liger-kernel 0.5.4__py3-none-any.whl → 0.5.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/cpo_loss.py +51 -11
- liger_kernel/chunked_loss/dpo_loss.py +30 -4
- liger_kernel/chunked_loss/fused_linear_distillation.py +3 -3
- liger_kernel/chunked_loss/fused_linear_preference.py +2 -2
- liger_kernel/chunked_loss/fused_linear_rlhf.py +33 -6
- liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +112 -17
- liger_kernel/chunked_loss/grpo_loss.py +37 -3
- liger_kernel/chunked_loss/jsd_loss.py +31 -6
- liger_kernel/chunked_loss/kto_loss.py +50 -12
- liger_kernel/chunked_loss/orpo_loss.py +37 -5
- liger_kernel/chunked_loss/simpo_loss.py +47 -11
- liger_kernel/ops/cross_entropy.py +4 -0
- liger_kernel/transformers/__init__.py +1 -0
- liger_kernel/transformers/model/qwen2_5_vl.py +205 -0
- liger_kernel/transformers/monkey_patch.py +68 -0
- liger_kernel/utils.py +1 -3
- {liger_kernel-0.5.4.dist-info → liger_kernel-0.5.5.dist-info}/METADATA +3 -2
- {liger_kernel-0.5.4.dist-info → liger_kernel-0.5.5.dist-info}/RECORD +22 -21
- {liger_kernel-0.5.4.dist-info → liger_kernel-0.5.5.dist-info}/WHEEL +1 -1
- {liger_kernel-0.5.4.dist-info → liger_kernel-0.5.5.dist-info}/LICENSE +0 -0
- {liger_kernel-0.5.4.dist-info → liger_kernel-0.5.5.dist-info}/NOTICE +0 -0
- {liger_kernel-0.5.4.dist-info → liger_kernel-0.5.5.dist-info}/top_level.txt +0 -0
|
@@ -39,8 +39,9 @@ class LigerFusedLinearCPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
39
39
|
|
|
40
40
|
return loss, chosen_rewards, rejected_rewards
|
|
41
41
|
|
|
42
|
-
@
|
|
42
|
+
@classmethod
|
|
43
43
|
def forward(
|
|
44
|
+
cls,
|
|
44
45
|
ctx,
|
|
45
46
|
_input,
|
|
46
47
|
weight,
|
|
@@ -52,27 +53,48 @@ class LigerFusedLinearCPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
52
53
|
label_smoothing=0.0,
|
|
53
54
|
compute_nll_loss=True,
|
|
54
55
|
compiled=True,
|
|
56
|
+
average_log_prob=False,
|
|
57
|
+
chunk_size=1,
|
|
55
58
|
):
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
59
|
+
"""
|
|
60
|
+
Fused linear layer with CPO loss.
|
|
61
|
+
Args:
|
|
62
|
+
_input (torch.Tensor): Input tensor. Shape: (batch_size * seq_len, hidden_size)
|
|
63
|
+
weight (torch.Tensor): Weight tensor. Shape: (vocab_size, hidden_size)
|
|
64
|
+
target (torch.LongTensor): Target tensor. Shape: (batch_size * seq_len,)
|
|
65
|
+
bias (torch.Tensor, optional): Bias tensor. Shape: (vocab_size,)
|
|
66
|
+
ignore_index (int): Index to ignore in loss computation
|
|
67
|
+
beta (float): Weight for the odds ratio loss
|
|
68
|
+
alpha (float): Weight for the alpha parameter
|
|
69
|
+
label_smoothing (float): Label smoothing factor
|
|
70
|
+
compute_nll_loss (bool): Whether to compute the NLL loss
|
|
71
|
+
compiled (bool): Whether to use torch compile
|
|
72
|
+
average_log_prob (bool): Whether to average the log probability per non-masked token
|
|
73
|
+
chunk_size (int): Size of chunks for processing.
|
|
74
|
+
Returns:
|
|
75
|
+
torch.Tensor: Computed loss
|
|
76
|
+
"""
|
|
77
|
+
return super().forward(
|
|
78
|
+
cls=cls,
|
|
79
|
+
ctx=ctx,
|
|
80
|
+
_input=_input,
|
|
81
|
+
weight=weight,
|
|
82
|
+
target=target,
|
|
83
|
+
bias=bias,
|
|
63
84
|
ignore_index=ignore_index,
|
|
64
85
|
alpha=alpha,
|
|
65
86
|
beta=beta,
|
|
66
87
|
label_smoothing=label_smoothing,
|
|
67
88
|
compute_nll_loss=compute_nll_loss,
|
|
68
|
-
average_log_prob=
|
|
89
|
+
average_log_prob=average_log_prob,
|
|
69
90
|
compiled=compiled,
|
|
91
|
+
chunk_size=chunk_size,
|
|
70
92
|
)
|
|
71
93
|
|
|
72
94
|
@staticmethod
|
|
73
95
|
def backward(ctx, *grad_output):
|
|
74
96
|
grads = LigerFusedLinearPreferenceBase.backward(ctx, grad_output)[:4]
|
|
75
|
-
return *grads, None, None, None, None, None, None
|
|
97
|
+
return *grads, None, None, None, None, None, None, None, None
|
|
76
98
|
|
|
77
99
|
|
|
78
100
|
class LigerFusedLinearCPOLoss(torch.nn.Module):
|
|
@@ -88,11 +110,19 @@ class LigerFusedLinearCPOLoss(torch.nn.Module):
|
|
|
88
110
|
label_smoothing: float = 0.0,
|
|
89
111
|
compute_nll_loss: bool = True,
|
|
90
112
|
compiled: bool = True,
|
|
113
|
+
average_log_prob: bool = False,
|
|
114
|
+
chunk_size: int = 1,
|
|
91
115
|
):
|
|
92
116
|
"""
|
|
93
117
|
Args:
|
|
94
118
|
ignore_index (int): Index to ignore in the loss.
