liger-kernel 0.3.1__py3-none-any.whl → 0.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. liger_kernel/env_report.py +2 -0
  2. liger_kernel/ops/cross_entropy.py +144 -65
  3. liger_kernel/ops/experimental/mm_int8int2.py +355 -0
  4. liger_kernel/ops/fused_linear_cross_entropy.py +31 -11
  5. liger_kernel/ops/fused_linear_jsd.py +245 -0
  6. liger_kernel/ops/geglu.py +2 -2
  7. liger_kernel/ops/group_norm.py +322 -0
  8. liger_kernel/ops/jsd.py +176 -0
  9. liger_kernel/ops/kl_div.py +2 -2
  10. liger_kernel/ops/rms_norm.py +92 -46
  11. liger_kernel/ops/swiglu.py +2 -2
  12. liger_kernel/ops/utils.py +62 -1
  13. liger_kernel/transformers/__init__.py +3 -0
  14. liger_kernel/transformers/cross_entropy.py +44 -12
  15. liger_kernel/transformers/functional.py +38 -1
  16. liger_kernel/transformers/fused_linear_cross_entropy.py +31 -4
  17. liger_kernel/transformers/fused_linear_jsd.py +98 -0
  18. liger_kernel/transformers/group_norm.py +56 -0
  19. liger_kernel/transformers/jsd.py +75 -0
  20. liger_kernel/transformers/model/gemma.py +124 -1
  21. liger_kernel/transformers/model/gemma2.py +277 -0
  22. liger_kernel/transformers/model/llama.py +135 -4
  23. liger_kernel/transformers/model/mistral.py +3 -0
  24. liger_kernel/transformers/model/mixtral.py +153 -2
  25. liger_kernel/transformers/model/mllama.py +274 -0
  26. liger_kernel/transformers/model/phi3.py +140 -2
  27. liger_kernel/transformers/model/qwen2.py +123 -2
  28. liger_kernel/transformers/model/qwen2_vl.py +8 -1
  29. liger_kernel/transformers/monkey_patch.py +258 -68
  30. liger_kernel/transformers/rms_norm.py +11 -3
  31. {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.1.dist-info}/METADATA +63 -29
  32. liger_kernel-0.4.1.dist-info/NOTICE +58 -0
  33. liger_kernel-0.4.1.dist-info/RECORD +51 -0
  34. {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.1.dist-info}/WHEEL +1 -1
  35. liger_kernel-0.3.1.dist-info/NOTICE +0 -4
  36. liger_kernel-0.3.1.dist-info/RECORD +0 -42
  37. {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.1.dist-info}/LICENSE +0 -0
  38. {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.1.dist-info}/top_level.txt +0 -0
@@ -1,13 +1,38 @@
1
- from torch.nn import CrossEntropyLoss
1
+ from typing import Optional
2
+
3
+ import torch
2
4
 
3
5
  from liger_kernel.ops.fused_linear_cross_entropy import (
4
6
  LigerFusedLinearCrossEntropyFunction,
5
7
  )
6
8
 
7
9
 
8
- class LigerFusedLinearCrossEntropyLoss(CrossEntropyLoss):
9
- def __init__(self, *args, **kwargs):
10
- super(LigerFusedLinearCrossEntropyLoss, self).__init__(*args, **kwargs)
10
+ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
11
+ def __init__(
12
+ self,
13
+ ignore_index: int = -100,
14
+ lse_square_scale: float = 0.0,
15
+ label_smoothing: float = 0.0,
16
+ reduction: str = "mean",
17
+ softcap: Optional[float] = None,
18
+ ):
19
+ super().__init__()
20
+ assert (label_smoothing >= 0) and (
21
+ label_smoothing <= 1
22
+ ), f"label_smoothing must be between 0.0 and 1.0. Got: {label_smoothing}"
23
+ assert reduction in {
24
+ "mean",
25
+ "sum",
26
+ "none",
27
+ }, f"reduction must be one of 'mean', 'sum', or 'none'. Got: {reduction}"
28
+ assert (
29
+ softcap is None or softcap > 0
30
+ ), f"softcap must greater than 0.0 or None. Got: {softcap}"
31
+ self.ignore_index = ignore_index
32
+ self.lse_square_scale = lse_square_scale
33
+ self.label_smoothing = label_smoothing
34
+ self.reduction = reduction
35
+ self.softcap = softcap
11
36
 
12
37
  def forward(self, lin_weight, _input, target, bias=None):
13
38
  return LigerFusedLinearCrossEntropyFunction.apply(
@@ -16,6 +41,8 @@ class LigerFusedLinearCrossEntropyLoss(CrossEntropyLoss):
16
41
  target,
17
42
  bias,
18
43
  self.ignore_index,
44
+ self.lse_square_scale,
19
45
  self.label_smoothing,
20
46
  self.reduction,
47
+ self.softcap,
21
48
  )
@@ -0,0 +1,98 @@
1
+ from typing import Optional
2
+
3
+ import torch
4
+
5
+ from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
6
+
7
+
8
+ class LigerFusedLinearJSD(torch.nn.Module):
9
+ r"""Fusing the last linear layer with generalized JSD
10
+
11
+ Handle the forward and backward pass of the final linear layer via JSD by avoiding
12
+ the materialization of the large logits tensor.
