liger-kernel 0.4.1__py3-none-any.whl → 0.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/__init__.py +0 -0
- liger_kernel/chunked_loss/__init__.py +4 -0
- liger_kernel/chunked_loss/cpo_loss.py +107 -0
- liger_kernel/chunked_loss/dpo_loss.py +135 -0
- liger_kernel/chunked_loss/functional.py +9 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +252 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +386 -0
- liger_kernel/chunked_loss/orpo_loss.py +113 -0
- liger_kernel/chunked_loss/simpo_loss.py +115 -0
- liger_kernel/env_report.py +22 -0
- liger_kernel/ops/cross_entropy.py +17 -10
- liger_kernel/ops/fused_linear_cross_entropy.py +1 -11
- liger_kernel/ops/fused_linear_jsd.py +1 -1
- liger_kernel/ops/jsd.py +19 -10
- liger_kernel/ops/layer_norm.py +6 -1
- liger_kernel/ops/qwen2vl_mrope.py +238 -0
- liger_kernel/ops/rms_norm.py +6 -1
- liger_kernel/ops/utils.py +5 -2
- liger_kernel/transformers/__init__.py +1 -0
- liger_kernel/transformers/functional.py +128 -11
- liger_kernel/transformers/fused_linear_jsd.py +1 -4
- liger_kernel/transformers/jsd.py +1 -4
- liger_kernel/transformers/model/qwen2_vl.py +43 -17
- liger_kernel/transformers/monkey_patch.py +11 -6
- liger_kernel/transformers/orpo_trainer.py +171 -0
- liger_kernel/transformers/qwen2vl_mrope.py +20 -0
- liger_kernel/utils.py +13 -0
- {liger_kernel-0.4.1.dist-info → liger_kernel-0.5.0.dist-info}/METADATA +80 -123
- {liger_kernel-0.4.1.dist-info → liger_kernel-0.5.0.dist-info}/RECORD +33 -20
- {liger_kernel-0.4.1.dist-info → liger_kernel-0.5.0.dist-info}/WHEEL +1 -1
- {liger_kernel-0.4.1.dist-info → liger_kernel-0.5.0.dist-info}/LICENSE +0 -0
- {liger_kernel-0.4.1.dist-info → liger_kernel-0.5.0.dist-info}/NOTICE +0 -0
- {liger_kernel-0.4.1.dist-info → liger_kernel-0.5.0.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: liger_kernel
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.5.0
|
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
|
@@ -32,18 +32,26 @@ License-File: LICENSE
|
|
|
32
32
|
License-File: NOTICE
|
|
33
33
|
Requires-Dist: torch>=2.1.2
|
|
34
34
|
Requires-Dist: triton>=2.3.1
|
|
35
|
+
Provides-Extra: transformers
|
|
36
|
+
Requires-Dist: transformers~=4.0; extra == "transformers"
|
|
35
37
|
Provides-Extra: dev
|
|
36
38
|
Requires-Dist: transformers>=4.44.2; extra == "dev"
|
|
39
|
+
Requires-Dist: trl>=0.11.0; extra == "dev"
|
|
37
40
|
Requires-Dist: matplotlib>=3.7.2; extra == "dev"
|
|
38
41
|
Requires-Dist: flake8>=4.0.1.1; extra == "dev"
|
|
39
42
|
Requires-Dist: black>=24.4.2; extra == "dev"
|
|
40
43
|
Requires-Dist: isort>=5.13.2; extra == "dev"
|
|
41
44
|
Requires-Dist: pytest>=7.1.2; extra == "dev"
|
|
45
|
+
Requires-Dist: pytest-xdist; extra == "dev"
|
|
46
|
+
Requires-Dist: pytest-rerunfailures; extra == "dev"
|
|
42
47
|
Requires-Dist: datasets>=2.19.2; extra == "dev"
|
|
43
48
|
Requires-Dist: torchvision>=0.16.2; extra == "dev"
|
|
44
49
|
Requires-Dist: seaborn; extra == "dev"
|
|
45
|
-
Provides-Extra:
|
|
46
|
-
Requires-Dist:
|
|
50
|
+
Provides-Extra: amd
|
|
51
|
+
Requires-Dist: torch>=2.6.0.dev; extra == "amd"
|
|
52
|
+
Requires-Dist: setuptools-scm>=8; extra == "amd"
|
|
53
|
+
Requires-Dist: torchvision>=0.20.0.dev; extra == "amd"
|
|
54
|
+
Requires-Dist: triton>=3.0.0; extra == "amd"
|
|
47
55
|
|
|
48
56
|
<a name="readme-top"></a>
|
|
49
57
|
|
|
@@ -55,7 +63,7 @@ Requires-Dist: transformers~=4.0; extra == "transformers"
|
|
|
55
63
|
<th style="padding: 10px;" colspan="2">Stable</th>
|
|
56
64
|
<th style="padding: 10px;" colspan="2">Nightly</th>
|
|
57
65
|
<th style="padding: 10px;">Discord</th>
|
|
58
|
-
<th style="padding: 10px;">
|
|
66
|
+
<th style="padding: 10px;">Build</th>
|
|
59
67
|
</tr>
|