|
|
95
119
|
beta (float): Weight for the odds ratio loss.
|
|
120
|
+
alpha (float): Weight for the alpha parameter.
|
|
121
|
+
label_smoothing (float): Label smoothing factor.
|
|
122
|
+
compute_nll_loss (bool): Whether to compute the NLL loss.
|
|
123
|
+
compiled (bool): Whether to use the torch compiled kernel.
|
|
124
|
+
average_log_prob (bool): Whether to average the log probability per non-masked token.
|
|
125
|
+
chunk_size (int): Size of chunks for processing.
|
|
96
126
|
"""
|
|
97
127
|
super().__init__()
|
|
98
128
|
self.ignore_index = ignore_index
|
|
@@ -101,8 +131,16 @@ class LigerFusedLinearCPOLoss(torch.nn.Module):
|
|
|
101
131
|
self.label_smoothing = label_smoothing
|
|
102
132
|
self.compute_nll_loss = compute_nll_loss
|
|
103
133
|
self.compiled = compiled
|
|
134
|
+
self.average_log_prob = average_log_prob
|
|
135
|
+
self.chunk_size = chunk_size
|
|
104
136
|
|
|
105
|
-
def forward(
|
|
137
|
+
def forward(
|
|
138
|
+
self,
|
|
139
|
+
lin_weight,
|
|
140
|
+
_input,
|
|
141
|
+
target,
|
|
142
|
+
bias=None,
|
|
143
|
+
):
|
|
106
144
|
return LigerFusedLinearCPOFunction.apply(
|
|
107
145
|
_input,
|
|
108
146
|
lin_weight,
|
|
@@ -114,4 +152,6 @@ class LigerFusedLinearCPOLoss(torch.nn.Module):
|
|
|
114
152
|
self.label_smoothing,
|
|
115
153
|
self.compute_nll_loss,
|
|
116
154
|
self.compiled,
|
|
155
|
+
self.average_log_prob,
|
|
156
|
+
self.chunk_size,
|
|
117
157
|
)
|
|
@@ -52,8 +52,9 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
52
52
|
loss = -F.logsigmoid(logits_diff).sum() / (full_target.shape[0] // 2)
|
|
53
53
|
return loss, chosen_rewards, rejected_rewards
|
|
54
54
|
|
|
55
|
-
@
|
|
55
|
+
@classmethod
|
|
56
56
|
def forward(
|
|
57
|
+
cls,
|
|
57
58
|
ctx,
|
|
58
59
|
_input,
|
|
59
60
|
weight,
|
|
@@ -67,14 +68,34 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
67
68
|
compute_nll_loss=False,
|
|
68
69
|
compiled=True,
|
|
69
70
|
use_ref_model=True,
|
|
71
|
+
chunk_size=1,
|
|
70
72
|
):
|
|
71
|
-
|
|
73
|
+
"""
|
|
74
|
+
Fused linear layer with DPO loss.
|
|
75
|
+
Args:
|
|
76
|
+
_input (torch.Tensor): Input tensor. Shape: (batch_size * seq_len, hidden_size)
|
|
77
|
+
weight (torch.Tensor): Weight tensor. Shape: (vocab_size, hidden_size)
|
|
78
|
+
target (torch.LongTensor): Target tensor. Shape: (batch_size * seq_len,)
|
|
79
|
+
bias (torch.Tensor, optional): Bias tensor. Shape: (vocab_size,)
|
|
80
|
+
ref_input (torch.Tensor, optional): Reference model input tensor. Shape: (batch_size * seq_len, hidden_size)
|
|
81
|
+
ref_weight (torch.Tensor, optional): Reference model weight tensor. Shape: (vocab_size, hidden_size)
|
|
82
|
+
ref_bias (torch.Tensor, optional): Reference model bias tensor. Shape: (vocab_size,)
|
|
83
|
+
ignore_index (int): Index to ignore in loss computation
|
|
84
|
+
beta (float): Weight for the odds ratio loss
|
|
85
|
+
compute_nll_loss (bool): Whether to compute the NLL loss
|
|
86
|
+
compiled (bool): Whether to use torch compile
|
|
87
|
+
use_ref_model (bool): Whether to use a reference model
|
|
88
|
+
chunk_size (int): Size of chunks for processing.
