liger-kernel 0.3.1__py3-none-any.whl → 0.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/env_report.py +2 -0
- liger_kernel/ops/cross_entropy.py +144 -65
- liger_kernel/ops/experimental/mm_int8int2.py +355 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +31 -11
- liger_kernel/ops/fused_linear_jsd.py +245 -0
- liger_kernel/ops/geglu.py +2 -2
- liger_kernel/ops/group_norm.py +322 -0
- liger_kernel/ops/jsd.py +176 -0
- liger_kernel/ops/kl_div.py +2 -2
- liger_kernel/ops/rms_norm.py +92 -46
- liger_kernel/ops/swiglu.py +2 -2
- liger_kernel/ops/utils.py +62 -1
- liger_kernel/transformers/__init__.py +3 -0
- liger_kernel/transformers/cross_entropy.py +44 -12
- liger_kernel/transformers/functional.py +38 -1
- liger_kernel/transformers/fused_linear_cross_entropy.py +31 -4
- liger_kernel/transformers/fused_linear_jsd.py +98 -0
- liger_kernel/transformers/group_norm.py +56 -0
- liger_kernel/transformers/jsd.py +75 -0
- liger_kernel/transformers/model/gemma.py +124 -1
- liger_kernel/transformers/model/gemma2.py +277 -0
- liger_kernel/transformers/model/llama.py +135 -4
- liger_kernel/transformers/model/mistral.py +3 -0
- liger_kernel/transformers/model/mixtral.py +153 -2
- liger_kernel/transformers/model/mllama.py +274 -0
- liger_kernel/transformers/model/phi3.py +140 -2
- liger_kernel/transformers/model/qwen2.py +123 -2
- liger_kernel/transformers/model/qwen2_vl.py +8 -1
- liger_kernel/transformers/monkey_patch.py +258 -68
- liger_kernel/transformers/rms_norm.py +11 -3
- {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.1.dist-info}/METADATA +63 -29
- liger_kernel-0.4.1.dist-info/NOTICE +58 -0
- liger_kernel-0.4.1.dist-info/RECORD +51 -0
- {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.1.dist-info}/WHEEL +1 -1
- liger_kernel-0.3.1.dist-info/NOTICE +0 -4
- liger_kernel-0.3.1.dist-info/RECORD +0 -42
- {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.1.dist-info}/LICENSE +0 -0
- {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,245 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
import triton
|
|
5
|
+
|
|
6
|
+
from liger_kernel.ops.jsd import _jsd_kernel
|
|
7
|
+
from liger_kernel.ops.utils import (
|
|
8
|
+
amp_custom_bwd,
|
|
9
|
+
amp_custom_fwd,
|
|
10
|
+
element_mul_kernel,
|
|
11
|
+
is_hip,
|
|
12
|
+
)
|
|
13
|
+
|
|
14
|
+
# The hard limit of TRITON_MAX_TENSOR_NUMEL is 1048576 https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/language/core.py#L19
|
|
15
|
+
# However, setting limit as 65536 as in LayerNorm tutorial is faster because of less register spilling
|
|
16
|
+
# The optimal maximum block size depends on your hardware, your kernel, and your dtype
|
|
17
|
+
MAX_FUSED_SIZE = 65536 // 2
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def fused_linear_jsd_forward(
|
|
21
|
+
student_input,
|
|
22
|
+
student_weight,
|
|
23
|
+
teacher_input,
|
|
24
|
+
teacher_weight,
|
|
25
|
+
shift_labels,
|
|
26
|
+
jsd_beta,
|
|
27
|
+
ignore_index,
|
|
28
|
+
has_label,
|
|
29
|
+
temperature,
|
|
30
|
+
):
