liger-kernel 0.4.1__py3-none-any.whl → 0.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/__init__.py +0 -0
- liger_kernel/chunked_loss/__init__.py +4 -0
- liger_kernel/chunked_loss/cpo_loss.py +107 -0
- liger_kernel/chunked_loss/dpo_loss.py +135 -0
- liger_kernel/chunked_loss/functional.py +9 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +252 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +386 -0
- liger_kernel/chunked_loss/orpo_loss.py +113 -0
- liger_kernel/chunked_loss/simpo_loss.py +115 -0
- liger_kernel/env_report.py +22 -0
- liger_kernel/ops/cross_entropy.py +17 -10
- liger_kernel/ops/fused_linear_cross_entropy.py +1 -11
- liger_kernel/ops/fused_linear_jsd.py +1 -1
- liger_kernel/ops/jsd.py +19 -10
- liger_kernel/ops/layer_norm.py +6 -1
- liger_kernel/ops/qwen2vl_mrope.py +238 -0
- liger_kernel/ops/rms_norm.py +6 -1
- liger_kernel/ops/utils.py +5 -2
- liger_kernel/transformers/__init__.py +1 -0
- liger_kernel/transformers/functional.py +128 -11
- liger_kernel/transformers/fused_linear_jsd.py +1 -4
- liger_kernel/transformers/jsd.py +1 -4
- liger_kernel/transformers/model/qwen2_vl.py +43 -17
- liger_kernel/transformers/monkey_patch.py +11 -6
- liger_kernel/transformers/orpo_trainer.py +171 -0
- liger_kernel/transformers/qwen2vl_mrope.py +20 -0
- liger_kernel/utils.py +13 -0
- {liger_kernel-0.4.1.dist-info → liger_kernel-0.5.0.dist-info}/METADATA +80 -123
- {liger_kernel-0.4.1.dist-info → liger_kernel-0.5.0.dist-info}/RECORD +33 -20
- {liger_kernel-0.4.1.dist-info → liger_kernel-0.5.0.dist-info}/WHEEL +1 -1
- {liger_kernel-0.4.1.dist-info → liger_kernel-0.5.0.dist-info}/LICENSE +0 -0
- {liger_kernel-0.4.1.dist-info → liger_kernel-0.5.0.dist-info}/NOTICE +0 -0
- {liger_kernel-0.4.1.dist-info → liger_kernel-0.5.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,386 @@
|
|
|
1
|
+
from abc import abstractmethod
|
|
2
|
+
from functools import partial
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
from torch.nn import functional as F
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
9
|
+
|
|
10
|
+
@abstractmethod
|
|
11
|
+
def preference_loss_fn(*args, **kwargs):
|
|
12
|
+
"""
|
|
13
|
+
To be extended by subclasses.
|
|
14
|
+
"""
|
|
15
|
+
raise NotImplementedError("Preference loss function must be implemented.")
|
|
16
|
+
|
|
17
|
+
@staticmethod
|
|
18
|
+
def forward(
|
|
19
|
+
ctx,
|
|
20
|
+
_input,
|
|
21
|
+
weight,
|
|
22
|
+
target,
|
|
23
|
+
bias=None,
|
|
24
|
+
loss_fn=None,
|
|
25
|
+
chunk_size=1,
|
|
26
|
+
ignore_index=-100,
|
|
27
|
+
alpha=1.0,
|
|
28
|
+
beta=0.1,
|
|
29
|
+
compute_nll_loss=True,
|
|
30
|
+
compiled=True,
|
|
31
|
+
use_ref_model=False,
|
|
32
|
+
# TODO: ref input
|
|
33
|
+
ref_weight=None,
|
|
34
|
+
ref_bias=None,
|
|
35
|
+
**loss_kwargs,
|
|
36
|
+
):
|
|
37
|
+
"""
|
|
38
|
+
Base class for fused linear layer with preference loss.
|
|
39
|
+
Expects _input to be stacked with chosen and rejected inputs on the batch dimension.
|
|
40
|
+
|
|
41
|
+
The mental model is:
|
|
42
|
+
|
|
43
|
+
forward()
|
|
44
|
+
├── Loop over chunks
|
|
45
|
+
└── compute_loss()
|
|
46
|
+
├── chunk_forward() # Compute logits and log probs
|
|
47
|
+
└── prefer_loss() # Calculate preference loss
|
|
48
|
+
|
|
49
|
+
Args:
|
|
50
|
+
_input (torch.Tensor): Input tensor. Shape: (batch_size, seq_len, hidden_size).
|
|
51
|
+
weight (torch.Tensor): Weight tensor. Shape: (vocab_size, hidden_size).
|
|
52
|
+
target (torch.Tensor): Target tensor. Shape: (batch_size, seq_len).
|
|
53
|
+
bias (torch.Tensor, optional): Bias tensor. Shape: (vocab_size,).
|
|
54
|
+
loss_fn (callable): Loss function to compute the loss on a chunk of input/target.