|
|
89
|
+
Returns:
|
|
90
|
+
torch.Tensor: Computed loss
|
|
91
|
+
"""
|
|
92
|
+
return super().forward(
|
|
93
|
+
cls=cls,
|
|
72
94
|
ctx=ctx,
|
|
73
95
|
_input=_input,
|
|
74
96
|
weight=weight,
|
|
75
97
|
target=target,
|
|
76
98
|
bias=bias,
|
|
77
|
-
loss_fn=LigerFusedLinearDPOFunction.preference_loss_fn,
|
|
78
99
|
ignore_index=ignore_index,
|
|
79
100
|
beta=beta,
|
|
80
101
|
compute_nll_loss=compute_nll_loss,
|
|
@@ -83,12 +104,13 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
83
104
|
ref_input=ref_input,
|
|
84
105
|
ref_weight=ref_weight,
|
|
85
106
|
ref_bias=ref_bias,
|
|
107
|
+
chunk_size=chunk_size,
|
|
86
108
|
)
|
|
87
109
|
|
|
88
110
|
@staticmethod
|
|
89
111
|
def backward(ctx, *grad_output):
|
|
90
112
|
grads = LigerFusedLinearPreferenceBase.backward(ctx, grad_output)[:4]
|
|
91
|
-
return *grads, None, None, None, None, None, None, None, None
|
|
113
|
+
return *grads, None, None, None, None, None, None, None, None, None
|
|
92
114
|
|
|
93
115
|
|
|
94
116
|
class LigerFusedLinearDPOLoss(torch.nn.Module):
|
|
@@ -103,6 +125,7 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
|
|
|
103
125
|
compute_nll_loss: bool = False,
|
|
104
126
|
compiled: bool = True,
|
|
105
127
|
use_ref_model: bool = True,
|
|
128
|
+
chunk_size: int = 1,
|
|
106
129
|
):
|
|
107
130
|
"""
|
|
108
131
|
Args:
|
|
@@ -111,6 +134,7 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
|
|
|
111
134
|
compute_nll_loss (bool): Whether to compute the NLL loss.
|
|
112
135
|
compiled (bool): Whether to use the torch compiled kernel.
|
|
113
136
|
use_ref_model (bool): Whether to use a reference model for the DPO loss.
|
|
137
|
+
chunk_size (int): Size of chunks for processing.
|
|
114
138
|
"""
|
|
115
139
|
super().__init__()
|
|
116
140
|
self.ignore_index = ignore_index
|
|
@@ -118,6 +142,7 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
|
|
|
118
142
|
self.compute_nll_loss = compute_nll_loss
|
|
119
143
|
self.compiled = compiled
|
|
120
144
|
self.use_ref_model = use_ref_model
|
|
145
|
+
self.chunk_size = chunk_size
|
|
121
146
|
|
|
122
147
|
def forward(
|
|
123
148
|
self,
|
|
@@ -142,4 +167,5 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
|
|
|
142
167
|
self.compute_nll_loss,
|
|
143
168
|
self.compiled,
|
|
144
169
|
self.use_ref_model,
|
|
170
|
+
self.chunk_size,
|
|
145
171
|
)
|
|
@@ -125,6 +125,7 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
|
|
|
125
125
|
|
|
126
126
|
@staticmethod
|
|
127
127
|
def forward(
|
|
128
|
+
cls,
|
|
128
129
|
ctx,
|
|
129
130
|
student_input,
|
|
130
131
|
student_weight,
|
|
@@ -133,7 +134,6 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
|
|
|
133
134
|
target,
|
|
134
135
|
student_bias=None,
|
|
135
136
|
teacher_bias=None,
|
|
136
|
-
loss_fn=None,
|
|
137
137
|
chunk_size=1024,
|
|
138
138
|
ignore_index=-100,
|
|
139
139
|
weight_hard_loss=0.5,
|
|
@@ -175,7 +175,7 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
|
|
|
175
175
|
|
|
176
176
|
loss_func_to_call = partial(
|
|
177
177
|
LigerFusedLinearDistillationBase._compute_loss,
|
|
178
|
-
distillation_loss_fn=
|
|
178
|
+
distillation_loss_fn=cls.distillation_loss_fn,
|
|
179
179
|
full_target=target,
|
|
180
180
|
ignore_index=ignore_index,
|
|
181
181
|
weight_hard_loss=weight_hard_loss,
|
|
@@ -263,4 +263,4 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
|
|
|
263
263
|
grad_weight = grad_weight * grad_output
|
|
264
264
|
grad_bias = grad_bias * grad_output if grad_bias is not None else None
|
|
265
265
|
|
|
266
|
-
return grad_input, grad_weight, None, grad_bias
|
|
266
|
+
return grad_input, grad_weight, None, None, None, grad_bias
|
|
@@ -16,12 +16,12 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
|
16
16
|
|
|
17
17
|
@staticmethod
|
|
18
18
|
def forward(
|
|
19
|
+
cls,
|
|
19
20
|
ctx,
|
|
20
21
|
_input,
|
|
21
22
|
weight,
|
|
22
23
|
target,
|
|
23
24
|
bias=None,
|
|
24
|
-
loss_fn=None,
|
|
25
25
|
chunk_size=1,
|
|
26
26
|
ignore_index=-100,
|
|
27
27
|
alpha=1.0,
|
|
@@ -89,7 +89,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
|
89
89
|
|
|
90
90
|
compute_loss = partial(
|
|
91
91
|
LigerFusedLinearPreferenceBase._compute_loss,
|
|
92
|
-
preference_loss_fn=
|
|
92
|
+
preference_loss_fn=cls.preference_loss_fn,
|
|
93
93
|
ignore_index=ignore_index,
|
|
94
94
|
alpha=alpha,
|
|
95
95
|
beta=beta,
|
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
from abc import abstractmethod
|
|
1
2
|
from functools import partial
|
|
2
3
|
|
|
3
4
|
import torch
|
|
@@ -5,15 +6,22 @@ import torch.nn.functional as F
|
|
|
5
6
|
|
|
6
7
|
|
|
7
8
|
class LigerFusedLinearRLHFBase(torch.autograd.Function):
|
|
9
|
+
@abstractmethod
|
|
10
|
+
def rlhf_loss_fn(*args, **kwargs):
|
|
11
|
+
"""
|
|
12
|
+
To be extended by subclasses.