|
|
31
|
+
device = student_input.device
|
|
32
|
+
dtype = student_input.dtype
|
|
33
|
+
|
|
34
|
+
# inputs have shape: BT x H
|
|
35
|
+
# materialized activations will have shape: BT x V
|
|
36
|
+
# the increase in memory = BT x V
|
|
37
|
+
# reduction can be achieved by partitioning the number of tokens BT into smaller chunks.
|
|
38
|
+
# for ex: if we were to achieve the same memory consumption as BT x H, then the chunk size should be:
|
|
39
|
+
# inc_factor = (V+H-1)//H, chunk_size = (BT + inc_factor - 1)//inc_factor
|
|
40
|
+
# for ex: BT = 4096*4, V = 32000, H = 4096 ==> inc_factor = 8, chunk_size = 2048
|
|
41
|
+
BT, H = student_input.shape
|
|
42
|
+
V = student_weight.shape[0]
|
|
43
|
+
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(V))
|
|
44
|
+
|
|
45
|
+
inc_factor = triton.cdiv(V, H) # (V + H - 1) // H
|
|
46
|
+
chunk_size = triton.next_power_of_2(
|
|
47
|
+
triton.cdiv(BT, inc_factor)
|
|
48
|
+
) # (BT + inc_factor - 1) // inc_factor
|
|
49
|
+
num_chunks = triton.cdiv(BT, chunk_size) # (BT + chunk_size - 1) // chunk_size
|
|
50
|
+
|
|
51
|
+
grad_weight = (
|
|
52
|
+
torch.zeros_like(student_weight, device=device)
|
|
53
|
+
if student_weight.requires_grad
|
|
54
|
+
else None
|
|
55
|
+
)
|
|
56
|
+
grad_input = torch.zeros_like(student_input)
|
|
57
|
+
# we use fp32 for loss accumulator
|
|
58
|
+
loss_1d = torch.zeros((BT, V), dtype=torch.float32, device=device)
|
|
59
|
+
|
|
60
|
+
if has_label:
|
|
61
|
+
n_non_ignore = (shift_labels != ignore_index).sum().item()
|
|
62
|
+
else:
|
|
63
|
+
n_non_ignore = BT
|
|
64
|
+
|
|
65
|
+
for chunk_id in range(num_chunks):
|
|
66
|
+
start_idx = chunk_id * chunk_size
|
|
67
|
+
end_idx = min((chunk_id + 1) * chunk_size, BT)
|
|
68
|
+
|
|
69
|
+
# chunk both inputs, shape: chunk_size x H
|
|
70
|
+
student_input_chunk = student_input[start_idx:end_idx]
|
|
71
|
+
teacher_input_chunk = teacher_input[start_idx:end_idx]
|
|
72
|
+
|
|
73
|
+
# shape: chunk_size x V
|
|
74
|
+
# For anything starting from logits to the final JSD loss, we do computation
|
|
75
|
+
# in FP32 to avoid losing numerical stability.
|
|
76
|
+
student_logits_chunk = (student_input_chunk @ student_weight.t()).to(
|
|
77
|
+
torch.float32
|
|
78
|
+
)
|
|
79
|
+
teacher_logits_chunk = (teacher_input_chunk @ teacher_weight.t()).to(
|
|
80
|
+
torch.float32
|
|
81
|
+
)
|
|
82
|
+
chunk_n_rows = student_logits_chunk.shape[0]
|
|
83
|
+
|
|
84
|
+
# unreduced loss
|
|
85
|
+
loss_1d_slice = loss_1d[start_idx:end_idx] # chunk_size
|
|
86
|
+
# log-softmax with temperature
|
|
87
|
+
student_logits_chunk = student_logits_chunk / temperature
|
|
88
|
+
teacher_logits_chunk = teacher_logits_chunk / temperature
|
|
89
|
+
student_prob_chunk = torch.log_softmax(student_logits_chunk, dim=-1)
|
|
90
|
+
teacher_prob_chunk = torch.log_softmax(teacher_logits_chunk, dim=-1)
|
|
91
|
+
|
|
92
|
+
# ensure _input and target are contiguous
|
|
93
|
+
student_prob_chunk = student_prob_chunk.contiguous()
|
|
94
|
+
teacher_prob_chunk = teacher_prob_chunk.contiguous()