13
+
14
+ Args:
15
+ jsd_beta (float): coefficient beta of generalized JSD in the open interval (0, 1). Default: `0.5`
16
+ ignore_index (int): The index to ignore in the target. Default: `-100`
17
+ temperature (float): temperature in softmax function to control the output probability distribution. Default: `1.0`
18
+
19
+ Shape:
20
+ - student_input: :math:`(BT, H)`, where B is batch size, T is sequence length, H is hidden dimension.
21
+ - student_weight: :math:`(V, H)`, where V is vocab size.
22
+ - teacher_input: :math:`(BT, H')`, where H' is hidden dimension of the teacher model.
23
+ - teacher_weight: :math:`(V, H')`, where hidden size H and H' can be different.
24
+ - shift_labels: :math:`(BT,)`
25
+ - Output: a scalar.
26
+
27
+ Examples:
28
+ ```python
29
+ >>> (B, T, H_s, H_t, V) = (2, 2, 3, 5, 10)
30
+ >>> fused_jsd = LigerFusedLinearJSD(jsd_beta=0.1, temperature=2.0)
31
+ >>> # generate inputs and weights
32
+ >>> student_input = torch.rand(B * T, H_s, device="cuda", requires_grad=True)
33
+ >>> student_lin = torch.nn.Linear(H_s, V, bias=False, device="cuda")
34
+ >>> # teacher input doesn't require grad, hidden_dim can be different from student's
35
+ >>> teacher_input = torch.rand(B * T, H_t, device="cuda")
36
+ >>> teacher_lin = torch.nn.Linear(H_t, V, bias=False, device="cuda")
37
+ >>> output = fused_jsd(student_input, student_lin.weight, teacher_input, teacher_lin.weight)
38
+ >>> output.backward()
39
+ >>>
40
+ >>> # Example with labels for supervised fine-tuning (SFT) context:
41
+ >>>
42
+ >>> # Assume hidden_states, lm_heads and corresponding labels are given
43
+ >>> student_lm_head = torch.nn.Linear(H_s, V, bias=False)
44
+ >>> student_hidden_states = torch.randn(B * T, H_s, requires_grad=True).log_softmax(dim=-1)
45
+ >>> teacher_lm_head = torch.nn.Linear(H_t, V, bias=False)
46
+ >>> teacher_hidden_states = torch.randn(B * T, H_t).log_softmax(dim=-1)
47
+ >>> labels = torch.randint(0, V, (B * T,), torch.long)
48
+ >>>
49
+ >>> # Shift so that tokens < n predict n
50
+ >>> shift_student_hidden_states = student_hidden_states[..., :-1, :].contiguous()
51
+ >>> shift_teacher_hidden_states = teacher_hidden_states[..., :-1, :].contiguous()
52
+ >>> shift_labels = labels[..., 1:].contiguous()
53
+ >>>
54
+ >>> # Flatten tokens
55
+ >>> shift_student_hidden_states = shift_student_hidden_states.view(-1, V)
56
+ >>> shift_teacher_hidden_states = shift_teacher_hidden_states.view(-1, V)
57
+ >>> shift_labels = shift_labels.view(-1)
58
+ >>>
59
+ >>> # Calculate loss
60
+ >>> loss_fct = LigerJSD(beta=0.1)
61
+ >>> loss = loss_fct(
62
+ >>> shift_studetn_hidden_states,
63
+ >>> student_lm_head.weight,
64
+ >>> shift_teacher_hidden_states,
65
+ >>> teacher_lm_head.weight,
66
+ >>> shift_labels
67
+ >>> )
68
+ ```
69
+ """
70
+
71
+ def __init__(self, jsd_beta=0.5, ignore_index=-100, temperature=1.0):
72
+ super().__init__()
73
+ assert (
74
+ jsd_beta > 0 and jsd_beta < 1
75
+ ), f"beta must be greater than 0 and less than 1. Got: {jsd_beta}"
76
+ assert temperature != 0, "temperature cannot be 0."