|
|
55
|
+
chunk_size (int): Size of a chunk (# of batches of stacked chosen and rejected inputs).
|
|
56
|
+
ignore_index (int): Index to ignore for loss computation.
|
|
57
|
+
alpha (float): Weight for the NLL loss.
|
|
58
|
+
beta (float): Weight for the preference loss.
|
|
59
|
+
compute_nll_loss (bool): Whether to compute NLL loss.
|
|
60
|
+
compiled (bool): Whether to use torch compile for chunk accumulation.
|
|
61
|
+
use_ref_model (bool): Whether to use a reference model for the alignment loss.
|
|
62
|
+
ref_weight (torch.Tensor): Reference weight tensor. Shape: (vocab_size, hidden_size).
|
|
63
|
+
ref_bias (torch.Tensor, optional): Reference bias tensor. Shape: (vocab_size,).
|
|
64
|
+
loss_kwargs (dict): Other possible arguments that a loss function might need
|
|
65
|
+
"""
|
|
66
|
+
# TODO: Tune CHUNK_SIZE to fully utilize the GPU
|
|
67
|
+
CHUNK_SIZE = chunk_size
|
|
68
|
+
|
|
69
|
+
# Gradients to be accumulated
|
|
70
|
+
grad_weight = torch.zeros_like(weight)
|
|
71
|
+
grad_chosen_inputs = []
|
|
72
|
+
grad_rejected_inputs = []
|
|
73
|
+
grad_bias = torch.zeros_like(bias) if bias is not None else None
|
|
74
|
+
|
|
75
|
+
# Loss to be accumulated
|
|
76
|
+
loss_acc = torch.zeros((), device=_input.device)
|
|
77
|
+
|
|
78
|
+
# Metrics to be recorded
|
|
79
|
+
policy_chosen_logps = []
|
|
80
|
+
policy_rejected_logps = []
|
|
81
|
+
policy_chosen_logits_mean = torch.zeros((), device=_input.device)
|
|
82
|
+
policy_rejected_logits_mean = torch.zeros((), device=_input.device)
|
|
83
|
+
policy_nll_loss = torch.zeros((), device=_input.device)
|
|
84
|
+
aggregated_aux_outputs = [] # aggregated aux outputs from all chunks
|
|
85
|
+
|
|
86
|
+
compute_loss = partial(
|
|
87
|
+
LigerFusedLinearPreferenceBase._compute_loss,
|
|
88
|
+
preference_loss_fn=loss_fn,
|
|
89
|
+
ignore_index=ignore_index,
|
|
90
|
+
alpha=alpha,
|
|
91
|
+
beta=beta,
|
|
92
|
+
compute_nll_loss=compute_nll_loss,
|
|
93
|
+
full_target=target,
|
|
94
|
+
use_ref_model=use_ref_model,
|
|
95
|
+
ref_weight=ref_weight,
|
|
96
|
+
ref_bias=ref_bias,
|
|
97
|
+
**loss_kwargs,
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
def fused_fwd_bwd(input_chunk, target_chunk):
|
|
101
|
+
"""
|
|
102
|
+
Fused forward and backward pass for a chunk of input and target.
|
|
103
|
+
"""
|
|
104
|
+
if bias is not None:
|
|
105
|
+
return torch.func.grad_and_value(
|
|
106
|
+
compute_loss, argnums=(0, 1, 3), has_aux=True
|
|
107
|
+
)(input_chunk, weight, target_chunk, bias)
|
|
108
|
+
else:
|
|
109
|
+
return torch.func.grad_and_value(
|
|
110
|
+
compute_loss, argnums=(0, 1), has_aux=True
|
|
111
|
+
)(input_chunk, weight, target_chunk)
|
|
112
|
+
|
|
113
|
+
def accumulate_chunk(input_chunk, target_chunk):
|
|
114
|
+
if bias is not None:
|
|
115
|
+
(chunk_grad_input, chunk_grad_weight, chunk_grad_bias), (
|
|
116
|
+
chunk_loss,
|
|
117
|
+
(
|
|
118
|
+
chunk_chosen_logps,
|
|
119
|
+
chunk_rejected_logps,
|
|
120
|
+
chunk_chosen_logits_mean,
|
|
121
|
+
chunk_rejected_logits_mean,
|
|
122
|
+
chunk_nll_loss,
|
|
123
|
+
*aux_outputs,
|
|
124
|
+
),
|
|
125
|
+
) = fused_fwd_bwd(input_chunk, target_chunk)
|
|
126
|
+
grad_bias.add_(chunk_grad_bias) # accumulate bias gradient
|
|
127
|
+
else:
|
|
128
|
+
(chunk_grad_input, chunk_grad_weight), (
|
|
129
|
+
chunk_loss,
|
|
130
|
+
(
|
|
131
|
+
chunk_chosen_logps,
|
|
132
|
+
chunk_rejected_logps,
|
|
133
|
+
chunk_chosen_logits_mean,