|
60
68
|
<tr>
|
|
61
69
|
<td style="padding: 10px;">
|
|
@@ -84,9 +92,16 @@ Requires-Dist: transformers~=4.0; extra == "transformers"
|
|
|
84
92
|
</a>
|
|
85
93
|
</td>
|
|
86
94
|
<td style="padding: 10px;">
|
|
87
|
-
<
|
|
88
|
-
<
|
|
89
|
-
|
|
95
|
+
<div style="display: block;">
|
|
96
|
+
<a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/nvi-ci.yml">
|
|
97
|
+
<img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/nvi-ci.yml/badge.svg?event=schedule" alt="Build">
|
|
98
|
+
</a>
|
|
99
|
+
</div>
|
|
100
|
+
<div style="display: block;">
|
|
101
|
+
<a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/amd-ci.yml">
|
|
102
|
+
<img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/amd-ci.yml/badge.svg?event=schedule" alt="Build">
|
|
103
|
+
</a>
|
|
104
|
+
</div>
|
|
90
105
|
</td>
|
|
91
106
|
</tr>
|
|
92
107
|
</table>
|
|
@@ -95,12 +110,14 @@ Requires-Dist: transformers~=4.0; extra == "transformers"
|
|
|
95
110
|
|
|
96
111
|
<img src="https://raw.githubusercontent.com/linkedin/Liger-Kernel/main/docs/images/logo-banner.png">
|
|
97
112
|
|
|
98
|
-
[Installation](#installation) | [Getting Started](#getting-started) | [Examples](#examples) | [APIs](#apis) | [Cite our work](#cite-this-work)
|
|
113
|
+
[Installation](#installation) | [Getting Started](#getting-started) | [Examples](#examples) | [High-level APIs](#high-level-apis) | [Low-level APIs](#low-level-apis) | [Cite our work](#cite-this-work)
|
|
99
114
|
|
|
100
115
|
<details>
|
|
101
116
|
<summary>Latest News 🔥</summary>
|
|
102
|
-
|
|
103
|
-
- [2024/
|
|
117
|
+
|
|
118
|
+
- [2024/12/15] We release LinkedIn Engineering Blog - [Liger-Kernel: Empowering an open source ecosystem of Triton Kernels for Efficient LLM Training](https://www.linkedin.com/blog/engineering/open-source/liger-kernel-open-source-ecosystem-for-efficient-llm-training)
|
|
119
|
+
- [2024/11/6] We release [v0.4.0](https://github.com/linkedin/Liger-Kernel/releases/tag/v0.4.0): Full AMD support, Tech Report, Modal CI, Llama-3.2-Vision!
|
|
120
|
+
- [2024/10/21] We have released the tech report of Liger Kernel on Arxiv: https://arxiv.org/pdf/2410.10989
|
|
104
121
|
- [2024/9/6] We release v0.2.1 ([X post](https://x.com/liger_kernel/status/1832168197002510649)). 2500+ Stars, 10+ New Contributors, 50+ PRs, 50k Downloads in two weeks!
|
|
105
122
|
- [2024/8/31] CUDA MODE talk, [Liger-Kernel: Real-world Triton kernel for LLM Training](https://youtu.be/gWble4FreV4?si=dxPeIchhkJ36Mbns), [Slides](https://github.com/cuda-mode/lectures?tab=readme-ov-file#lecture-28-liger-kernel)
|
|
106
123
|
- [2024/8/23] Official release: check out our [X post](https://x.com/hsu_byron/status/1827072737673982056)
|
|
@@ -110,6 +127,8 @@ Requires-Dist: transformers~=4.0; extra == "transformers"
|
|
|
110
127
|
|
|
111
128
|
**Liger Kernel** is a collection of Triton kernels designed specifically for LLM training. It can effectively increase multi-GPU **training throughput by 20%** and reduces **memory usage by 60%**. We have implemented **Hugging Face Compatible** `RMSNorm`, `RoPE`, `SwiGLU`, `CrossEntropy`, `FusedLinearCrossEntropy`, and more to come. The kernel works out of the box with [Flash Attention](https://github.com/Dao-AILab/flash-attention), [PyTorch FSDP](https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html), and [Microsoft DeepSpeed](https://github.com/microsoft/DeepSpeed). We welcome contributions from the community to gather the best kernels for LLM training.
|
|
112
129
|
|
|
130
|
+
We've also added optimized Post-Training kernels that deliver **up to 80% memory savings** for alignment and distillation tasks. We support losses like DPO, CPO, ORPO, SimPO, JSD, and many more.