77
+ self.jsd_beta = jsd_beta
78
+ self.temperature = temperature
79
+ self.ignore_index = ignore_index
80
+
81
+ def forward(
82
+ self,
83
+ student_input: torch.Tensor,
84
+ student_weight: torch.Tensor,
85
+ teacher_input: torch.Tensor,
86
+ teacher_weight: torch.Tensor,
87
+ shift_labels: Optional[torch.LongTensor],
88
+ ):
89
+ return LigerFusedLinearJSDFunction.apply(
90
+ student_input,
91
+ student_weight,
92
+ teacher_input,
93
+ teacher_weight,
94
+ shift_labels,
95
+ self.jsd_beta,
96
+ self.ignore_index,
97
+ self.temperature,
98
+ )
@@ -0,0 +1,56 @@
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from liger_kernel.ops.group_norm import LigerGroupNormFunction
5
+
6
+
7
+ class LigerGroupNorm(nn.Module):
8
+ def __init__(self, num_channels, num_groups, eps=1e-6, bias=False, init_fn="ones"):
9
+ """
10
+ A Group Normalization layer.
11
+ Args:
12
+ num_channels (int): Number of channels in the input tensor.
13
+ num_groups (int): Number of groups to divide the channels into.
14
+ eps (float, optional): A value added to the denominator for numerical stability. Default: 1e-6.
15
+ bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``False``.
16
+ init_fn (str, optional): Initialization function for the learnable parameters. Default: "ones".
17
+ """
18
+ super().__init__()
19
+ assert init_fn in [
20
+ "ones",
21
+ "zeros",
22
+ ], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
23
+
24
+ assert (
25
+ num_channels % num_groups == 0
26
+ ), f"Number of channels {num_channels} must be divisible by num_groups {num_groups}"
27
+ self.num_channels = num_channels
28
+ self.num_groups = num_groups
29
+ self.eps = eps
30
+ self.weight = nn.Parameter(
31
+ torch.ones(num_channels) if init_fn == "ones" else torch.zeros(num_channels)
32
+ )
33
+ self.bias = nn.Parameter(
34
+ torch.randn(num_channels) if bias else torch.zeros(num_channels)
35
+ )
36
+ self.variance_epsilon = eps
37
+
38
+ def forward(self, hidden_states):
39
+ # hidden_states: (batch_size, num_channels, *)
40
+ assert (
41
+ hidden_states.dim() >= 3
42
+ ), f"Input must have atleast 3 dimensions, got {hidden_states.dim()}"
43
+ assert (
44
+ hidden_states.size(1) == self.num_channels
45
+ ), f"Input tensor must have {self.num_channels} channels, got {hidden_states.size(1)}"
46
+ return LigerGroupNormFunction.apply(
47
+ hidden_states,
48
+ self.weight,
49
+ self.bias,
50
+ self.num_channels,
51
+ self.num_groups,
52
+ self.variance_epsilon,
53
+ )
54
+
55
+ def extra_repr(self):
56
+ return f"{self.hidden_size}, num_channels={self.num_channels}, num_groups={self.num_groups}, eps={self.eps}"
@@ -0,0 +1,75 @@
1
+ from typing import Optional
2
+
3
+ import torch
4
+
5
+ from liger_kernel.ops.jsd import LigerJSDFunction
6
+
7
+
8
+ class LigerJSD(torch.nn.Module):
9
+ r"""The generalized Jensen-Shannon Divergence.