|
|
134
|
+
chunk_rejected_logits_mean,
|
|
135
|
+
chunk_nll_loss,
|
|
136
|
+
*aux_outputs,
|
|
137
|
+
),
|
|
138
|
+
) = fused_fwd_bwd(input_chunk, target_chunk)
|
|
139
|
+
|
|
140
|
+
# Accumulate gradients
|
|
141
|
+
grad_weight.add_(chunk_grad_weight)
|
|
142
|
+
grad_chosen_inputs.append(chunk_grad_input[: chosen_target_chunk.shape[0]])
|
|
143
|
+
grad_rejected_inputs.append(
|
|
144
|
+
chunk_grad_input[chosen_target_chunk.shape[0] :]
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
# Accumulate loss
|
|
148
|
+
loss_acc.add_(chunk_loss)
|
|
149
|
+
|
|
150
|
+
# Accumulate metrics
|
|
151
|
+
policy_chosen_logps.append(chunk_chosen_logps)
|
|
152
|
+
policy_rejected_logps.append(chunk_rejected_logps)
|
|
153
|
+
policy_chosen_logits_mean.add_(chunk_chosen_logits_mean)
|
|
154
|
+
policy_rejected_logits_mean.add_(chunk_rejected_logits_mean)
|
|
155
|
+
policy_nll_loss.add_(chunk_nll_loss)
|
|
156
|
+
|
|
157
|
+
# aux_outputs
|
|
158
|
+
# Initialize storage for aux_outputs
|
|
159
|
+
if len(aggregated_aux_outputs) == 0:
|
|
160
|
+
for aux in aux_outputs:
|
|
161
|
+
if aux.ndim == 0:
|
|
162
|
+
aggregated_aux_outputs.append(
|
|
163
|
+
torch.zeros((), device=aux.device)
|
|
164
|
+
)
|
|
165
|
+
else:
|
|
166
|
+
aggregated_aux_outputs.append([])
|
|
167
|
+
|
|
168
|
+
# Process each aux_output
|
|
169
|
+
for i, aux in enumerate(aux_outputs):
|
|
170
|
+
if aux.ndim == 0:
|
|
171
|
+
aggregated_aux_outputs[i].add_(aux)
|
|
172
|
+
else:
|
|
173
|
+
aggregated_aux_outputs[i].append(aux)
|
|
174
|
+
|
|
175
|
+
if compiled:
|
|
176
|
+
fused_fwd_bwd = torch.compile(fused_fwd_bwd)
|
|
177
|
+
|
|
178
|
+
len_chosen = target.shape[0] // 2
|
|
179
|
+
chunks = max(1, _input.shape[0] // (2 * CHUNK_SIZE))
|
|
180
|
+
_chosen_input_chunks = torch.chunk(_input[:len_chosen], chunks=chunks, dim=0)
|
|
181
|
+
_chosen_target_chunks = torch.chunk(target[:len_chosen], chunks=chunks, dim=0)
|
|
182
|
+
_rejected_input_chunks = torch.chunk(_input[len_chosen:], chunks=chunks, dim=0)
|
|
183
|
+
_rejected_target_chunks = torch.chunk(target[len_chosen:], chunks=chunks, dim=0)
|
|
184
|
+
|
|
185
|
+
for (
|
|
186
|
+
chosen_input_chunk,
|
|
187
|
+
rejected_input_chunk,
|
|
188
|
+
chosen_target_chunk,
|
|
189
|
+
rejected_target_chunk,
|
|
190
|
+
) in zip(
|
|
191
|
+
_chosen_input_chunks,
|
|
192
|
+
_rejected_input_chunks,
|
|
193
|
+
_chosen_target_chunks,
|
|
194
|
+
_rejected_target_chunks,
|
|
195
|
+
):
|
|
196
|
+
input_chunk = torch.cat([chosen_input_chunk, rejected_input_chunk], dim=0)
|
|
197
|
+
target_chunk = torch.cat(
|
|
198
|
+
[chosen_target_chunk, rejected_target_chunk], dim=0
|
|
199
|
+
)
|
|
200
|
+
|
|
201
|
+
# mark input_chunk, target_chunk, and target dimension 1 as dynamic to prevent torch.compile recompilation
|
|
202
|
+
torch._dynamo.mark_dynamic(input_chunk, 1)
|
|
203
|
+
torch._dynamo.mark_dynamic(target_chunk, 1)
|
|
204
|
+
torch._dynamo.mark_dynamic(target, 1)
|
|
205
|
+
|
|
206
|
+
# accumulate loss, gradients, and metrics
|
|
207
|
+
accumulate_chunk(input_chunk, target_chunk)
|
|
208
|
+
|
|
209
|
+
# combine grad_chosen_inputs and grad_rejected_inputs
|
|
210
|
+
grad_inputs = grad_chosen_inputs + grad_rejected_inputs
|
|
211
|
+
policy_chosen_logps = torch.cat(policy_chosen_logps, dim=0)
|
|
212
|
+
policy_rejected_logps = torch.cat(policy_rejected_logps, dim=0)
|
|
213
|
+
|
|
214
|
+
# Aggregate aux outputs lists into tensors
|
