237
  else: # if in inference mode materialize logits
245
238
  logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
@@ -13,6 +13,7 @@ from transformers.utils import add_start_docstrings_to_model_forward
13
13
  from transformers.utils import replace_return_docstrings
14
14
 
15
15
  from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
16
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
16
17
 
17
18
 
18
19
  @add_start_docstrings_to_model_forward(MLLAMA_INPUTS_DOCSTRING)
@@ -215,21 +216,13 @@ def lce_forward(
215
216
  loss = None
216
217
  # if in training mode, don't materialize logits
217
218
  if self.training and (labels is not None):
218
- # We do the same thing as ForCausalLMLoss but using Liger FLCE
219
-
220
- shift_hidden_states = hidden_states[..., :-1, :].contiguous()
221
- shift_labels = labels[..., 1:].contiguous()
222
-
223
- # flatten tokens
224
- shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
225
- shift_labels = shift_labels.view(-1)
226
-
227
- reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
228
- lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
229
-
230
- loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
231
- if reduction == "sum":
232
- loss /= loss_kwargs["num_items_in_batch"]
219
+ loss = LigerForCausalLMLoss(
220
+ hidden_states=hidden_states,
221
+ lm_head_weight=self.lm_head.weight,
222
+ labels=labels,
223
+ hidden_size=self.config.hidden_size,
224
+ **loss_kwargs,
225
+ )
233
226
 
234
227
  else: # if in inference mode materialize logits
235
228
  logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
@@ -11,7 +11,7 @@ from transformers.models.olmo2.modeling_olmo2 import OLMO2_INPUTS_DOCSTRING
11
11
  from transformers.utils import add_start_docstrings_to_model_forward
12
12
  from transformers.utils import replace_return_docstrings
13
13
 
14
- from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
14
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
15
15
 
16
16
 
17
17
  @add_start_docstrings_to_model_forward(OLMO2_INPUTS_DOCSTRING)
@@ -89,21 +89,13 @@ def lce_forward(
89
89
  loss = None
90
90
  # if in training mode, don't materialize logits
91
91
  if self.training and (labels is not None):
92
- # We do the same thing as ForCausalLMLoss but using Liger FLCE
93
-
94
- shift_hidden_states = hidden_states[..., :-1, :].contiguous()
95
- shift_labels = labels[..., 1:].contiguous()
96
-
97
- # flatten tokens
98
- shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
99
- shift_labels = shift_labels.view(-1)
100
-
101
- reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
102
- lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
103
-
104
- loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
105
- if reduction == "sum":
106
- loss /= loss_kwargs["num_items_in_batch"]
92
+ loss = LigerForCausalLMLoss(
93
+ hidden_states=hidden_states,
94
+ lm_head_weight=self.lm_head.weight,
95
+ labels=labels,
96
+ hidden_size=self.config.hidden_size,
97
+ **loss_kwargs,
98
+ )
107
99
 
108
100
  else: # if in inference mode materialize logits
109
101
  logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])