10
+ .. math::
11
+ JSD(\beta)(P || Q)
12
+ = \beta * KLDiv(P || (\beta * P + (1 - \beta) * Q)) + (1 - \beta) * KLDiv(Q || (\beta * P + (1 - \beta) * Q))
13
+ .. note::
14
+ As all the other losses in PyTorch, this function expects the first argument,
15
+ :attr:`log_q`, to be the predictions, the output of the student model in log-space,
16
+ and the second, :attr:`log_p`, to be the observations, the output of the teacher model in log-space.
17
+ This differs from the standard mathematical notation :math:`JSD(P || Q)` where
18
+ :math:`P` denotes the teacher model and :math:`Q` denotes the student model.
19
+
20
+ Args:
21
+ beta (float): coefficient beta of generalized JSD in the open interval (0, 1). Default: `0.5`
22
+ ignore_index (int): The index to ignore in the target. Default: `-100`
23
+
24
+ Shape:
25
+ - Input: :math:`(BT, V)`, where B is batch size, T is sequence length, V is vocab size.
26
+ - Target: :math:`(BT, V)`, same shape as the input.
27
+ - shift_labels (Optional): :math:`(BT,)`
28
+ - Output: a scalar.
29
+
30
+ Examples:
31
+ ```python
32
+ >>> (B, T, V) = (2, 2, 5)
33
+ >>> jsd = LigerJSD(beta=0.1)
34
+ >>> # input should be a distribution in the log space
35
+ >>> input = torch.randn(B * T, V, requires_grad=True).log_softmax(dim=-1)
36
+ >>> target = torch.randn(B * T, V).log_softmax(dim=-1)
37
+ >>> output = jsd(input, target)
38
+ >>>
39
+ >>> # Example with labels for supervised fine-tuning (SFT) context
40
+ >>> # Assume logits and corresponding labels are given
41
+ >>> student_logits = torch.randn(B * T, V, requires_grad=True).log_softmax(dim=-1)
42
+ >>> teacher_logits = torch.randn(B * T, V).log_softmax(dim=-1)
43
+ >>> labels = torch.randint(0, V, (B * T,), torch.long)
44
+ >>> # Shift so that tokens < n predict n
45
+ >>> shift_student_logits = student_logits[..., :-1, :].contiguous()
46
+ >>> shift_teacher_logits = teacher_logits[..., :-1, :].contiguous()
47
+ >>> shift_labels = labels[..., 1:].contiguous()
48
+ >>> # Flatten tokens
49
+ >>> shift_student_logits = shift_student_logits.view(-1, V)
50
+ >>> shift_teacher_logits = shift_teacher_logits.view(-1, V)
51
+ >>> shift_labels = shift_labels.view(-1)
52
+ >>> # Calculate loss
53
+ >>> loss_fct = LigerJSD(beta=0.1)
54
+ >>> loss = loss_fct(shift_studetn_logits, shift_teacher_logits, shift_labels)
55
+
56
+ ```
57
+ """
58
+
59
+ def __init__(self, beta: float = 0.5, ignore_index: int = -100):
60
+ super().__init__()
61
+ assert (
62
+ beta > 0 and beta < 1
63
+ ), f"beta must be greater than 0 and less than 1. Got: {beta}"
64
+ self.beta = beta
65
+ self.ignore_index = ignore_index
66
+
67
+ def forward(
68
+ self,
69
+ log_q: torch.Tensor,
70
+ log_p: torch.Tensor,
71
+ shift_labels: Optional[torch.LongTensor] = None,
72
+ ):
73
+ return LigerJSDFunction.apply(
74
+ log_q, log_p, shift_labels, self.beta, self.ignore_index
75
+ )
@@ -22,7 +22,7 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
22
22
  @replace_return_docstrings(
23
23
  output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
24
24
  )
25
- def lce_forward(
25
+ def lce_forward_deprecated(
26
26
  self,
27
27
  input_ids: torch.LongTensor = None,
28
28
  attention_mask: Optional[torch.Tensor] = None,
@@ -136,3 +136,126 @@ def lce_forward(
136
136
  hidden_states=outputs.hidden_states,
137
137
  attentions=outputs.attentions,
138
138
  )
139
+
140
+
141
+ @add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
142
+ @replace_return_docstrings(
143
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
144
+ )
145
+ def lce_forward(
146
+ self,
147
+ input_ids: torch.LongTensor = None,
148
+ attention_mask: Optional[torch.Tensor] = None,
149
+ position_ids: Optional[torch.LongTensor] = None,
150
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