|
215
|
+
for i, aux in enumerate(aggregated_aux_outputs):
|
|
216
|
+
if isinstance(aux, list):
|
|
217
|
+
aggregated_aux_outputs[i] = torch.cat(aux, dim=0)
|
|
218
|
+
|
|
219
|
+
ctx.save_for_backward(
|
|
220
|
+
torch.cat(grad_inputs, dim=0),
|
|
221
|
+
grad_weight,
|
|
222
|
+
grad_bias,
|
|
223
|
+
)
|
|
224
|
+
return_vars = (
|
|
225
|
+
policy_chosen_logps,
|
|
226
|
+
policy_rejected_logps,
|
|
227
|
+
policy_chosen_logits_mean,
|
|
228
|
+
policy_rejected_logits_mean,
|
|
229
|
+
policy_nll_loss,
|
|
230
|
+
)
|
|
231
|
+
return loss_acc, (*return_vars, *aggregated_aux_outputs)
|
|
232
|
+
|
|
233
|
+
@staticmethod
|
|
234
|
+
def backward(ctx, *grad_output):
|
|
235
|
+
grad_input, grad_weight, grad_bias = ctx.saved_tensors
|
|
236
|
+
if torch.ne(
|
|
237
|
+
grad_output[0][0], torch.tensor(1.0, device=grad_output[0][0].device)
|
|
238
|
+
):
|
|
239
|
+
grad_input = grad_input * grad_output[0][0]
|
|
240
|
+
grad_weight = grad_weight * grad_output[0][0]
|
|
241
|
+
grad_bias = grad_bias * grad_output[0][0] if grad_bias is not None else None
|
|
242
|
+
|
|
243
|
+
return grad_input, grad_weight, None, grad_bias, None, None, None
|
|
244
|
+
|
|
245
|
+
@staticmethod
|
|
246
|
+
def chunk_forward(
|
|
247
|
+
input_chunk,
|
|
248
|
+
weight,
|
|
249
|
+
target_chunk,
|
|
250
|
+
bias=None,
|
|
251
|
+
ignore_index=-100,
|
|
252
|
+
compute_nll_loss=True,
|
|
253
|
+
):
|
|
254
|
+
len_chosen_chunk = target_chunk.shape[0] // 2
|
|
255
|
+
logits_chunk = input_chunk @ weight.t()
|
|
256
|
+
if bias is not None:
|
|
257
|
+
logits_chunk = logits_chunk + bias
|
|
258
|
+
log_probs_chunk = F.log_softmax(logits_chunk.float(), dim=-1)
|
|
259
|
+
|
|
260
|
+
chosen_nll_loss = 0.0
|
|
261
|
+
if compute_nll_loss:
|
|
262
|
+
chosen_nll_loss = F.nll_loss(
|
|
263
|
+
log_probs_chunk[:len_chosen_chunk].view(-1, log_probs_chunk.shape[-1]),
|
|
264
|
+
target_chunk[:len_chosen_chunk].view(-1),
|
|
265
|
+
reduction="sum",
|
|
266
|
+
ignore_index=ignore_index,
|
|
267
|
+
)
|
|
268
|
+
|
|
269
|
+
loss_mask = target_chunk != ignore_index
|
|
270
|
+
label_chunk = torch.where(loss_mask, target_chunk, 0)
|
|
271
|
+
|
|
272
|
+
per_token_logps = log_probs_chunk.gather(-1, label_chunk.unsqueeze(-1)).squeeze(
|
|
273
|
+
-1
|
|
274
|
+
)
|
|
275
|
+
average_log_prob = (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
|
|
276
|
+
|
|
277
|
+
chosen_logps = average_log_prob[:len_chosen_chunk]
|
|
278
|
+
rejected_logps = average_log_prob[len_chosen_chunk:]
|
|
279
|
+
|
|
280
|
+
chosen_logits = logits_chunk[:len_chosen_chunk]
|
|
281
|
+
rejected_logits = logits_chunk[len_chosen_chunk:]
|
|
282
|
+
|
|
283
|
+
return (
|
|
284
|
+
chosen_logps,
|
|
285
|
+
rejected_logps,
|
|
286
|
+
chosen_logits,
|
|
287
|
+
rejected_logits,
|
|
288
|
+
chosen_nll_loss,
|
|
289
|
+
)
|
|
290
|
+
|
|
291
|
+
@staticmethod
|
|
292
|
+
def _compute_loss(
|
|
293
|
+
input_chunk,
|
|
294
|
+
weight,
|
|
295
|
+
target_chunk,
|
|
296
|
+
bias=None,
|
|
297
|
+
preference_loss_fn=None,
|
|
298
|
+
full_target=None,
|
|
299
|
+
ignore_index=-100,
|
|
300
|
+
alpha=1.0,
|
|
301
|
+
beta=0.1,
|
|
302
|
+
compute_nll_loss=True,
|
|
303
|
+
use_ref_model=False,
|
|
304
|
+
ref_weight=None,
|
|
305
|
+
ref_bias=None,
|
|
306
|
+
**loss_kwargs,
|
|
307
|
+
):
|
|
308
|
+
"""
|
|
309
|
+
Compute the total loss for a chunk of input and target, while using an alignment/preference loss function.