|
|
131
|
+
|
|
113
132
|
## Supercharge Your Model with Liger Kernel
|
|
114
133
|
|
|
115
134
|

|
|
@@ -127,18 +146,13 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
|
|
|
127
146
|
|
|
128
147
|
## Examples
|
|
129
148
|
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
| **
|
|
133
|
-
|
|
134
|
-
| [**
|
|
135
|
-
| [**
|
|
136
|
-
|
|
137
|
-
### Advanced
|
|
138
|
-
|
|
139
|
-
| **Example** | **Description** | **Lightning Studio** |
|
|
140
|
-
|------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
|
|
141
|
-
| [**Medusa Multi-head LLM (Retraining Phase)**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s with FSDP | TBA |
|
|
149
|
+
| **Use Case** | **Description** |
|
|
150
|
+
|------------------------------------------------|---------------------------------------------------------------------------------------------------|
|
|
151
|
+
| [**Hugging Face Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface) | Train LLaMA 3-8B ~20% faster with over 40% memory reduction on Alpaca dataset using 4 A100s with FSDP |
|
|
152
|
+
| [**Lightning Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/lightning) | Increase 15% throughput and reduce memory usage by 40% with LLaMA3-8B on MMLU dataset using 8 A100s with DeepSpeed ZeRO3 |
|
|
153
|
+
| [**Medusa Multi-head LLM (Retraining Phase)**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s with FSDP |
|
|
154
|
+
| [**Vision-Language Model SFT**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface/run_qwen2_vl.sh) | Finetune Qwen2-VL on image-text data using 4 A100s with FSDP |
|
|
155
|
+
| [**Liger ORPO Trainer**](https://github.com/linkedin/Liger-Kernel/blob/main/examples/alignment/run_orpo.py) | Align Llama 3.2 using Liger ORPO Trainer with FSDP with 50% memory reduction |
|
|
142
156
|
|
|
143
157
|
## Key Features
|
|
144
158
|
|
|
@@ -149,16 +163,9 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
|
|
|
149
163
|
- **Multi-GPU supported:** Compatible with multi-GPU setups (PyTorch FSDP, DeepSpeed, DDP, etc.).
|
|
150
164
|
- **Trainer Framework Integration**: [Axolotl](https://github.com/axolotl-ai-cloud/axolotl), [LLaMa-Factory](https://github.com/hiyouga/LLaMA-Factory), [SFTTrainer](https://github.com/huggingface/trl/releases/tag/v0.10.1), [Hugging Face Trainer](https://github.com/huggingface/transformers/pull/32860), [SWIFT](https://github.com/modelscope/ms-swift)
|
|
151
165
|
|
|
152
|
-
## Target Audiences
|
|
153
|
-
|
|
154
|
-
- **Researchers**: Looking to compose models using efficient and reliable kernels for frontier experiments.
|
|
155
|
-
- **ML Practitioners**: Focused on maximizing GPU training efficiency with optimal, high-performance kernels.
|
|
156
|
-
- **Curious Novices**: Eager to learn how to write reliable Triton kernels to enhance training efficiency.
|
|
157
|
-
|
|
158
|
-
|
|
159
166
|
## Installation
|
|
160
167
|
|
|
161
|
-
### Dependencies
|
|
168
|
+
### Dependencies
|
|
162
169
|
|
|
163
170
|
#### CUDA
|
|
164
171
|
|
|
@@ -195,6 +202,8 @@ To install from source:
|
|
|
195
202
|
git clone https://github.com/linkedin/Liger-Kernel.git
|
|
196
203
|
cd Liger-Kernel
|
|
197
204
|
pip install -e .
|
|
205
|
+
# or if installing on amd platform
|
|
206
|
+
pip install -e .[amd] --extra-index-url https://download.pytorch.org/whl/nightly/rocm6.2 # rocm6.2
|
|
198
207
|
# or if using transformers
|
|
199
208
|
pip install -e .[transformers]
|
|
200
209
|
```
|
|
@@ -261,24 +270,7 @@ loss = loss_fn(model.weight, input, target)
|
|
|
261
270
|
loss.backward()
|
|
262
271
|
```
|
|
263
272
|
|
|
264
|
-
|
|
265
|
-
## Structure
|
|
266
|
-
|
|
267
|
-
### Source Code
|
|
268
|
-
|
|
269
|
-
- `ops/`: Core Triton operations.
|
|
270
|
-
- `transformers/`: PyTorch `nn.Module` implementations built on Triton operations, compliant with the `transformers` API.
|
|
271
|
-
|
|
272
|
-
### Tests
|
|
273
|
-
|
|
274
|
-
- `transformers/`: Correctness tests for the Triton-based layers.
|
|
275
|
-
- `convergence/`: Patches Hugging Face models with all kernels, runs multiple iterations, and compares weights, logits, and loss layer-by-layer.
|
|
276
|
-
|
|
277
|
-
### Benchmark
|
|
278
|
-
|
|
279
|
-
- `benchmark/`: Execution time and memory benchmarks compared to Hugging Face layers.
|
|
280
|
-
|
|
281
|
-
## APIs
|
|
273
|
+
## High-level APIs
|
|
282
274
|
|
|
283
275
|
### AutoModel
|
|
284
276
|
|
|
@@ -297,13 +289,17 @@ loss.backward()
|
|
|
297
289
|
| Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
298
290
|
| Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
299
291
|
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
300
|
-
| Qwen2
|
|
292
|
+
| Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
301
293
|
| Qwen2-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
302
294
|
| Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
303
295
|
|
|
304
296
|
|
|
297
|
+
## Low-level APIs
|
|
305
298
|
|
|
306
|
-
|
|
299
|
+
- `Fused Linear` kernels combine linear layers with losses, reducing memory usage by up to 80% - ideal for HBM-constrained workloads.
|
|
300
|
+
- Other kernels use fusion and in-place techniques for memory and performance optimization.