151
+ inputs_embeds: Optional[torch.FloatTensor] = None,
152
+ labels: Optional[torch.LongTensor] = None,
153
+ use_cache: Optional[bool] = None,
154
+ output_attentions: Optional[bool] = None,
155
+ output_hidden_states: Optional[bool] = None,
156
+ return_dict: Optional[bool] = None,
157
+ cache_position: Optional[torch.LongTensor] = None,
158
+ num_logits_to_keep: int = 0,
159
+ **loss_kwargs,
160
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
161
+ r"""
162
+ Args:
163
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
164
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
165
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
166
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
167
+
168
+ num_logits_to_keep (`int`, *optional*):
169
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
170
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
171
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
172
+
173
+ Returns:
174
+
175
+ Example:
176
+
177
+ ```python
178
+ >>> from transformers import AutoTokenizer, GemmaForCausalLM
179
+
180
+ >>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
181
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
182
+
183
+ >>> prompt = "What is your favorite condiment?"
184
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
185
+
186
+ >>> # Generate
187
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
188
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
189
+ "What is your favorite condiment?"
190
+ ```"""
191
+ output_attentions = (
192
+ output_attentions
193
+ if output_attentions is not None
194
+ else self.config.output_attentions
195
+ )
196
+ output_hidden_states = (
197
+ output_hidden_states
198
+ if output_hidden_states is not None
199
+ else self.config.output_hidden_states
200
+ )
201
+ return_dict = (
202
+ return_dict if return_dict is not None else self.config.use_return_dict
203
+ )
204
+
205
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
206
+ outputs = self.model(
207
+ input_ids=input_ids,
208
+ attention_mask=attention_mask,
209
+ position_ids=position_ids,
210
+ past_key_values=past_key_values,
211
+ inputs_embeds=inputs_embeds,
212
+ use_cache=use_cache,
213
+ output_attentions=output_attentions,
214
+ output_hidden_states=output_hidden_states,
215
+ return_dict=return_dict,
216
+ cache_position=cache_position,
217
+ )
218
+
219
+ hidden_states = outputs[0]
220
+
221
+ logits = None
222
+ loss = None
223
+ # if in training mode, don't materialize logits
224
+ if self.training and (labels is not None):
225
+ # We do the same thing as ForCausalLMLoss but using Liger FLCE
226
+
227
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
228
+ shift_labels = labels[..., 1:].contiguous()
229
+
230
+ # flatten tokens
231
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
232
+ shift_labels = shift_labels.view(-1)
233
+
234
+ reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
235
+ lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
236
+
237
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
238
+ if reduction == "sum":
239
+ loss /= loss_kwargs["num_items_in_batch"]
240
+
241
+ else: # if in inference mode materialize logits
242
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
243
+ if labels is not None:
244
+ loss = self.loss_function(
245
+ logits=logits,
246
+ labels=labels,
247
+ vocab_size=self.config.vocab_size,
248
+ **loss_kwargs,
249
+ )
250
+
251
+ if not return_dict:
252
+ output = (logits,) + outputs[1:]
253
+ return (loss,) + output if loss is not None else output
254
+
255
+ return CausalLMOutputWithPast(
256
+ loss=loss,
257
+ logits=logits,
258
+ past_key_values=outputs.past_key_values,
259
+ hidden_states=outputs.hidden_states,
260
+ attentions=outputs.attentions,
261
+ )