liger-kernel 0.5.4__py3-none-any.whl → 0.5.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,205 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from torch.nn import CrossEntropyLoss
9
+ from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import _CONFIG_FOR_DOC
10
+ from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import QWEN2_5_VL_INPUTS_DOCSTRING
11
+ from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import Qwen2_5_VLCausalLMOutputWithPast
12
+ from transformers.utils import add_start_docstrings_to_model_forward
13
+ from transformers.utils import replace_return_docstrings
14
+
15
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
16
+
17
+
18
+ @add_start_docstrings_to_model_forward(QWEN2_5_VL_INPUTS_DOCSTRING)
19
+ @replace_return_docstrings(output_type=Qwen2_5_VLCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
20
+ def lce_forward(
21
+ self,
22
+ input_ids: torch.LongTensor = None,
23
+ attention_mask: Optional[torch.Tensor] = None,
24
+ position_ids: Optional[torch.LongTensor] = None,
25
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
26
+ inputs_embeds: Optional[torch.FloatTensor] = None,
27
+ labels: Optional[torch.LongTensor] = None,
28
+ use_cache: Optional[bool] = None,
29
+ output_attentions: Optional[bool] = None,
30
+ output_hidden_states: Optional[bool] = None,
31
+ return_dict: Optional[bool] = None,
32
+ pixel_values: Optional[torch.Tensor] = None,
33
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
34
+ image_grid_thw: Optional[torch.LongTensor] = None,
35
+ video_grid_thw: Optional[torch.LongTensor] = None,
36
+ rope_deltas: Optional[torch.LongTensor] = None,
37
+ cache_position: Optional[torch.LongTensor] = None,
38
+ second_per_grid_ts: Optional[torch.Tensor] = None,
39
+ ) -> Union[Tuple, Qwen2_5_VLCausalLMOutputWithPast]:
40
+ r"""
41
+ Copy paste Qwen2_5_VL's forward but replace torch cross entropy with liger fused linear cross entropy
42
+ Args:
43
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
44
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
45
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
46
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
47
+
48
+ Returns:
49
+
50
+ Example:
51
+
52
+ ```python
53
+ >>> from PIL import Image
54
+ >>> import requests
55
+ >>> from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
56
+
57
+ >>> model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
58
+ >>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
59
+
60
+ >>> messages = [
61
+ {
62
+ "role": "user",
63
+ "content": [
64
+ {"type": "image"},
65
+ {"type": "text", "text": "What is shown in this image?"},
66
+ ],
67
+ },
68
+ ]
69
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
70
+ >>> image = Image.open(requests.get(url, stream=True).raw)
71
+
72
+ >>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
73
+ >>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
74
+
75
+ >>> # Generate
76
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
77
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
78
+ "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
79
+ ```"""
80
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
81
+ output_hidden_states = (
82
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
83
+ )
84
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
85
+
86
+ if inputs_embeds is None:
87
+ inputs_embeds = self.model.embed_tokens(input_ids)
88
+ if pixel_values is not None:
89
+ pixel_values = pixel_values.type(self.visual.dtype)
90
+ image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
91
+ n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
92
+ n_image_features = image_embeds.shape[0]
93
+ if n_image_tokens != n_image_features:
94
+ raise ValueError(
95
+ f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
96
+ )
97
+
98
+ mask = input_ids == self.config.image_token_id
99
+ mask_unsqueezed = mask.unsqueeze(-1)
100
+ mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
101
+ image_mask = mask_expanded.to(inputs_embeds.device)
102
+
103
+ image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
104
+ inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
105
+
106
+ if pixel_values_videos is not None:
107
+ pixel_values_videos = pixel_values_videos.type(self.visual.dtype)
108
+ video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
109
+ n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
110
+ n_video_features = video_embeds.shape[0]
111
+ if n_video_tokens != n_video_features:
112
+ raise ValueError(
113
+ f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
114
+ )
115
+
116