|
|
301
|
+
|
|
302
|
+
### Model Kernels
|
|
307
303
|
|
|
308
304
|
| **Kernel** | **API** |
|
|
309
305
|
|---------------------------------|-------------------------------------------------------------|
|
|
@@ -313,87 +309,55 @@ loss.backward()
|
|
|
313
309
|
| SwiGLU | `liger_kernel.transformers.LigerSwiGLUMLP` |
|
|
314
310
|
| GeGLU | `liger_kernel.transformers.LigerGEGLUMLP` |
|
|
315
311
|
| CrossEntropy | `liger_kernel.transformers.LigerCrossEntropyLoss` |
|
|
316
|
-
|
|
|
317
|
-
| KLDivergence | `liger_kernel.transformers.LigerKLDIVLoss` |
|
|
318
|
-
| JSD | `liger_kernel.transformers.LigerJSD` |
|
|
319
|
-
| FusedLinearJSD | `liger_kernel.transformers.LigerFusedLinearJSD` |
|
|
320
|
-
|
|
321
|
-
- **RMSNorm**: [RMSNorm](https://arxiv.org/pdf/1910.07467), which normalizes activations using their root mean square, is implemented by fusing the normalization and scaling steps into a single Triton kernel, and achieves ~3X speedup with ~3X peak memory reduction.
|
|
322
|
-
- **LayerNorm**: [LayerNorm](https://arxiv.org/pdf/1607.06450), which centers and normalizes activations across the feature dimension, is implemented by fusing the centering, normalization and scaling steps into a single Triton kernel, and achieves ~2X speedup.
|
|
323
|
-
- **GroupNorm**: [GroupNorm](https://arxiv.org/pdf/1803.08494), which normalizes activations across the group dimension for a given sample. Channels are grouped in K groups over which the normalization is performed, is implemented by fusing the centering, normalization and scaling steps into a single Triton kernel, and can achieve up to ~2X speedup as the number of channels/groups increases.
|
|
324
|
-
- **RoPE**: [Rotary Positional Embedding](https://arxiv.org/pdf/2104.09864) is implemented by fusing the query and key embedding rotary into a single kernel with inplace replacement, and achieves ~3X speedup with ~3X peak memory reduction.
|
|
325
|
-
- **SwiGLU**: [Swish Gated Linear Units](https://arxiv.org/pdf/2002.05202), given by
|
|
326
|
-
$$\text{SwiGLU}(x)=\text{Swish}_{\beta}(xW+b)\otimes(xV+c)$$
|
|
327
|
-
, is implemented by fusing the elementwise multiplication (denoted by $\otimes$) into a single kernel with inplace replacement, and achieves parity speed with ~1.5X peak memory reduction.
|
|
328
|
-
- **GeGLU**: [GELU Gated Linear Units](https://arxiv.org/pdf/2002.05202), given by
|
|
329
|
-
$$\text{GeGLU}(x)=\text{GELU}(xW+b)\otimes(xV+c)$$
|
|
330
|
-
, is implemented by fusing the elementwise multiplication into a single kernel with inplace replacement, and achieves parity speed with ~1.5X peak memory reduction. Note that the [tanh approximation form of GELU](https://pytorch.org/docs/stable/generated/torch.nn.GELU.html) is used.
|
|
331
|
-
- **CrossEntropy**: [Cross entropy loss](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html) is implemented by computing both the loss and gradient in the forward pass with inplace replacement of input to reduce the peak memory by avoiding simultaneous materialization of both input logits and gradient. It achieves >2X speedup and >4X memory reduction for common vocab sizes (e.g., 32K, 128K, etc.).
|
|
332
|
-
<!-- TODO: verify vocab sizes are accurate -->
|
|
333
|
-
- **FusedLinearCrossEntropy**: Peak memory usage of cross entropy loss is further improved by fusing the model head with the CE loss and chunking the input for block-wise loss and gradient calculation, a technique inspired by [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy). It achieves >4X memory reduction for 128k vocab size. **This is highly effective for large batch size, large sequence length, and large vocabulary sizes.** Please refer to the [Medusa example](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) for individual kernel usage.
|
|
334
|
-
- **KLDivergence**: [KL Divergence](https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html) is implemented by fusing the forward into a single triton kernel, with reduction done outside the kernel. It achieves ~1.5X speed and ~15% memory reduction for 128K vocab size.
|
|
335
|
-
- **JSD**: [Generalized JSD](https://arxiv.org/pdf/2306.13649) (Jensen-Shannon divergence), is implemented by computing both the loss and gradient in the forward pass. It achieves ~1.5X speed and ~54% memory reduction for 128k vocab size.
|
|
336
|
-
- **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the JSD and chunking the input for block-wise loss and gradient calculation. It achieves ~85% memory reduction for 128k vocab size where batch size $\times$ sequence length is 8192.