|
|
13
|
+
"""
|
|
14
|
+
raise NotImplementedError("RLHF loss function must be implemented.")
|
|
15
|
+
|
|
8
16
|
@staticmethod
|
|
9
17
|
def forward(
|
|
18
|
+
cls,
|
|
10
19
|
ctx,
|
|
11
20
|
_input,
|
|
12
21
|
weight,
|
|
13
22
|
attention_mask,
|
|
14
23
|
rewards,
|
|
15
24
|
bias=None,
|
|
16
|
-
loss_fn=None,
|
|
17
25
|
num_generations=4,
|
|
18
26
|
beta=0.1,
|
|
19
27
|
compiled=True,
|
|
@@ -21,8 +29,27 @@ class LigerFusedLinearRLHFBase(torch.autograd.Function):
|
|
|
21
29
|
ref_input=None,
|
|
22
30
|
ref_weight=None,
|
|
23
31
|
ref_bias=None,
|
|
32
|
+
chunk_size=1,
|
|
24
33
|
):
|
|
25
|
-
"""Chunked forward pass for RLHF loss computation.
|
|
34
|
+
"""Chunked forward pass for RLHF loss computation.
|
|
35
|
+
|
|
36
|
+
Args:
|
|
37
|
+
cls: The class
|
|
38
|
+
ctx: Context for backward
|
|
39
|
+
_input: Input tensor
|
|
40
|
+
weight: Weight tensor
|
|
41
|
+
attention_mask: Attention mask tensor
|
|
42
|
+
rewards: Rewards tensor
|
|
43
|
+
bias: Bias tensor
|
|
44
|
+
num_generations: Number of generations per prompt
|
|
45
|
+
beta: Weight for the KL penalty
|
|
46
|
+
compiled: Whether to use torch compile
|
|
47
|
+
use_ref_model: Whether to use a reference model
|
|
48
|
+
ref_input: Reference model input tensor
|
|
49
|
+
ref_weight: Reference model weight tensor
|
|
50
|
+
ref_bias: Reference model bias tensor
|
|
51
|
+
chunk_size: Size of chunks for processing in other loss modules
|
|
52
|
+
"""
|
|
26
53
|
# Save for backward
|
|
27
54
|
ctx.beta = beta
|
|
28
55
|
ctx.rewards = rewards
|
|
@@ -41,7 +68,7 @@ class LigerFusedLinearRLHFBase(torch.autograd.Function):
|
|
|
41
68
|
use_ref_model=use_ref_model,
|
|
42
69
|
ref_weight=ref_weight,
|
|
43
70
|
ref_bias=ref_bias,
|
|
44
|
-
rlhf_loss_fn=
|
|
71
|
+
rlhf_loss_fn=cls.rlhf_loss_fn,
|
|
45
72
|
)
|
|
46
73
|
|
|
47
74
|
def fused_fwd_bwd(input_chunk, attention_mask_chunk, rewards_chunk, ref_input_chunk):
|
|
@@ -98,7 +125,7 @@ class LigerFusedLinearRLHFBase(torch.autograd.Function):
|
|
|
98
125
|
if compiled:
|
|
99
126
|
accumulate_chunk = torch.compile(accumulate_chunk)
|
|
100
127
|
|
|
101
|
-
# Process input in chunks
|
|
128
|
+
# Process input in chunks based on num_generations
|
|
102
129
|
chunks = max(1, _input.shape[0] // num_generations)
|
|
103
130
|
_input_chunks = torch.chunk(_input, chunks=chunks, dim=0)
|
|
104
131
|
_attention_mask_chunks = torch.chunk(attention_mask, chunks=chunks, dim=0)
|
|
@@ -202,12 +229,12 @@ class LigerFusedLinearRLHFBase(torch.autograd.Function):
|
|
|
202
229
|
None, # grad_attention_mask
|
|
203
230
|
None, # grad_rewards
|
|
204
231
|
grad_bias,
|
|
205
|
-
None, #
|
|
206
|
-