|
|
310
|
+
Args:
|
|
311
|
+
preference_loss_fn (callable): Loss function to compute the loss on a chunk of input/target.
|
|
312
|
+
input_chunk (torch.Tensor): Chunk of input tensor. Shape: (2 * chunk_size, sequence_length, hidden_size).
|
|
313
|
+
weight (torch.Tensor): Weight tensor. Shape: (vocab_size, hidden_size).
|
|
314
|
+
target_chunk (torch.Tensor): Chunk of target tensor. Shape: (2 * chunk_size, sequence_length).
|
|
315
|
+
bias (torch.Tensor, optional): Bias tensor. Shape: (vocab_size,).
|
|
316
|
+
full_target (torch.Tensor): Full target tensor. Shape: (batch_size, sequence_length).
|
|
317
|
+
ignore_index (int): Index to ignore for loss computation.
|
|
318
|
+
alpha (float): Weight for the NLL loss.
|
|
319
|
+
beta (float): Weight for the preference loss.
|
|
320
|
+
compute_nll_loss (bool): Whether to compute NLL loss.
|
|
321
|
+
use_ref_model (bool): Whether to use a reference model for the alignment loss.
|
|
322
|
+
ref_weight (torch.Tensor): Reference weight tensor. Shape: (vocab_size, hidden_size).
|
|
323
|
+
ref_bias (torch.Tensor, optional): Reference bias tensor. Shape: (vocab_size,).
|
|
324
|
+
loss_kwargs (dict): Additional arguments for the loss function.
|
|
325
|
+
"""
|
|
326
|
+
(
|
|
327
|
+
chosen_logps,
|
|
328
|
+
rejected_logps,
|
|
329
|
+
chosen_logits,
|
|
330
|
+
rejected_logits,
|
|
331
|
+
chosen_nll_loss,
|
|
332
|
+
) = LigerFusedLinearPreferenceBase.chunk_forward(
|
|
333
|
+
input_chunk,
|
|
334
|
+
weight,
|
|
335
|
+
target_chunk,
|
|
336
|
+
bias=bias,
|
|
337
|
+
ignore_index=ignore_index,
|
|
338
|
+
compute_nll_loss=compute_nll_loss,
|
|
339
|
+
)
|
|
340
|
+
chosen_nll_loss = (
|
|
341
|
+
chosen_nll_loss
|
|
342
|
+
/ (full_target[: full_target.shape[0] // 2] != ignore_index).sum()
|
|
343
|
+
)
|
|
344
|
+
chosen_logits_mean = chosen_logits.sum() / (
|
|
345
|
+
full_target.shape[0] // 2 * input_chunk.shape[1] * weight.shape[0]
|
|
346
|
+
)
|
|
347
|
+
rejected_logits_mean = rejected_logits.sum() / (
|
|
348
|
+
full_target.shape[0] // 2 * input_chunk.shape[1] * weight.shape[0]
|
|
349
|
+
)
|
|
350
|
+
|
|
351
|
+
if use_ref_model:
|
|
352
|
+
with torch.no_grad():
|
|
353
|
+
(
|
|
354
|
+
ref_chosen_logps,
|
|
355
|
+
ref_rejected_logps,
|
|
356
|
+
ref_chosen_logits,
|
|
357
|
+
ref_rejected_logits,
|
|
358
|
+
ref_chosen_nll_loss,
|
|
359
|
+
) = LigerFusedLinearPreferenceBase.chunk_forward(
|
|
360
|
+
input_chunk,
|
|
361
|
+
ref_weight,
|
|
362
|
+
target_chunk,
|
|
363
|
+
ref_bias,
|
|
364
|
+
ignore_index=ignore_index,
|
|
365
|
+
compute_nll_loss=False, # We don't need NLL loss for the reference model
|
|
366
|
+
)
|
|
367
|
+
loss_kwargs["ref_chosen_logps"] = ref_chosen_logps
|
|
368
|
+
loss_kwargs["ref_rejected_logps"] = ref_rejected_logps
|
|
369
|
+
|
|
370
|
+
preference_loss_outputs = preference_loss_fn(
|
|
371
|
+
chosen_logps, rejected_logps, full_target, beta=beta, **loss_kwargs
|
|
372
|
+
)
|
|
373
|
+
if isinstance(preference_loss_outputs, tuple):
|
|
374
|
+
preference_loss, *aux_outputs = preference_loss_outputs
|
|
375
|
+
else:
|
|
376
|
+
preference_loss, aux_outputs = preference_loss_outputs, []
|
|
377
|
+
|
|
378
|
+
loss = alpha * chosen_nll_loss - preference_loss
|
|
379
|
+
return_vars = (
|
|
380
|
+
chosen_logps,
|
|
381
|
+
rejected_logps,