+ mask = input_ids == self.config.video_token_id
117
+ mask_unsqueezed = mask.unsqueeze(-1)
118
+ mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
119
+ video_mask = mask_expanded.to(inputs_embeds.device)
120
+
121
+ video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
122
+ inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
123
+
124
+ if attention_mask is not None:
125
+ attention_mask = attention_mask.to(inputs_embeds.device)
126
+
127
+ # if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
128
+ if position_ids is None and (attention_mask is None or attention_mask.ndim == 2):
129
+ # calculate RoPE index once per generation in the pre-fill stage only
130
+ if (cache_position is not None and cache_position[0] == 0) or self.rope_deltas is None:
131
+ position_ids, rope_deltas = self.get_rope_index(
132
+ input_ids,
133
+ image_grid_thw,
134
+ video_grid_thw,
135
+ second_per_grid_ts,
136
+ attention_mask,
137
+ )
138
+ self.rope_deltas = rope_deltas
139
+ # then use the prev pre-calculated rope-deltas to get the correct position ids
140
+ else:
141
+ batch_size, seq_length, _ = inputs_embeds.shape
142
+ delta = (cache_position[0] + self.rope_deltas).to(inputs_embeds.device) if cache_position is not None else 0
143
+ position_ids = torch.arange(seq_length, device=inputs_embeds.device)
144
+ position_ids = position_ids.view(1, -1).expand(batch_size, -1)
145
+ if cache_position is not None: # otherwise `deltas` is an int `0`
146
+ delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
147
+ position_ids = position_ids.add(delta)
148
+ position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
149
+
150
+ outputs = self.model(
151
+ input_ids=None,
152
+ position_ids=position_ids,
153
+ attention_mask=attention_mask,
154
+ past_key_values=past_key_values,
155
+ inputs_embeds=inputs_embeds,
156
+ use_cache=use_cache,
157
+ output_attentions=output_attentions,
158
+ output_hidden_states=output_hidden_states,
159
+ return_dict=return_dict,
160
+ cache_position=cache_position,
161
+ )
162
+
163
+ hidden_states = outputs[0]
164
+
165
+ loss = None
166
+ logits = None
167
+
168
+ if self.training and (labels is not None):
169
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
170
+ shift_labels = labels[..., 1:].contiguous()
171
+
172
+ # Flatten tokens
173
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
174
+ shift_labels = shift_labels.view(-1)
175
+
176
+ lce = LigerFusedLinearCrossEntropyLoss()
177
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
178
+ else:
179
+ logits = self.lm_head(hidden_states)
180
+ if labels is not None:
181
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
182
+ logits = logits.float()
183
+ # Shift so that tokens < n predict n
184
+ shift_logits = logits[..., :-1, :].contiguous()
185
+ shift_labels = labels[..., 1:].contiguous()
186
+ # Flatten the tokens
187
+ loss_fct = CrossEntropyLoss()
188
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
189
+ shift_labels = shift_labels.view(-1)
190
+ # Enable model parallelism
191
+ shift_labels = shift_labels.to(shift_logits.device)
192
+ loss = loss_fct(shift_logits, shift_labels)
193
+
194
+ if not return_dict:
195
+ output = (logits,) + outputs[1:]
196
+ return (loss,) + output if loss is not None else output
197
+
198
+ return Qwen2_5_VLCausalLMOutputWithPast(
199
+ loss=loss,
200
+ logits=logits,
201
+ past_key_values=outputs.past_key_values,
202
+ hidden_states=outputs.hidden_states,
203
+ attentions=outputs.attentions,
204
+ rope_deltas=rope_deltas,
205
+ )
@@ -745,6 +745,73 @@ def apply_liger_kernel_to_qwen2_vl(
745
745
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
746
746
 
747
747
 
748
+ def apply_liger_kernel_to_qwen2_5_vl(
749
+ rope: bool = True,
750
+ cross_entropy: bool = False,
751
+ fused_linear_cross_entropy: bool = True,
752
+ rms_norm: bool = True,
753
+ swiglu: bool = True,
754
+ model: PreTrainedModel = None,
755
+ ) -> None:
756
+ """
757
+ Apply Liger kernels to replace original implementation in HuggingFace Qwen2.5-VL models.
758
+ NOTE: Qwen2.5-VL is not available in transformers<4.48.2
759
+
760
+ Args:
761
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
762
+ fused_linear_cross_entropy (bool):
763
+ Whether to apply Liger's fused linear cross entropy loss. Default is True.
764
+ `cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
765
+ If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
766
+ rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
767
+ swiglu (bool): Whether to apply Liger's SwiGLU MLP. Default is True.
768
+ model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
769
+ loaded. Default is None.