|
|
312
|
+
| Fused Linear CrossEntropy | `liger_kernel.transformers.LigerFusedLinearCrossEntropyLoss`|
|
|
337
313
|
|
|
338
314
|
|
|
339
|
-
###
|
|
315
|
+
### Alignment Kernels
|
|
340
316
|
|
|
341
317
|
| **Kernel** | **API** |
|
|
342
318
|
|---------------------------------|-------------------------------------------------------------|
|
|
343
|
-
|
|
|
344
|
-
|
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
- **Matmul int2xint8**: is implemented by using the cache tiled matrix multiplication and by fusing the matmul with the unpacking process which achieves a considerable speed up and performs on par with @torch.compile
|
|
348
|
-
<!-- TODO: be more specific about batch size -->
|
|
349
|
-
> **Note:**
|
|
350
|
-
> Reported speedups and memory reductions are with respect to the LLaMA 3-8B Hugging Face layer implementations. All models use 4K hidden size and 4K sequence length and are evaluated based on memory usage and wall time for the forward+backward pass on a single NVIDIA A100 80G GPU using small batch sizes. Liger kernels exhibit more efficient scaling to larger batch sizes, detailed further in the [Benchmark](./benchmark) folder.
|
|
351
|
-
|
|
352
|
-
## Contributing
|
|
353
|
-
|
|
354
|
-
[CONTRIBUTING GUIDE](https://github.com/linkedin/Liger-Kernel/blob/main/CONTRIBUTING.md)
|
|
355
|
-
|
|
356
|
-
## Acknowledgement
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
### Design
|
|
360
|
-
|
|
361
|
-
- [@claire_yishan](https://twitter.com/claire_yishan) for the LOGO design
|
|
362
|
-
- [Wave Snippets](https://www.wavesnippets.com/) for generating the animated code snippets
|
|
363
|
-
|
|
364
|
-
### Code
|
|
319
|
+
| Fused Linear CPO Loss | `liger_kernel.chunked_loss.LigerFusedLinearCPOLoss` |
|
|
320
|
+
| Fused Linear DPO Loss | `liger_kernel.chunked_loss.LigerFusedLinearDPOLoss` |
|
|
321
|
+
| Fused Linear ORPO Loss | `liger_kernel.chunked_loss.LigerFusedLinearORPOLoss` |
|
|
322
|
+
| Fused Linear SimPO Loss | `liger_kernel.chunked_loss.LigerFusedLinearSimPOLoss` |
|
|
365
323
|
|
|
366
|
-
|
|
324
|
+
### Distillation Kernels
|
|
367
325
|
|
|
326
|
+
| **Kernel** | **API** |
|
|
327
|
+
|---------------------------------|-------------------------------------------------------------|
|
|
328
|
+
| KLDivergence | `liger_kernel.transformers.LigerKLDIVLoss` |
|
|
329
|
+
| JSD | `liger_kernel.transformers.LigerJSD` |
|
|
330
|
+
| Fused Linear JSD | `liger_kernel.transformers.LigerFusedLinearJSD` |
|
|
368
331
|
|
|
332
|
+
### Experimental Kernels
|
|
369
333
|
|
|
370
|
-
|
|
|
371
|
-
|
|
372
|
-
|
|
|
373
|
-
|
|
|
374
|
-
| 3 | [Triton tutorial](https://triton-lang.org/main/index.html) | We modified on top of triton tutorials | [Liger Kernel RMS Norm](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/rms_norm.py#L50) | [MIT](https://github.com/triton-lang/triton/blob/main/LICENSE) |
|
|
375
|
-
| 4 | [tiny shakespeare dataset](https://huggingface.co/datasets/karpathy/tiny_shakespeare) | We use tiny shakespeare dataset to conduct convergence test on mini model | [Liger Kernel Convergence](https://github.com/linkedin/Liger-Kernel/tree/main/test/convergence) | N/A |
|
|
376
|
-
| 5 | [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy) | We use the idea of gradient-in-forward and chunking | [Liger Kernel Linear Cross Entropy](https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/ops/fused_linear_cross_entropy.py) | [MIT](https://github.com/mgmalek/efficient_cross_entropy/blob/main/LICENSE) |
|
|
377
|
-
| 6 | [Flash attn](https://github.com/Dao-AILab/flash-attention) | We take many optimization ideas from the work, such as tiling and recomputation | | [BSD](https://github.com/Dao-AILab/flash-attention/blob/main/LICENSE) |
|
|
378
|
-
| 7 | [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) | We reference the design of automodel | [Liger Kernel Auto Model](https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/transformers/auto_model.py) | [MIT](https://github.com/casper-hansen/AutoAWQ/blob/main/LICENSE) |
|
|
379
|
-
| 8 | [llm.c](https://github.com/karpathy/llm.c) | We reference the design of end-to-end testing | [Liger Kernel Convergence Tests](https://github.com/linkedin/Liger-Kernel/tree/main/test/convergence) | [MIT](https://github.com/karpathy/llm.c/blob/master/LICENSE) |
|
|
334
|
+
| **Kernel** | **API** |
|
|
335
|
+
|---------------------------------|-------------------------------------------------------------|
|
|
336
|
+
| Embedding | `liger_kernel.transformers.experimental.LigerEmbedding` |
|
|
337
|
+
| Matmul int2xint8 | `liger_kernel.transformers.experimental.matmul` |
|
|
380
338
|
|
|
381
|
-
Many thanks to the contributors to these projects for their invaluable work that helped make Liger possible.