|
|
382
|
+
chosen_logits_mean,
|
|
383
|
+
rejected_logits_mean,
|
|
384
|
+
chosen_nll_loss,
|
|
385
|
+
)
|
|
386
|
+
return loss, (*return_vars, *aux_outputs)
|
|
@@ -0,0 +1,113 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn.functional as F
|
|
3
|
+
|
|
4
|
+
from liger_kernel.chunked_loss.fused_linear_preference import (
|
|
5
|
+
LigerFusedLinearPreferenceBase,
|
|
6
|
+
)
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class LigerFusedLinearORPOFunction(LigerFusedLinearPreferenceBase):
|
|
10
|
+
|
|
11
|
+
@staticmethod
|
|
12
|
+
def preference_loss_fn(chosen_logps, rejected_logps, full_target, beta=0.1):
|
|
13
|
+
"""
|
|
14
|
+
Paper: https://arxiv.org/pdf/2403.07691
|
|
15
|
+
|
|
16
|
+
Formula:
|
|
17
|
+
Compute odds-ratio loss: L_OR = -log(σ(log(odds_θ(y_w|x) / odds_θ(y_l|x))))
|
|
18
|
+
where odds_θ(y|x) = P_θ(y|x) / (1 - P_θ(y|x))
|
|
19
|
+
|
|
20
|
+
Where:
|
|
21
|
+
- P_θ(y|x): Policy (model) probability
|
|
22
|
+
- y_w: Chosen sequence
|
|
23
|
+
- y_l: Rejected sequence
|
|
24
|
+
- σ: Sigmoid function
|
|
25
|
+
- β: Weight for the odds ratio loss
|
|
26
|
+
- odds_θ: Odds function for the policy
|
|
27
|
+
|
|
28
|
+
Args:
|
|
29
|
+
chosen_logps (torch.Tensor): Avg log probabilities of chosen tokens. Shape: (batch_size,).
|
|
30
|
+
rejected_logps (torch.Tensor): Avg log probabilities of rejected tokens. Shape: (batch_size,).
|
|
31
|
+
full_target (torch.Tensor): Non chunked full target tensor
|
|
32
|
+
beta (float): Weight for the odds ratio loss.
|
|
33
|
+
"""
|
|
34
|
+
log_odds = (chosen_logps - rejected_logps) - (
|
|
35
|
+
torch.log1p(-torch.exp(chosen_logps))
|
|
36
|
+
- torch.log1p(-torch.exp(rejected_logps))
|
|
37
|
+
)
|
|
38
|
+
ratio = F.logsigmoid(log_odds)
|
|
39
|
+
loss = beta * ratio.sum() / (full_target.shape[0] // 2)
|
|
40
|
+
|
|
41
|
+
chosen_rewards = beta * chosen_logps
|
|
42
|
+
rejected_rewards = beta * rejected_logps
|
|
43
|
+
|
|
44
|
+
log_odds_ratio = torch.sum(ratio) / (full_target.shape[0] // 2)
|
|
45
|
+
log_odds_chosen = torch.sum(log_odds) / (full_target.shape[0] // 2)
|
|
46
|
+
|
|
47
|
+
return loss, chosen_rewards, rejected_rewards, log_odds_ratio, log_odds_chosen
|
|
48
|
+
|
|
49
|
+
@staticmethod
|
|
50
|
+
def forward(
|
|
51
|
+
ctx,
|
|
52
|
+
_input,
|
|
53
|
+
weight,
|
|
54
|
+
target,
|
|
55
|
+
bias=None,
|
|
56
|
+
ignore_index=-100,
|
|
57
|
+
beta=0.1,
|
|
58
|
+
compute_nll_loss=True,
|
|
59
|
+
compiled=True,
|
|
60
|
+
):
|
|
61
|
+
return LigerFusedLinearPreferenceBase.forward(
|
|
62
|
+
ctx=ctx,
|
|
63
|
+
_input=_input,
|
|
64
|
+
weight=weight,
|
|
65
|
+
target=target,
|
|
66
|
+
bias=bias,
|
|
67
|
+
loss_fn=LigerFusedLinearORPOFunction.preference_loss_fn,
|
|
68
|
+
ignore_index=ignore_index,
|
|
69
|
+
beta=beta,
|
|
70
|
+
compute_nll_loss=compute_nll_loss,
|
|
71
|
+
compiled=compiled,
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
@staticmethod
|
|
75
|
+
def backward(ctx, *grad_output):
|
|
76
|
+
grads = LigerFusedLinearPreferenceBase.backward(ctx, grad_output)[:4]
|
|
77
|
+
return *grads, None, None, None, None
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
class LigerFusedLinearORPOLoss(torch.nn.Module):
|
|
81
|
+
"""
|
|
82
|
+
Fused linear layer with ORPO (Odds-Ratio Preference Optimization) loss.