770
+ """
771
+ assert not (cross_entropy and fused_linear_cross_entropy), (
772
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
773
+ )
774
+
775
+ from transformers.models.qwen2_5_vl import modeling_qwen2_5_vl
776
+ from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import Qwen2_5_VLModel
777
+
778
+ from liger_kernel.transformers.model.qwen2_5_vl import lce_forward as qwen2_5_vl_lce_forward
779
+
780
+ if rope:
781
+ modeling_qwen2_5_vl.apply_multimodal_rotary_pos_emb = liger_multimodal_rotary_pos_emb
782
+ if rms_norm:
783
+ modeling_qwen2_5_vl.Qwen2RMSNorm = LigerRMSNorm
784
+ if cross_entropy:
785
+ modeling_qwen2_5_vl.CrossEntropyLoss = LigerCrossEntropyLoss
786
+ if fused_linear_cross_entropy:
787
+ modeling_qwen2_5_vl.Qwen2_5_VLForConditionalGeneration.forward = qwen2_5_vl_lce_forward
788
+ if swiglu:
789
+ modeling_qwen2_5_vl.Qwen2MLP = LigerSwiGLUMLP
790
+
791
+ if model is not None:
792
+ # The model instance already exists, so we need to additionally patch the
793
+ # instance variables that reference already-instantiated modules
794
+
795
+ # get the base model from the model instance
796
+ base_model: Qwen2_5_VLModel = getattr(model, model.base_model_prefix, model)
797
+
798
+ if hasattr(model, "visual"):
799
+ # Patch Qwen2_5_VisionTransformerPretrainedModel
800
+ for vision_block in model.visual.blocks:
801
+ if rms_norm:
802
+ _patch_rms_norm_module(vision_block.norm1)
803
+ _patch_rms_norm_module(vision_block.norm2)
804
+
805
+ if rms_norm:
806
+ _patch_rms_norm_module(base_model.norm)
807
+ for decoder_layer in base_model.layers:
808
+ if swiglu:
809
+ _bind_method_to_module(decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward)
810
+ if rms_norm:
811
+ _patch_rms_norm_module(decoder_layer.input_layernorm)
812
+ _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
813
+
814
+
748
815
  def apply_liger_kernel_to_phi3(
749
816
  rope: bool = True,
750
817
  cross_entropy: bool = False,
@@ -890,6 +957,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
890
957
  "olmo2": apply_liger_kernel_to_olmo2,
891
958
  "qwen2": apply_liger_kernel_to_qwen2,
892
959
  "qwen2_vl": apply_liger_kernel_to_qwen2_vl,
960
+ "qwen2_5_vl": apply_liger_kernel_to_qwen2_5_vl,
893
961
  "phi3": apply_liger_kernel_to_phi3,
894
962
  }
895
963
 
liger_kernel/utils.py CHANGED
@@ -5,12 +5,10 @@ def infer_device():
5
5
  """
6
6
  Get current device name based on available devices
7
7
  """
8
- if torch.cuda.is_available():
8
+ if torch.cuda.is_available(): # Works for both Nvidia and AMD
9
9
  return "cuda"
10
10
  elif torch.xpu.is_available():
11
11
  return "xpu"
12
- elif torch.hip.is_available():
13
- return "hip"
14
12
  else:
15
13
  return "cpu"
16
14
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: liger_kernel
3
- Version: 0.5.4
3
+ Version: 0.5.5
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -154,7 +154,7 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
154
154
  We provide optimized post training kernels like DPO, ORPO, SimPO, and more which can reduce memory usage by up to 80%. You can easily use them as python modules.
155
155
 
156
156
  ```python
157
- from liger_kernel.chunked_loss import LigerFusedLinearDPOLoss
157
+ from liger_kernel.chunked_loss import LigerFusedLinearORPOLoss
158
158
  orpo_loss = LigerFusedLinearORPOLoss()
159
159
  y = orpo_loss(lm_head.weight, x, target)
160
160
  ```
@@ -314,6 +314,7 @@ loss.backward()
314
314
  | Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
315
315
  | Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
316
316
  | Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