|
|
382
339
|
|
|
383
|
-
## License
|
|
340
|
+
## Contributing, Acknowledgements, and License
|
|
384
341
|
|
|
385
|
-
|
|
386
|
-
|
|
342
|
+
- [Contributing Guidelines](https://github.com/linkedin/Liger-Kernel/blob/main/docs/CONTRIBUTING.md)
|
|
343
|
+
- [Acknowledgements](https://github.com/linkedin/Liger-Kernel/blob/main/docs/Acknowledgement.md)
|
|
344
|
+
- [License Information](https://github.com/linkedin/Liger-Kernel/blob/main/docs/License.md)
|
|
387
345
|
|
|
388
|
-
|
|
389
|
-
|
|
390
|
-
-
|
|
391
|
-
-
|
|
392
|
-
-
|
|
346
|
+
## Sponsorship and Collaboration
|
|
347
|
+
|
|
348
|
+
- [AMD](https://www.amd.com/en.html): Providing AMD GPUs for our AMD CI.
|
|
349
|
+
- [Intel](https://www.intel.com/): Providing Intel GPUs for our Intel CI.
|
|
350
|
+
- [Modal](https://modal.com/): Free 3000 credits from GPU MODE IRL for our NVIDIA CI.
|
|
351
|
+
- [EmbeddedLLM](https://embeddedllm.com/): Making Liger Kernel run fast and stable on AMD.
|
|
352
|
+
- [HuggingFace](https://huggingface.co/): Integrating Liger Kernel into Hugging Face Transformers and TRL.
|
|
353
|
+
- [Lightning AI](https://lightning.ai/): Integrating Liger Kernel into Lightning Thunder.
|
|
354
|
+
- [Axolotl](https://axolotl.ai/): Integrating Liger Kernel into Axolotl.
|
|
355
|
+
- [Llama-Factory](https://github.com/hiyouga/LLaMA-Factory): Integrating Liger Kernel into Llama-Factory.
|
|
393
356
|
|
|
394
357
|
## Contact
|
|
395
358
|
|
|
396
|
-
- For
|
|
359
|
+
- For issues, create a Github ticket in this repository
|
|
360
|
+
- For open discussion, join [our discord channel](https://discord.gg/gpumode)
|
|
397
361
|
- For formal collaboration, send an email to byhsu@linkedin.com
|
|
398
362
|
|
|
399
363
|
## Cite this work
|
|
@@ -401,7 +365,7 @@ It also includes components from projects licensed under:
|
|
|
401
365
|
Biblatex entry:
|
|
402
366
|
```bib
|
|
403
367
|
@article{hsu2024ligerkernelefficienttriton,
|
|
404
|
-
title={Liger Kernel: Efficient Triton Kernels for LLM Training},
|
|
368
|
+
title={Liger Kernel: Efficient Triton Kernels for LLM Training},
|
|
405
369
|
author={Pin-Lun Hsu and Yun Dai and Vignesh Kothapalli and Qingquan Song and Shao Tang and Siyu Zhu and Steven Shimizu and Shivam Sahni and Haowen Ning and Yanning Chen},
|
|
406
370
|
year={2024},
|
|
407
371
|
eprint={2410.10989},
|
|
@@ -415,15 +379,8 @@ Biblatex entry:
|
|
|
415
379
|
## Star History
|
|
416
380
|
[](https://star-history.com/#linkedin/Liger-Kernel&Date)
|
|
417
381
|
|
|
418
|
-
## Contributors
|
|
419
|
-
|
|
420
|
-
<a href="https://github.com/linkedin/Liger-Kernel/graphs/contributors">
|
|
421
|
-
<img alt="contributors" src="https://contrib.rocks/image?repo=linkedin/Liger-Kernel"/>
|
|
422
|
-
</a>
|
|
423
|
-
|
|
424
382
|
<p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
|
|
425
383
|
<a href="#readme-top" style="text-decoration: none; color: #007bff; font-weight: bold;">
|
|
426
384
|
↑ Back to Top ↑
|
|
427
385
|
</a>
|
|
428
386
|
</p>
|
|
429
|
-
|
|
@@ -1,31 +1,44 @@
|
|
|
1
|
-
liger_kernel/
|
|
1
|
+
liger_kernel/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
+
liger_kernel/env_report.py,sha256=FViyPju795lB6z4k2TZldvBSmQdcS0A2hcnDxepJrDo,1822
|
|
3
|
+