|
|
95
|
+
|
|
96
|
+
# Here we calculate the gradient of prob_chunk in place so we can save memory.
|
|
97
|
+
_jsd_kernel[(chunk_n_rows,)](
|
|
98
|
+
X_ptr=student_prob_chunk,
|
|
99
|
+
X_stride=student_prob_chunk.stride(-2),
|
|
100
|
+
Y_ptr=teacher_prob_chunk,
|
|
101
|
+
Y_stride=teacher_prob_chunk.stride(-2),
|
|
102
|
+
loss_ptr=loss_1d_slice,
|
|
103
|
+
loss_stride=loss_1d_slice.stride(-2),
|
|
104
|
+
dX_ptr=student_prob_chunk,
|
|
105
|
+
dX_stride=student_prob_chunk.stride(-2),
|
|
106
|
+
label_ptr=(
|
|
107
|
+
shift_labels[start_idx:end_idx]
|
|
108
|
+
if has_label
|
|
109
|
+
else torch.empty(1, device=device)
|
|
110
|
+
), # dummy ptr if no label
|
|
111
|
+
beta=jsd_beta,
|
|
112
|
+
n_non_ignore=n_non_ignore,
|
|
113
|
+
ignore_index=ignore_index,
|
|
114
|
+
n_cols=V,
|
|
115
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
116
|
+
HAS_LABEL=has_label,
|
|
117
|
+
)
|
|
118
|
+
loss_1d[start_idx:end_idx] = loss_1d_slice
|
|
119
|
+
# gradients of prob_chunk in place, shape: chunk_size x V
|
|
120
|
+
# gradients of logits_chunk in place, shape: chunk_size x V
|
|
121
|
+
student_logits_chunk = (
|
|
122
|
+
student_prob_chunk
|
|
123
|
+
- torch.softmax(student_logits_chunk, dim=-1)
|
|
124
|
+
* student_prob_chunk.sum(dim=-1, keepdim=True).broadcast_to(
|
|
125
|
+
student_prob_chunk.shape
|
|
126
|
+
)
|
|
127
|
+
) / temperature
|
|
128
|
+
# now we traverse back to grad w.r.t. input to `lm_head` and grad
|
|
129
|
+
# w.r.t. `lm_head` which should be computed in original dtype
|
|
130
|
+
student_logits_chunk = student_logits_chunk.to(dtype)
|
|
131
|
+
grad_input[start_idx:end_idx] = student_logits_chunk @ student_weight
|
|
132
|
+
|
|
133
|
+
if grad_weight is not None:
|
|
134
|
+
grad_weight.add_(student_logits_chunk.t() @ student_input_chunk)
|
|
135
|
+
|
|
136
|
+
loss = torch.sum(loss_1d)
|
|
137
|
+
return loss, grad_input, grad_weight
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
def fused_linear_jsd_backward(grad_output, grad_input, grad_weight):
|
|
141
|
+
# If JSD is the last layer, grad_output is 1.0. Skip the mul to save time
|
|
142
|
+
if torch.ne(grad_output, torch.tensor(1.0, device=grad_output.device)):
|
|
143
|
+
# We use a Triton kernel instead of a PyTorch operation because modifying inputs in-place
|
|
144
|
+
# for gradient storage and backward multiple times causes anomalies with PyTorch but not with Triton.
|
|
145
|
+
BT, H = grad_input.shape
|
|
146
|
+
n_rows = BT
|
|
147
|
+
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(H))
|
|
148
|
+
|
|
149
|
+
element_mul_kernel[(n_rows,)](
|
|
150
|
+
grad_input,
|
|
151
|
+
grad_input.stride(-2),
|
|
152
|
+
grad_output,
|
|
153
|
+
H,
|
|
154
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
155
|
+
num_warps=32 if not is_hip() else 16,
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
# handle grad_weight
|
|
159
|
+
if grad_weight is not None:
|
|
160
|
+
V, H = grad_weight.shape
|
|
161
|
+
n_rows = V
|
|
162
|
+
|
|
163
|
+
element_mul_kernel[(n_rows,)](
|
|
164
|
+
grad_weight,
|
|
165
|
+
grad_weight.stride(-2),
|
|
166
|
+
grad_output,
|
|
167
|
+
H,
|
|
168
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
169
|
+
num_warps=32 if not is_hip() else 16,
|
|
170
|
+
)
|
|
171
|
+
|
|
172
|
+
return grad_input, grad_weight
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
class LigerFusedLinearJSDFunction(torch.autograd.Function):
|
|
176
|
+
"""
|
|
177
|
+
Fusing the last linear layer with generalized JSD
|
|
178
|
+
|
|
179
|
+
Handle the forward and backward pass of the final linear layer via JSD by avoiding
|
|
180
|
+
the materialization of the large logits tensor. Since JSD is the last layer, we can
|
|
181
|
+
compute the gradient at the forward pass.
|
|
182
|
+
"""
|
|
183
|
+
|
|
184
|
+
@staticmethod
|
|
185
|
+
@amp_custom_fwd
|
|
186
|
+
def forward(
|
|
187
|
+
ctx,
|
|
188
|
+
student_input: torch.Tensor,
|
|
189
|
+
student_weight: torch.Tensor,
|
|
190
|
+
teacher_input: torch.Tensor,
|
|
191
|
+
teacher_weight: torch.Tensor,
|
|
192
|
+
shift_labels: Optional[torch.Tensor] = None,
|
|
193
|
+
jsd_beta: float = 0.5,
|
|
194
|
+
ignore_index: int = -100,
|
|
195
|
+
temperature: float = 1.0,
|
|
196
|
+
):
|
|
197
|
+
"""
|
|
198
|
+
Args:
|
|
199
|
+
|
|
200
|
+
student_input (torch.tensor): input of the last projection layer in student model, with shape (B*T, H), where B is batch size, T is sequence length, H is hidden dimension.