None, # grad_chunk_size
|
|
232
|
+
None, # grad_num_generations
|
|
207
233
|
None, # grad_beta
|
|
208
234
|
None, # grad_compiled
|
|
209
235
|
None, # grad_use_ref_model
|
|
210
236
|
None, # grad_ref_input
|
|
211
237
|
None, # grad_ref_weight
|
|
212
238
|
None, # grad_ref_bias
|
|
239
|
+
None, # grad_chunk_size
|
|
213
240
|
)
|
|
@@ -16,13 +16,13 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
16
16
|
|
|
17
17
|
@staticmethod
|
|
18
18
|
def forward(
|
|
19
|
+
cls,
|
|
19
20
|
ctx,
|
|
20
21
|
_input,
|
|
21
22
|
weight,
|
|
22
23
|
target,
|
|
23
24
|
preference_labels,
|
|
24
25
|
bias=None,
|
|
25
|
-
loss_fn=None,
|
|
26
26
|
chunk_size=1,
|
|
27
27
|
ignore_index=-100,
|
|
28
28
|
compiled=True,
|
|
@@ -30,6 +30,7 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
30
30
|
ref_input=None,
|
|
31
31
|
ref_weight=None,
|
|
32
32
|
ref_bias=None,
|
|
33
|
+
average_log_prob=False,
|
|
33
34
|
**loss_kwargs,
|
|
34
35
|
):
|
|
35
36
|
"""
|
|
@@ -59,6 +60,7 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
59
60
|
Shape: (batch_size,).
|
|
60
61
|
ref_weight (torch.Tensor): Reference weight tensor. Shape: (vocab_size, hidden_size).
|
|
61
62
|
ref_bias (torch.Tensor, optional): Reference bias tensor. Shape: (vocab_size,).
|
|
63
|
+
average_log_prob (bool): Whether to average the log probability per non-masked token.
|
|
62
64
|
loss_kwargs (dict): Other possible arguments that a loss function might need
|
|
63
65
|
"""
|
|
64
66
|
# TODO: Tune CHUNK_SIZE to fully utilize the GPU
|
|
@@ -72,14 +74,22 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
72
74
|
# Loss to be accumulated
|
|
73
75
|
loss_acc = torch.zeros((), device=_input.device)
|
|
74
76
|
|
|
77
|
+
# Metrics to be recorded
|
|
78
|
+
chosen_logps_sum = torch.zeros((), device=_input.device)
|
|
79
|
+
rejected_logps_sum = torch.zeros((), device=_input.device)
|
|
80
|
+
chosen_logits_sum = torch.zeros((), device=_input.device)
|
|
81
|
+
rejected_logits_sum = torch.zeros((), device=_input.device)
|
|
82
|
+
aggregated_aux_outputs = []
|
|
83
|
+
|
|
75
84
|
compute_loss = partial(
|
|
76
85
|
LigerFusedLinearUnpairedPreferenceBase._compute_loss,
|
|
77
|
-
preference_loss_fn=
|
|
86
|
+
preference_loss_fn=cls.preference_loss_fn,
|
|
78
87
|
full_target=target,
|
|
79
88
|
ignore_index=ignore_index,
|
|
80
89
|
use_ref_model=use_ref_model,
|
|
81
90
|
ref_weight=ref_weight,
|
|
82
91
|
ref_bias=ref_bias,
|
|
92
|
+
average_log_prob=average_log_prob,
|
|
83
93
|
**loss_kwargs,
|
|
84
94
|
)
|
|
85
95
|
|
|
@@ -88,7 +98,7 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
88
98
|
Fused forward and backward pass for a chunk of input and target.