|
|
83
|
+
"""
|
|
84
|
+
|
|
85
|
+
def __init__(
|
|
86
|
+
self,
|
|
87
|
+
ignore_index: int = -100,
|
|
88
|
+
beta: float = 0.1,
|
|
89
|
+
compute_nll_loss: bool = True,
|
|
90
|
+
compiled: bool = True,
|
|
91
|
+
):
|
|
92
|
+
"""
|
|
93
|
+
Args:
|
|
94
|
+
ignore_index (int): Index to ignore in the loss.
|
|
95
|
+
beta (float): Weight for the odds ratio loss.
|
|
96
|
+
"""
|
|
97
|
+
super().__init__()
|
|
98
|
+
self.ignore_index = ignore_index
|
|
99
|
+
self.beta = beta
|
|
100
|
+
self.compute_nll_loss = compute_nll_loss
|
|
101
|
+
self.compiled = compiled
|
|
102
|
+
|
|
103
|
+
def forward(self, lin_weight, _input, target, bias=None):
|
|
104
|
+
return LigerFusedLinearORPOFunction.apply(
|
|
105
|
+
_input,
|
|
106
|
+
lin_weight,
|
|
107
|
+
target,
|
|
108
|
+
bias,
|
|
109
|
+
self.ignore_index,
|
|
110
|
+
self.beta,
|
|
111
|
+
self.compute_nll_loss,
|
|
112
|
+
self.compiled,
|
|
113
|
+
)
|
|
@@ -0,0 +1,115 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn.functional as F
|
|
3
|
+
|
|
4
|
+
from liger_kernel.chunked_loss.fused_linear_preference import (
|
|
5
|
+
LigerFusedLinearPreferenceBase,
|
|
6
|
+
)
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class LigerFusedLinearSimPOFunction(LigerFusedLinearPreferenceBase):
|
|
10
|
+
|
|
11
|
+
@staticmethod
|
|
12
|
+
def preference_loss_fn(
|
|
13
|
+
chosen_logps, rejected_logps, full_target, beta=0.1, gamma=0.5
|
|
14
|
+
):
|
|
15
|
+
"""
|
|
16
|
+
Paper: https://arxiv.org/pdf/2405.14734
|
|
17
|
+
|
|
18
|
+
Formula:
|
|
19
|
+
L_SimPO(π_θ) = -E [log σ(β/|y_w| log π_θ(y_w|x) - β/|y_l| log π_θ(y_l|x) - γ)]
|
|
20
|
+
|
|
21
|
+
Where:
|
|
22
|
+
- π_θ(y|x): Policy (model) probability
|
|
23
|
+
- y_w: Chosen sequence
|
|
24
|
+
- y_l: Rejected sequence
|
|
25
|
+
- |y_w|, |y_l|: Sequence lengths
|
|
26
|
+
- σ: Sigmoid function
|
|
27
|
+
- β: beta weight
|
|
28
|
+
- γ: gemma margin term
|
|
29
|
+
|
|
30
|
+
Args:
|
|
31
|
+
chosen_logps (torch.Tensor): Avg log probabilities of chosen tokens. Shape: (batch_size,).
|
|
32
|
+
rejected_logps (torch.Tensor): Avg log probabilities of rejected tokens. Shape: (batch_size,).
|
|
33
|
+
full_target: Non chunked full target tensor
|
|
34
|
+
beta (float): beta weight
|
|
35
|
+
gamma (float): gemma margin term
|
|
36
|
+
"""
|
|
37
|
+
logits = beta * (chosen_logps - rejected_logps) - gamma
|
|
38
|
+
loss = F.logsigmoid(logits).sum() / (full_target.shape[0] // 2)
|
|
39
|
+
return loss
|
|
40
|
+
|
|
41
|
+
@staticmethod
|
|
42
|
+
def forward(
|
|
43
|
+
ctx,
|
|
44
|
+
_input,
|
|
45
|
+
weight,
|
|
46
|
+
target,
|
|
47
|
+
bias=None,
|
|
48
|
+
ignore_index=-100,
|
|
49
|
+
beta=0.1,
|
|
50
|
+
alpha=1.0,
|
|
51
|
+
compute_nll_loss=False,
|
|
52
|
+
compiled=True,
|
|
53
|
+
gamma=0.5,
|
|
54
|
+
):
|
|
55
|
+
return LigerFusedLinearPreferenceBase.forward(
|
|
56
|
+
ctx,
|
|
57
|
+
_input,
|
|
58
|
+
weight,
|
|
59
|
+
target,
|
|
60
|
+
bias,
|
|
61
|
+
loss_fn=LigerFusedLinearSimPOFunction.preference_loss_fn,
|
|
62
|
+
compute_nll_loss=compute_nll_loss,
|
|
63
|
+
ignore_index=ignore_index,
|
|
64
|
+
alpha=alpha,
|
|
65
|
+
beta=beta,
|
|
66
|
+
compiled=compiled,
|
|
67
|
+
gamma=gamma,
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
@staticmethod
|
|
71
|
+
def backward(ctx, *grad_output):
|
|
72
|
+
grads = LigerFusedLinearPreferenceBase.backward(ctx, grad_output)[:4]
|
|
73
|
+
return *grads, None, None, None, None, None, None
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
class LigerFusedLinearSimPOLoss(torch.nn.Module):
|
|
77
|
+
"""
|
|
78
|
+
Fused linear layer with SimPO loss.