|
|
201
|
+
student_weight (torch.tensor): the last projection layer in student model, with shape (V, H), where V is vocab size
|
|
202
|
+
teacher_input (torch.tensor): input of the last projection layer in teacher model, with shape (B*T, H), where B is batch size, T is sequence length, H is hidden dimension.
|
|
203
|
+
teacher_weight (torch.tensor): the last projection layer in teacher model, with shape (V, H), where V is vocab size
|
|
204
|
+
shift_labels (Optional[torch.LongTensor]): indicator of next predicted vocab with shape (BT) where each value is in [0, V-1].
|
|
205
|
+
jsd_beta (float): coefficient beta of generalized JSD in the open interval (0, 1). Default: `0.5`
|
|
206
|
+
ignore_index (int): the index to ignore. Default: -100
|
|
207
|
+
temperature (float): temperature in softmax function to control the output probability distribution. Default: `1.0`
|
|
208
|
+
|
|
209
|
+
Returns:
|
|
210
|
+
loss (torch.Tensor): generalized JSD
|
|
211
|
+
"""
|
|
212
|
+
has_label = False
|
|
213
|
+
if shift_labels is not None:
|
|
214
|
+
assert shift_labels.shape == (
|
|
215
|
+
teacher_input.shape[0],
|
|
216
|
+
), f"the shape of shift_labels must be (BT,). Got: {shift_labels.shape}"
|
|
217
|
+
shift_labels = shift_labels.contiguous()
|
|
218
|
+
has_label = True
|
|
219
|
+
|
|
220
|
+
loss, grad_input, grad_weight = fused_linear_jsd_forward(
|
|
221
|
+
student_input,
|
|
222
|
+
student_weight,
|
|
223
|
+
teacher_input,
|
|
224
|
+
teacher_weight,
|
|
225
|
+
shift_labels,
|
|
226
|
+
jsd_beta,
|
|
227
|
+
ignore_index,
|
|
228
|
+
has_label,
|
|
229
|
+
temperature,
|
|
230
|
+
)
|
|
231
|
+
# downcast to dtype and store for backward
|
|
232
|
+
ctx.save_for_backward(
|
|
233
|
+
grad_input.detach(),
|
|
234
|
+
grad_weight.detach() if grad_weight is not None else None,
|
|
235
|
+
)
|
|
236
|
+
return loss
|
|
237
|
+
|
|
238
|
+
@staticmethod
|
|
239
|
+
@amp_custom_bwd
|
|
240
|
+
def backward(ctx, grad_output):
|
|
241
|
+
(grad_input, grad_weight) = ctx.saved_tensors
|
|
242
|
+
grad_input, grad_weight = fused_linear_jsd_backward(
|
|
243
|
+
grad_output, grad_input, grad_weight
|
|
244
|
+
)
|
|
245
|
+
return (grad_input, grad_weight, None, None, None, None, None, None)
|
liger_kernel/ops/geglu.py
CHANGED
|
@@ -25,7 +25,7 @@ else:
|
|
|
25
25
|
def _geglu_tanh_forward_kernel(
|
|
26
26
|
a, b, c, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
|
|
27
27
|
):
|
|
28
|
-
program_id = tl.program_id(0).
|
|
28
|
+
program_id = tl.program_id(0).to(tl.int64)
|
|
29
29
|
|
|
30
30
|
# locate start index
|
|
31
31
|
a += program_id * stride
|
|
@@ -52,7 +52,7 @@ def _geglu_tanh_forward_kernel(
|
|
|
52
52
|
def _geglu_tanh_backward_kernel(
|
|
53
53
|
dc, a, b, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
|
|
54
54
|
):
|
|
55
|
-
program_id = tl.program_id(0).