liger_kernel/utils.py,sha256=HJa-xVKOohDn6pLVIx-Fv0V9h0QAL3qZGQNRICI-OpI,249
|
|
4
|
+
liger_kernel/chunked_loss/__init__.py,sha256=R2wCcz4Y0kTAve926DH3k182XKezpXeACMHj05g9Mm8,346
|
|
5
|
+
liger_kernel/chunked_loss/cpo_loss.py,sha256=Qu1Ul2A12sp6CqIT-atPbHWFb_LLtINEA9mOpIRx_0g,3097
|
|
6
|
+
liger_kernel/chunked_loss/dpo_loss.py,sha256=H9_RRhclckHYM2sd75tgbnf8IxC_PU2JCALbgtPQvwc,4222
|
|
7
|
+
liger_kernel/chunked_loss/functional.py,sha256=9Gr-YXIuEzEJkBUhDx3G2fuQayckLor7cC7svhmPML4,549
|
|
8
|
+
liger_kernel/chunked_loss/fused_linear_distillation.py,sha256=2BH6DCPjsR2zS6zcwFPcIIZRhLF8SohjGdKsAJ_301o,10222
|
|
9
|
+
liger_kernel/chunked_loss/fused_linear_preference.py,sha256=vlWfaaIECWvCQhY9PM7zRI0vKThIrydMf6P44bXn1EE,15114
|
|
10
|
+
liger_kernel/chunked_loss/orpo_loss.py,sha256=ZuKGjbkIYzV4UzvupNdq6vyxCp7-BztQkUt8ZnFvKos,3531
|
|
11
|
+
liger_kernel/chunked_loss/simpo_loss.py,sha256=Wa4LOlDG9PbJkOOkKg8hbKvnKgg7OTBz6-qIkwPK1yw,3275
|
|
2
12
|
liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
|
-
liger_kernel/ops/cross_entropy.py,sha256=
|
|
4
|
-
liger_kernel/ops/fused_linear_cross_entropy.py,sha256=
|
|
5
|
-
liger_kernel/ops/fused_linear_jsd.py,sha256=
|
|
13
|
+
liger_kernel/ops/cross_entropy.py,sha256=oG5hfrlmnlF5lOoZRhHRglObxgH4B0KadjWMJj9EWPM,15860
|
|
14
|
+
liger_kernel/ops/fused_linear_cross_entropy.py,sha256=Tnw4gyAYVVdnCOqhOuLEzbUQ3goOTnoAfk3pqSIM5ac,9301
|
|
15
|
+
liger_kernel/ops/fused_linear_jsd.py,sha256=nOv4zwfxHqqepKEmMsQuz-B3H-gRjyo8uClpmqSGLYA,9693
|
|
6
16
|
liger_kernel/ops/geglu.py,sha256=MQL4zyzneZqZYUGPvb1QjI_EYT9_pKfSDgR25WD9jrI,4127
|
|
7
17
|
liger_kernel/ops/group_norm.py,sha256=VaRErVJGR4JqgXXvuIjNGTn3E2egjLtU1y3ymwIf4d8,10961
|
|
8
|
-
liger_kernel/ops/jsd.py,sha256=
|
|
18
|
+
liger_kernel/ops/jsd.py,sha256=Ap2b0_geCl6fqBXLI1IS6Yn6GlO-8LgPmnOW3y47dus,6151
|
|
9
19
|
liger_kernel/ops/kl_div.py,sha256=03FNXfvCb6M-56hhFepAFV9p6brArPR6KOKkdGD34mw,8374
|
|
10
|
-
liger_kernel/ops/layer_norm.py,sha256=
|
|
11
|
-
liger_kernel/ops/
|
|
20
|
+
liger_kernel/ops/layer_norm.py,sha256=_CZggw3GNEIUx5weDzadFit5I-Lzosoo8prgeJzcViY,7589
|
|
21
|
+
liger_kernel/ops/qwen2vl_mrope.py,sha256=xZvQnhkSTjU-k6KiiRn9e0SYO1ESs1jmuZFMICduLpc,8552
|
|
22
|
+
liger_kernel/ops/rms_norm.py,sha256=g7OXwuYI8-LXudDwvXuiupVjjOsbu8c4wwv83VaHa54,11750
|
|
12
23
|
liger_kernel/ops/rope.py,sha256=jrzaA9-6Orn44y_IIam9_YNPQxOFK2FrIRNfFea4EtU,8513
|
|
13
24
|
liger_kernel/ops/swiglu.py,sha256=Fwxtd76rhHKT9ShQAGca9RsnASplAVxtYKHmiT73_yA,2994
|
|
14
|
-
liger_kernel/ops/utils.py,sha256=
|
|
25
|
+
liger_kernel/ops/utils.py,sha256=_VQvd1PX5JXm5xaiBrk2gANp3qr4kM7qYG3ypkBwkMs,3850
|
|
15
26
|
liger_kernel/ops/experimental/embedding.py,sha256=LYR66dB-jhvhtUjeV4PnNro-n77J1mdlmpSLSxB3Y6U,4186
|
|
16
27
|
liger_kernel/ops/experimental/mm_int8int2.py,sha256=JpGVZCgRC6T8XMUJ_QbZRS2XU1bh0urIZphs5DTc1mY,13358
|
|
17
|
-
liger_kernel/transformers/__init__.py,sha256=
|
|
28
|
+
liger_kernel/transformers/__init__.py,sha256=P5JR3fI-znhG92nRrFS2j0TIJTLhP-xD5dvEy4HP9ik,1418
|
|
18
29
|
liger_kernel/transformers/auto_model.py,sha256=RMIwQHSiXoksXFTIqFZ4PLBgoqkxJJAT3q1Qh47bGN8,1552
|
|
19
30
|
liger_kernel/transformers/cross_entropy.py,sha256=yEm_YQ7oa3_BzT3hdW6KrAslduhSqWcJQVNZZDcWCg4,1758
|
|
20