|
|
79
|
+
"""
|
|
80
|
+
|
|
81
|
+
def __init__(
|
|
82
|
+
self,
|
|
83
|
+
ignore_index: int = -100,
|
|
84
|
+
beta: float = 0.1,
|
|
85
|
+
alpha: float = 1.0,
|
|
86
|
+
compute_nll_loss: bool = True,
|
|
87
|
+
compiled: bool = True,
|
|
88
|
+
gamma: float = 0.5,
|
|
89
|
+
):
|
|
90
|
+
"""
|
|
91
|
+
Args:
|
|
92
|
+
ignore_index (int): Index to ignore in the loss.
|
|
93
|
+
beta (float): Weight for the odds ratio loss.
|
|
94
|
+
"""
|
|
95
|
+
super().__init__()
|
|
96
|
+
self.ignore_index = ignore_index
|
|
97
|
+
self.beta = beta
|
|
98
|
+
self.alpha = alpha
|
|
99
|
+
self.compute_nll_loss = compute_nll_loss
|
|
100
|
+
self.compiled = compiled
|
|
101
|
+
self.gamma = gamma
|
|
102
|
+
|
|
103
|
+
def forward(self, lin_weight, _input, target, bias=None):
|
|
104
|
+
return LigerFusedLinearSimPOFunction.apply(
|
|
105
|
+
_input,
|
|
106
|
+
lin_weight,
|
|
107
|
+
target,
|
|
108
|
+
bias,
|
|
109
|
+
self.ignore_index,
|
|
110
|
+
self.beta,
|
|
111
|
+
self.alpha,
|
|
112
|
+
self.compute_nll_loss,
|
|
113
|
+
self.compiled,
|
|
114
|
+
self.gamma,
|
|
115
|
+
)
|
liger_kernel/env_report.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
|
1
1
|
import platform
|
|
2
2
|
import sys
|
|
3
|
+
from importlib.metadata import version
|
|
3
4
|
|
|
4
5
|
|
|
5
6
|
def print_env_report():
|
|
@@ -17,6 +18,11 @@ def print_env_report():
|
|
|
17
18
|
print(f"Operating System: {platform.platform()}")
|
|
18
19
|
print(f"Python version: {sys.version.split()[0]}")
|
|
19
20
|
|
|
21
|
+
try:
|
|
22
|
+
print(f"Liger Kernel version: {version('liger-kernel')}")
|
|
23
|
+
except ImportError:
|
|
24
|
+
print("Liger Kernel: Not installed")
|
|
25
|
+
|
|
20
26
|
try:
|
|
21
27
|
import torch
|
|
22
28
|
|
|
@@ -25,9 +31,17 @@ def print_env_report():
|
|
|
25
31
|
torch.version.cuda if torch.cuda.is_available() else "Not available"
|
|
26
32
|
)
|
|
27
33
|
print(f"CUDA version: {cuda_version}")
|
|
34
|
+
hip_version = (
|
|
35
|
+
torch.version.hip
|
|
36
|
+
if torch.cuda.is_available() and torch.version.hip
|
|
37
|
+
else "Not available"
|
|
38
|
+
)
|
|
39
|
+
print(f"HIP(ROCm) version: {hip_version}")
|
|
40
|
+
|
|
28
41
|
except ImportError:
|
|
29
42
|
print("PyTorch: Not installed")
|
|
30
43
|
print("CUDA version: Unable to query")
|
|
44
|
+
print("HIP(ROCm) version: Unable to query")
|
|
31
45
|
|
|
32
46
|
try:
|
|
33
47
|
import triton
|
|
@@ -43,6 +57,14 @@ def print_env_report():
|
|
|
43
57
|
except ImportError:
|
|
44
58
|
print("Transformers: Not installed")
|
|
45
59
|
|
|
60
|
+
try:
|
|
61
|
+
xpu_version = (
|
|
62
|
+
torch.version.xpu if torch.xpu.is_available() else "XPU Not Available"
|
|
63
|
+
)
|
|
64
|
+
print(f"XPU version: {xpu_version}")
|
|
65
|
+
except ImportError:
|
|
66
|
+
print("XPU version: Unable to query")
|
|
67
|
+
|
|
46
68
|
|
|
47
69
|
if __name__ == "__main__":
|
|
48
70
|
print_env_report()
|