317
+ | Qwen2.5-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_5_vl` | RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
317
318
  | Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
318
319
  | Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
319
320
  | OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
@@ -1,22 +1,22 @@
1
1
  liger_kernel/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
2
  liger_kernel/env_report.py,sha256=uhdEC8OydxoZlb7B6YYcAaBF3crGFdIck-4cxaW4NJY,1728
3
- liger_kernel/utils.py,sha256=FtVUkCGBT1UNasTl6HMNycWwiwHayK6tx-ZDdA-sNX4,1884
3
+ liger_kernel/utils.py,sha256=178Hn8uD-VauDT6FjqMyXLbKLod8ObIpaTtapHwfEK0,1861
4
4
  liger_kernel/chunked_loss/README.md,sha256=0FmkFC3hKBqyoDT5uTlIYmrvRkF-EOCR1y-EBU1LpWU,2248
5
5
  liger_kernel/chunked_loss/__init__.py,sha256=ATu-xX5Fc49Cr6yBOGBRNTo593ZrU5ZCsIuvoIbJWw4,603
6
- liger_kernel/chunked_loss/cpo_loss.py,sha256=OdBR8WYdHTKpLI_c9DcuwqKSWPeAAeTyREz46Vu_cAY,3682
7
- liger_kernel/chunked_loss/dpo_loss.py,sha256=wgjnwzLfrMUwV5mXgrq6G1YfQKWnbiFJegaP48BGJHY,4509
6
+ liger_kernel/chunked_loss/cpo_loss.py,sha256=Gzz1eU4kgcbdubFVRy55e8A1Cr-r45UgNicXwZIjmBU,5454
7
+ liger_kernel/chunked_loss/dpo_loss.py,sha256=xZwGqS04si9zXyob95SAdalC-hajZg8fWINqiqffN8k,5855
8
8
  liger_kernel/chunked_loss/functional.py,sha256=THWWpCnRVhTVfnPnyvQjdBvo1JDtxhwLmtZE_yiBBqM,817
9
- liger_kernel/chunked_loss/fused_linear_distillation.py,sha256=5V8rdva89WyHVbmJ8JOmC4DYNOR6ByXfx3qlUieOZkI,11002
10
- liger_kernel/chunked_loss/fused_linear_preference.py,sha256=idK9V9NivoVITqVpiG0fEGUHSvinYWkn9-EYXZjR-KQ,18356
11
- liger_kernel/chunked_loss/fused_linear_rlhf.py,sha256=sAApL4GQ3YL2F-ymIAF61GCpFfBgFcWF5LB4Gzd7LgY,8044
12
- liger_kernel/chunked_loss/fused_linear_unpaired_preference.py,sha256=ZqYlXXhIphkJPxOS7iI70avgrr6x0skEtgpckZTYau0,9819
13
- liger_kernel/chunked_loss/grpo_loss.py,sha256=M5qlQR-v5Rh8N3P3dPGNhOKygDFJ4516_rJaVPzU_-c,4980
14
- liger_kernel/chunked_loss/jsd_loss.py,sha256=yRCQdvd3ruTWP4A_BfU8VcZ6LepSUfO0Ob7stGnueQY,6052
15
- liger_kernel/chunked_loss/kto_loss.py,sha256=b3ffJyk97e-6XdXd4HFrYyx8wW4A-CU4gOaJSimKLtA,5476
16
- liger_kernel/chunked_loss/orpo_loss.py,sha256=yjcrrbVeemLYodoSKT-FMSnaPtyKAZ3aOrvPD6tTY6Y,3617
17
- liger_kernel/chunked_loss/simpo_loss.py,sha256=3TTc7U79Orjgi-Wu81WZkWk5MgsdqKXIOBHgIvDazPw,3865
9
+ liger_kernel/chunked_loss/fused_linear_distillation.py,sha256=FJh7k3sry-fqnBApLSngf7h-lHQEiXtOY_tiRDVanPM,11022
10
+ liger_kernel/chunked_loss/fused_linear_preference.py,sha256=ojB42jYPu0c4ki96Ft-hy7Sf6fh_WikG-aWNrlZzSio,18362
11
+ liger_kernel/chunked_loss/fused_linear_rlhf.py,sha256=wGujqwLz91mOE9MmdenhBIKvbmswhwtINMCpcP7D74c,9050
12
+ liger_kernel/chunked_loss/fused_linear_unpaired_preference.py,sha256=RiuK3UtRwH9T6jZ36sA8Urj-TVuOLOO2syLg_JOQapY,13437
13
+ liger_kernel/chunked_loss/grpo_loss.py,sha256=axED3628yKODu1v7PMAvSd08WZqwNQvJOTUYMgcihdQ,6665
14
+ liger_kernel/chunked_loss/jsd_loss.py,sha256=j2_1AYLu0FW2VQJIEr1J1qHsWd5VUo6C3aedglHVH4Y,6771
15
+ liger_kernel/chunked_loss/kto_loss.py,sha256=llVCe6DkcpCo57seGWoMikaQVFApx764jsmSbQyqwQY,7529
16
+ liger_kernel/chunked_loss/orpo_loss.py,sha256=nu9UYG16dcMw93lvHi4_hYs3Q0FK1KnlmMRj7OpYU8s,4872
17
+ liger_kernel/chunked_loss/simpo_loss.py,sha256=fy2w8KbhMrBv7b1jdIeH3bBFxY52bPQPZb3KwBvmurM,5385
18
18
  liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
19
- liger_kernel/ops/cross_entropy.py,sha256=D6vFFloiuxFXoWfjlIjmfO3tVaWOiYmztw9FKAi5vdU,18608
19
+ liger_kernel/ops/cross_entropy.py,sha256=yKKhN63I7r9NxJye4wTLBvvKAyrXQt6jf4nBo3lJyVg,18860
20
20
  liger_kernel/ops/fused_linear_cross_entropy.py,sha256=1Y3Uk_TCSjqKgoG2eot1ptnWXJXXQESqGvOmqAW1gsM,10912