|
-
liger_kernel/transformers/functional.py,sha256=
|
|
31
|
+
liger_kernel/transformers/functional.py,sha256=sUBoU8Vb4pLpr9G6IdkRsToYgh-rCXL4OLYat7Tv_GU,4450
|
|
21
32
|
liger_kernel/transformers/fused_linear_cross_entropy.py,sha256=_i0PXSp5iZ9pKXdEeZ4lvHCENJYjV4y74yz3ZRG5XQg,1484
|
|
22
|
-
liger_kernel/transformers/fused_linear_jsd.py,sha256=
|
|
33
|
+
liger_kernel/transformers/fused_linear_jsd.py,sha256=bZ4otCvWBuOnA5XdQL-FzZVItJlDt-ht9e_pG7PG93E,3999
|
|
23
34
|
liger_kernel/transformers/geglu.py,sha256=QcrME_8ooIn0xa59LaC0aoOdRrBIFd11Y0bAyF0NfCw,1130
|
|
24
35
|
liger_kernel/transformers/group_norm.py,sha256=FJ9R7mS9G1wO-GRIQ6QKSmIhnZ6nQ6GIkE4NnX_hnn0,2241
|
|
25
|
-
liger_kernel/transformers/jsd.py,sha256=
|
|
36
|
+
liger_kernel/transformers/jsd.py,sha256=sbr8DnKSYZJH9pv2rpmboNijYGpZKbhb2-WSGp5_v6g,3001
|
|
26
37
|
liger_kernel/transformers/kl_div.py,sha256=qVhjBg6tjRyue5iZ3NFxo8uySY4JuIFJyv0IM_50F24,431
|
|
27
38
|
liger_kernel/transformers/layer_norm.py,sha256=fd6o4kSHJWolQMWxh-l1qObfgL08ruNbUoBiANKX1ow,972
|
|
28
|
-
liger_kernel/transformers/monkey_patch.py,sha256=
|
|
39
|
+
liger_kernel/transformers/monkey_patch.py,sha256=Fk2v4GZQDJzfh3Cpc6BHNJbs_tungDyWmqS9nuG9Lc4,38406
|
|
40
|
+
liger_kernel/transformers/orpo_trainer.py,sha256=mC8ePS-Oq-BrdM0lKpgSBLuYLqYsWxH_4Q2RnDthz5M,7643
|
|
41
|
+
liger_kernel/transformers/qwen2vl_mrope.py,sha256=SfSQVwOe7ArrVfpmIdfZrdzCxmcj7V-YQp9zDu17-ao,1043
|
|
29
42
|
liger_kernel/transformers/rms_norm.py,sha256=AHstklNIO1PLHjjCBU-TPuUD-Fl_pycJUTLlJNojbV8,1189
|
|
30
43
|
liger_kernel/transformers/rope.py,sha256=m-ah8vZBYW8tfplTXCiAPMHJWlB1tdp_JPXJeWE-Boo,943
|
|
31
44
|
liger_kernel/transformers/swiglu.py,sha256=0-tVJ8xEYfhxnduc16PflXFj8sZPxdx9sHUn3hfwCI4,2468
|
|
@@ -40,12 +53,12 @@ liger_kernel/transformers/model/mixtral.py,sha256=nyDS1dBpsOXYC2DuW59Hgu7ZrGftrH
|
|
|
40
53
|
liger_kernel/transformers/model/mllama.py,sha256=mesNCgj0Ea1O-fqRD4LVxDJ1CR2abY_zAzK_bfVzkiU,11222
|
|
41
54
|
liger_kernel/transformers/model/phi3.py,sha256=xUZPlaPKwknLjHc3uUW3EPodm1h0vD3G7Qnhh51v-Io,10332
|
|
42
55
|
liger_kernel/transformers/model/qwen2.py,sha256=EyhSSzQOskGjSnCsKMZpd1s5IAIlHd5PBO3q0MoCs00,9619
|
|
43
|
-
liger_kernel/transformers/model/qwen2_vl.py,sha256=
|
|
56
|
+
liger_kernel/transformers/model/qwen2_vl.py,sha256=bIQe2bWiY--G84FhCD29Gdi64_qHP6vbcGsK6vKysQE,8547
|
|
44
57
|
liger_kernel/triton/__init__.py,sha256=yfRe0zMb47QnqjecZWG7LnanfCTzeku7SgWRAwNVmzU,101
|
|
45
58
|
liger_kernel/triton/monkey_patch.py,sha256=5BcGKTtdqeYchypBIBopGIWPx1-cFALz7sOKoEsqXJ0,1584
|
|
46
|
-
liger_kernel-0.
|
|
47
|
-
liger_kernel-0.
|
|
48
|
-
liger_kernel-0.
|
|
49
|
-
liger_kernel-0.
|
|
50
|
-
liger_kernel-0.
|
|
51
|
-
liger_kernel-0.
|
|
59
|
+
liger_kernel-0.5.0.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
|
60
|
+
liger_kernel-0.5.0.dist-info/METADATA,sha256=7c5Tzf84zfQFOdXxx5nXg0wqGKH8VhsLCfTvoMN3kNM,20675
|
|
61
|
+
liger_kernel-0.5.0.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
|
62
|
+
liger_kernel-0.5.0.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
|
|
63
|
+
liger_kernel-0.5.0.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
|
64
|
+
liger_kernel-0.5.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|