|
|
89
99
|
"""
|
|
90
100
|
argnums = (0, 1, 4) if bias is not None else (0, 1)
|
|
91
|
-
return torch.func.grad_and_value(compute_loss, argnums=argnums, has_aux=
|
|
101
|
+
return torch.func.grad_and_value(compute_loss, argnums=argnums, has_aux=True)(
|
|
92
102
|
input_chunk,
|
|
93
103
|
weight,
|
|
94
104
|
target_chunk,
|
|
@@ -103,9 +113,19 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
103
113
|
preference_labels_chunk=None,
|
|
104
114
|
ref_input_chunk=None,
|
|
105
115
|
):
|
|
106
|
-
(
|
|
107
|
-
|
|
108
|
-
|
|
116
|
+
(
|
|
117
|
+
(chunk_grad_input, chunk_grad_weight, *chunk_grad_bias),
|
|
118
|
+
(
|
|
119
|
+
chunk_loss,
|
|
120
|
+
(
|
|
121
|
+
chunk_chosen_logps_sum,
|
|
122
|
+
chunk_rejected_logps_sum,
|
|
123
|
+
chunk_chosen_logits_sum,
|
|
124
|
+
chunk_rejected_logits_sum,
|
|
125
|
+
*aux_outputs,
|
|
126
|
+
),
|
|
127
|
+
),
|
|
128
|
+
) = fused_fwd_bwd(input_chunk, target_chunk, preference_labels_chunk, ref_input_chunk)
|
|
109
129
|
if bias is not None:
|
|
110
130
|
grad_bias.add_(chunk_grad_bias[0]) # accumulate bias gradient
|
|
111
131
|
|
|
@@ -116,6 +136,23 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
116
136
|
# Accumulate loss
|
|
117
137
|
loss_acc.add_(chunk_loss)
|
|
118
138
|
|
|
139
|
+
# Accumulate metrics
|
|
140
|
+
chosen_logps_sum.add_(chunk_chosen_logps_sum)
|
|
141
|
+
rejected_logps_sum.add_(chunk_rejected_logps_sum)
|
|
142
|
+
chosen_logits_sum.add_(chunk_chosen_logits_sum)
|
|
143
|
+
rejected_logits_sum.add_(chunk_rejected_logits_sum)
|
|
144
|
+
|
|
145
|
+
# aux_outputs
|
|
146
|
+
# Initialize storage for aux_outputs
|
|
147
|
+
if len(aggregated_aux_outputs) == 0:
|
|
148
|
+
for aux in aux_outputs:
|
|
149
|
+
aggregated_aux_outputs.append(torch.zeros((), device=aux.device))
|
|
150
|
+
|
|
151
|
+
# Process each aux_output
|
|
152
|
+
for i, aux in enumerate(aux_outputs):
|
|
153
|
+
if aux.ndim == 0:
|
|
154
|
+
aggregated_aux_outputs[i].add_(aux)
|
|
155
|
+
|
|
119
156
|
if compiled:
|
|
120
157
|
fused_fwd_bwd = torch.compile(fused_fwd_bwd)
|
|
121
158
|
|
|
@@ -151,12 +188,25 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
151
188
|
# accumulate loss, gradients, and metrics
|
|
152
189
|
accumulate_chunk(input_chunk, target_chunk, preference_labels_chunk, ref_input_chunk)
|
|
153
190
|
|
|
191
|
+
# Aggregate aux outputs lists into tensors
|
|
192
|
+
for i, aux in enumerate(aggregated_aux_outputs):
|
|
193
|
+
if isinstance(aux, list):
|
|
194
|
+
aggregated_aux_outputs[i] = torch.cat(aux, dim=0)
|
|
195
|
+
|
|
154
196
|
ctx.save_for_backward(
|
|
155
197
|
torch.cat(grad_inputs, dim=0),
|
|
156
198
|
grad_weight,
|
|
157
199
|
grad_bias,
|
|
158
200
|
)
|
|
159
|
-
|
|
201
|
+
|
|
202
|
+
return_vars = (
|
|
203
|
+
chosen_logps_sum,
|
|
204
|
+
rejected_logps_sum,
|
|
205
|
+
chosen_logits_sum,
|
|
206
|
+
rejected_logits_sum,
|
|
207
|
+
)
|
|
208
|
+
|
|
209
|
+
return loss_acc, (*return_vars, *aggregated_aux_outputs)
|
|
160
210
|
|
|
161
211
|
@staticmethod
|
|
162
212
|
def backward(ctx, *grad_output):
|
|
@@ -173,21 +223,37 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
173
223
|
input_chunk,
|
|
174
224
|
weight,
|
|
175
225
|
target_chunk,
|
|
226
|
+
preference_labels_chunk,
|
|
176
227
|
bias=None,
|
|
177
228
|
ignore_index=-100,
|
|
229
|
+
average_log_prob=False,
|
|
178
230
|
):
|
|
179
231
|
logits_chunk = input_chunk @ weight.t()
|
|
180
232
|
if bias is not None:
|
|
181
233
|
logits_chunk = logits_chunk + bias
|
|
182
234
|
log_probs_chunk = F.log_softmax(logits_chunk.float(), dim=-1)
|
|
183
|
-
|
|
184
235
|
loss_mask_chunk = target_chunk != ignore_index
|
|
185
236
|
label_chunk = torch.where(loss_mask_chunk, target_chunk, 0)
|
|
186
237
|
|
|
187
238
|
per_token_logps_chunk = log_probs_chunk.gather(-1, label_chunk.unsqueeze(-1)).squeeze(-1)
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
239
|
+
if average_log_prob:
|
|
240
|
+
log_probs = (per_token_logps_chunk * loss_mask_chunk).sum(-1) / loss_mask_chunk.sum(-1)
|
|
241
|
+
else:
|
|
242
|
+
log_probs = (per_token_logps_chunk * loss_mask_chunk).sum(-1)
|
|
243
|
+
|
|
244
|
+
chosen_logps_sum = (log_probs * preference_labels_chunk.unsqueeze(1)).sum()
|
|
245
|
+
rejected_logps_sum = (log_probs * (~preference_labels_chunk).unsqueeze(1)).sum()
|
|
246
|
+
|
|
247
|
+
chosen_logits_sum = (logits_chunk * preference_labels_chunk.unsqueeze(1)).sum()
|
|
248
|
+
rejected_logits_sum = (logits_chunk * (~preference_labels_chunk).unsqueeze(1)).sum()
|
|
249
|
+
|
|
250
|
+
return (
|
|
251
|
+
log_probs,
|
|
252
|
+
chosen_logps_sum,
|
|
253
|
+
rejected_logps_sum,
|
|
254
|
+
chosen_logits_sum,
|
|
255
|
+
rejected_logits_sum,
|
|
256
|
+
)
|
|
191
257
|
|
|
192
258
|
@staticmethod
|
|
193
259
|
def _compute_loss(
|
|
@@ -203,6 +269,7 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
203
269
|
ref_input_chunk=None,
|
|
204
270
|
ref_weight=None,
|
|
205
271
|
ref_bias=None,
|
|
272
|
+
average_log_prob=False,
|
|
206
273
|
**loss_kwargs,
|
|
207
274
|
):
|
|
208
275
|
"""
|
|
@@ -218,29 +285,57 @@ class LigerFusedLinearUnpairedPreferenceBase(torch.autograd.Function):
|
|
|
218
285
|
use_ref_model (bool): Whether to use a reference model for the alignment loss.