21
21
  liger_kernel/ops/fused_linear_jsd.py,sha256=Seshez2qaM6HiTQ8_HEqSwhaeVruNT1SvIM4ZrAPBEU,9602
22
22
  liger_kernel/ops/geglu.py,sha256=axGvCIvlBzuluoAIrWTsp2iZM4BFKNInkPov8YVvH9E,4126
@@ -32,7 +32,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
32
32
  liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
33
33
  liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
34
34
  liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
35
- liger_kernel/transformers/__init__.py,sha256=6v_VcV1GQ9ISgNCd-ZxtmEg_s5GTBQ9F-s1KrFkYzPQ,2265
35
+ liger_kernel/transformers/__init__.py,sha256=4bwMPQhGHxmZ-WTFAMD9m-s0PYyfcvIRxhq_h3b0Wz0,2363
36
36
  liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
37
37
  liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
38
38
  liger_kernel/transformers/functional.py,sha256=ShLD3eb--XKNtllznCrOYTbo4f-1KVwzi0KLMICdrn4,4942
@@ -43,7 +43,7 @@ liger_kernel/transformers/group_norm.py,sha256=6qMAWOprr4SzP0YhNVNGQIBpM5aUHplUD
43
43
  liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
44
44
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
45
45
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
46
- liger_kernel/transformers/monkey_patch.py,sha256=g3i3q5McBg23A3Mnviw-Eb32le1hvN7jByzONa9ngcs,44000
46
+ liger_kernel/transformers/monkey_patch.py,sha256=9ud9tv1LI9WIa9UDu0abGIiusIIkayO1fjAUMWgwwT0,47096
47
47
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
48
48
  liger_kernel/transformers/rms_norm.py,sha256=GqCEJuGt0YdqqlMcToE0Wp4A8YFquDa4UUSyH2uFW2A,1191
49
49
  liger_kernel/transformers/rope.py,sha256=ZTrTORSAyfcFIKjk6XEeYmk4ROH7xXED9L4g2NFntlE,999
@@ -61,14 +61,15 @@ liger_kernel/transformers/model/mllama.py,sha256=qWexBdskuN3gPJvPUwt4J0nU675tGD6
61
61
  liger_kernel/transformers/model/olmo2.py,sha256=yyksS6E4fuWd8asEW8rEDBKqZpFmP4ITCM_bjIDZaoY,5124
62
62
  liger_kernel/transformers/model/phi3.py,sha256=biRa8fph9qdnQmkD9I21t5XIjpIt1i6UKU4uk8Up8pU,10292
63
63
  liger_kernel/transformers/model/qwen2.py,sha256=14UuPjxB-tjqWn85Tn4fqBFvVhVsth5iPEt8kJSMiew,9581
64
+ liger_kernel/transformers/model/qwen2_5_vl.py,sha256=l71WBfX0ptrisoURIRwXJH7MQ2vGKOvcRYMNsrydwlQ,9455
64
65
  liger_kernel/transformers/model/qwen2_vl.py,sha256=yMLqsfSYcvhClUpTUjGoADiOxfLB2B8240VdrPP0c8s,9851
65
66
  liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7HHWHwku25A-GYL0WU,193
66
67
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=pdekW7l6Qg_aqa5SYKYlSWUF8m3lkOFvFLcIMEHrz9s,8338
67
68
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
68
69
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
69
- liger_kernel-0.5.4.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
70
- liger_kernel-0.5.4.dist-info/METADATA,sha256=Zw7n3Ey6vUed4E54H9-TzKmhuOpd9P2ZFMVL-zYUnew,22255
71
- liger_kernel-0.5.4.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
72
- liger_kernel-0.5.4.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
73
- liger_kernel-0.5.4.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
74
- liger_kernel-0.5.4.dist-info/RECORD,,
70
+ liger_kernel-0.5.5.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
71
+ liger_kernel-0.5.5.dist-info/METADATA,sha256=PRpIrVa7cvCW-D7zMA6qpsQ1iJogiK6POWpYUbYHYr4,22411
72
+ liger_kernel-0.5.5.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
73
+ liger_kernel-0.5.5.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
74
+ liger_kernel-0.5.5.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
75
+ liger_kernel-0.5.5.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.8.0)
2
+ Generator: setuptools (76.0.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5