|
|
219
286
|
ref_weight (torch.Tensor): Reference weight tensor. Shape: (vocab_size, hidden_size).
|
|
220
287
|
ref_bias (torch.Tensor, optional): Reference bias tensor. Shape: (vocab_size,).
|
|
288
|
+
average_log_prob (bool): Whether to average the log probability per non-masked token.
|
|
221
289
|
loss_kwargs (dict): Additional arguments for the loss function.
|
|
222
290
|
"""
|
|
223
|
-
|
|
291
|
+
(
|
|
292
|
+
log_prob_chunk,
|
|
293
|
+
chosen_logps_sum,
|
|
294
|
+
rejected_logps_sum,
|
|
295
|
+
chosen_logits_sum,
|
|
296
|
+
rejected_logits_sum,
|
|
297
|
+
) = LigerFusedLinearUnpairedPreferenceBase.chunk_forward(
|
|
224
298
|
input_chunk,
|
|
225
299
|
weight,
|
|
226
300
|
target_chunk,
|
|
301
|
+
preference_labels_chunk,
|
|
227
302
|
bias=bias,
|
|
228
303
|
ignore_index=ignore_index,
|
|
304
|
+
average_log_prob=average_log_prob,
|
|
229
305
|
)
|
|
230
306
|
|
|
231
307
|
if use_ref_model:
|
|
232
308
|
with torch.no_grad():
|
|
233
|
-
|
|
309
|
+
(
|
|
310
|
+
ref_log_prob_chunk,
|
|
311
|
+
_,
|
|
312
|
+
_,
|
|
313
|
+
_,
|
|
314
|
+
_,
|
|
315
|
+
) = LigerFusedLinearUnpairedPreferenceBase.chunk_forward(
|
|
234
316
|
ref_input_chunk,
|
|
235
317
|
ref_weight,
|
|
236
318
|
target_chunk,
|
|
319
|
+
preference_labels_chunk,
|
|
237
320
|
ref_bias,
|
|
238
321
|
ignore_index=ignore_index,
|
|
322
|
+
average_log_prob=average_log_prob,
|
|
239
323
|
)
|
|
240
|
-
loss_kwargs["
|
|
324
|
+
loss_kwargs["ref_log_prob_chunk"] = ref_log_prob_chunk
|
|
241
325
|
|
|
242
|
-
|
|
243
|
-
|
|
326
|
+
preference_loss_outputs = preference_loss_fn(
|
|
327
|
+
log_prob_chunk, preference_labels_chunk, full_target, **loss_kwargs
|
|
328
|
+
)
|
|
329
|
+
if isinstance(preference_loss_outputs, tuple):
|
|
330
|
+
preference_loss_chunk, *aux_outputs = preference_loss_outputs
|
|
331
|
+
else:
|
|
332
|
+
preference_loss_chunk, aux_outputs = preference_loss_outputs, []
|
|
333
|
+
|
|
334
|
+
return_vars = (
|
|
335
|
+
chosen_logps_sum,
|
|
336
|
+
rejected_logps_sum,
|
|
337
|
+
chosen_logits_sum,
|
|
338
|
+
rejected_logits_sum,
|
|
244
339
|
)
|
|
245
340
|
|
|
246
|
-
return preference_loss_chunk
|
|
341
|
+
return preference_loss_chunk, (*return_vars, *aux_outputs)
|
|
@@ -63,8 +63,9 @@ class LigerFusedLinearGRPOFunction(LigerFusedLinearRLHFBase):
|
|
|
63
63
|
|
|
64
64
|
return loss, metrics
|
|
65
65
|
|
|
66
|
-
@
|
|
66
|
+
@classmethod
|
|
67
67
|
def forward(
|
|
68
|
+
cls,
|
|
68
69
|
ctx,
|
|
69
70
|
_input,
|
|
70
71
|
weight,
|
|
@@ -78,13 +79,33 @@ class LigerFusedLinearGRPOFunction(LigerFusedLinearRLHFBase):
|
|
|
78
79
|
compiled=True,
|
|
79
80
|
use_ref_model=True,
|
|
80
81
|
num_generations=1,
|
|
82
|
+
chunk_size=1,
|
|
81
83
|
):
|
|
82
|
-
|
|
84
|
+
"""
|
|
85
|
+
Fused linear layer with GRPO loss.
|
|
86
|
+
Args:
|
|
87
|
+
_input (torch.Tensor): Input tensor. Shape: (batch_size * seq_len, hidden_size)
|
|
88
|
+
weight (torch.Tensor): Weight tensor. Shape: (vocab_size, hidden_size)
|
|
89
|
+
attention_mask (torch.Tensor): Attention mask tensor. Shape: (batch_size, seq_len)
|
|
90
|
+
rewards (torch.Tensor): Rewards tensor. Shape: (batch_size,)
|
|
91
|
+
bias (torch.Tensor, optional): Bias tensor. Shape: (vocab_size,)
|
|
92
|
+
ref_input (torch.Tensor, optional): Reference model input tensor. Shape: (batch_size * seq_len, hidden_size)
|
|
93
|
+
ref_weight (torch.Tensor, optional): Reference model weight tensor. Shape: (vocab_size, hidden_size)
|
|
94
|
+
ref_bias (torch.Tensor, optional): Reference model bias tensor. Shape: (vocab_size,)
|
|
95
|
+
beta (float): Weight for the KL penalty
|
|
96
|
+
compiled (bool): Whether to use torch compile
|
|
97
|
+
use_ref_model (bool): Whether to use a reference model
|
|
98
|
+
num_generations (int): Number of generations per prompt
|
|
99
|
+
chunk_size (int): Size of chunks for processing.
|
|
100
|
+
Returns:
|
|
101
|
+
torch.Tensor: Computed loss
|
|
102
|
+
"""
|
|
103
|
+
return super().forward(
|
|
104
|
+
cls=cls,
|
|
83
105
|
ctx=ctx,
|
|
84
106
|
_input=_input,
|
|
85
107
|
weight=weight,
|
|
86
108
|
attention_mask=attention_mask,
|
|
87
|
-
loss_fn=LigerFusedLinearGRPOFunction.rlhf_loss_fn,
|
|
88
109
|
rewards=rewards,
|
|
89
110
|
bias=bias,
|
|
90
111
|
ref_input=ref_input,
|
|
@@ -94,6 +115,7 @@ class LigerFusedLinearGRPOFunction(LigerFusedLinearRLHFBase):
|
|
|
94
115
|
compiled=compiled,
|
|
95
116
|
use_ref_model=use_ref_model,
|
|
96
117
|
num_generations=num_generations,
|
|
118
|
+
chunk_size=chunk_size,
|
|
97
119
|
)
|
|
98
120
|
|
|
99
121
|
@staticmethod
|
|
@@ -114,6 +136,7 @@ class LigerFusedLinearGRPOFunction(LigerFusedLinearRLHFBase):
|
|
|
114
136
|
None, # grad_compiled
|
|
115
137
|
None, # grad_use_ref_model
|
|
116
138
|
None, # grad_num_generations
|
|
139
|
+
None, # grad_chunk_size
|
|
117
140
|
)
|
|
118
141
|
|
|
119
142
|
|
|
@@ -126,12 +149,22 @@ class LigerFusedLinearGRPOLoss(torch.nn.Module):
|
|
|
126
149
|
compiled: bool = True,
|
|
127
150
|
use_ref_model: bool = True,
|
|
128
151
|
num_generations: int = 1,
|
|
152
|
+
chunk_size: int = 1,
|
|
129
153
|
):
|
|
154
|
+
"""
|
|
155
|
+
Args:
|
|
156
|
+
beta (float): Weight for the KL penalty.
|
|
157
|
+
compiled (bool): Whether to use torch compile.
|
|
158
|
+
use_ref_model (bool): Whether to use a reference model.
|
|
159
|
+
num_generations (int): Number of generations per prompt.
|
|
160
|
+
chunk_size (int): Size of chunks for processing.
|
|
161
|
+
"""
|
|
130
162
|
super().__init__()
|
|
131
163
|
self.beta = beta
|
|
132
164
|
self.compiled = compiled
|
|
133
165
|
self.use_ref_model = use_ref_model
|
|
134
166
|
self.num_generations = num_generations
|
|
167
|
+
self.chunk_size = chunk_size
|
|
135
168
|
|
|
136
169
|
def forward(
|
|
137
170
|
self,
|
|
@@ -157,4 +190,5 @@ class LigerFusedLinearGRPOLoss(torch.nn.Module):
|
|
|
157
190
|
self.compiled,
|
|
158
191
|
self.use_ref_model,
|
|
159
192
|
self.num_generations,
|
|
193
|
+
self.chunk_size,
|
|
160
194
|
)
|