|
|
55
|
+
program_id = tl.program_id(0).to(tl.int64)
|
|
56
56
|
|
|
57
57
|
# locate start index
|
|
58
58
|
dc += program_id * stride
|
|
@@ -0,0 +1,322 @@
|
|
|
1
|
+
import operator
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
import triton
|
|
5
|
+
import triton.language as tl
|
|
6
|
+
|
|
7
|
+
from liger_kernel.ops.utils import compare_version, ensure_contiguous
|
|
8
|
+
|
|
9
|
+
if compare_version("triton", operator.ge, "3.0.0"):
|
|
10
|
+
try:
|
|
11
|
+
# typical import path with dispatch available
|
|
12
|
+
from triton.language.extra.libdevice import rsqrt
|
|
13
|
+
except ModuleNotFoundError:
|
|
14
|
+
# for working with NGC containers
|
|
15
|
+
from triton.language.extra.cuda.libdevice import rsqrt
|
|
16
|
+
else:
|
|
17
|
+
from triton.language.math import rsqrt
|
|
18
|
+
|
|
19
|
+
MAX_FUSED_SIZE = 65536
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
@triton.jit
|
|
23
|
+
def _group_norm_forward_kernel(
|
|
24
|
+
Y_ptr, # pointer to output, shape (n_rows, n_groups, hidden_size)
|
|
25
|
+
Y_row_stride, # stride of each row in output
|
|
26
|
+
Y_col_stride, # stride of each column in output
|
|
27
|
+
X_ptr, # pointer to input, shape (n_rows, n_groups, hidden_size)
|
|
28
|
+
X_row_stride, # stride of each row in input
|
|
29
|
+
X_col_stride, # stride of each column in input
|
|
30
|
+
Mean_ptr, # pointer to mean, shape (n_rows, n_groups)
|
|
31
|
+
Mean_row_stride, # stride of each row in mean
|
|
32
|
+
Mean_col_stride, # stride of each column in mean
|
|
33
|
+
RSTD_ptr, # pointer to rstd, shape (n_rows, n_groups)
|
|
34
|
+
RSTD_row_stride, # stride of each row in rstd
|
|
35
|
+
RSTD_col_stride, # stride of each column in rstd
|
|
36
|
+
W_ptr, # pointer to W
|
|
37
|
+
B_ptr, # pointer to B
|
|
38
|
+
hidden_size, # hidden size of X
|
|
39
|
+
channels_per_group, # the number of channels per group
|
|
40
|
+
eps,
|
|
41
|
+
BLOCK_SIZE: tl.constexpr,
|
|
42
|
+
):
|
|
43
|
+
"""
|
|
44
|
+
References:
|
|
45
|
+
https://nn.labml.ai/normalization/group_norm/index.html
|
|
46
|
+
"""
|
|
47
|
+
batch_idx = tl.program_id(0)
|
|
48
|
+
group_idx = tl.program_id(1)
|
|
49
|
+
|
|
50
|
+
X_ptr += batch_idx * X_row_stride + group_idx * X_col_stride
|
|
51
|
+
Y_ptr += batch_idx * Y_row_stride + group_idx * Y_col_stride
|
|
52
|
+
|
|
53
|
+
block_range = tl.arange(0, BLOCK_SIZE)
|
|
54
|
+
|
|
55
|
+
# Compute mean and variance using the online algorithm
|
|
56
|
+
s = 0.0
|
|
57
|
+
squared_sum = 0.0
|
|
58
|
+
for i in tl.range(0, hidden_size, BLOCK_SIZE):
|
|
59
|
+
hidden_size_offsets = i + block_range
|
|
60
|
+
mask = hidden_size_offsets < hidden_size
|
|
61
|
+
X = tl.load(X_ptr + hidden_size_offsets, mask=mask, other=0.0)
|
|
62
|
+
s += tl.sum(X)
|
|
63
|
+
# X**2
|
|
64
|
+
squared_sum += tl.sum(X * X)
|
|
65
|
+
|
|
66
|
+
m = s / hidden_size
|
|
67
|
+
|
|
68
|
+
# variance = E[X**2] - E[X]**2
|
|
69
|
+
variance = (squared_sum / hidden_size) - (m * m)
|
|
70
|
+
|
|
71
|
+
# 1/std
|
|
72
|
+
rstd = rsqrt(variance + eps)
|
|
73
|
+
|
|
74
|
+
# Normalize
|
|
75
|
+
hidden_size_per_channel = hidden_size // channels_per_group
|
|
76
|
+
for channel_idx in tl.range(
|
|
77
|
+
group_idx * channels_per_group, (group_idx + 1) * channels_per_group
|
|
78
|
+
):
|
|
79
|
+
W = tl.load(W_ptr + channel_idx)
|
|
80
|
+
B = tl.load(B_ptr + channel_idx)
|
|
81
|
+
for i in range(0, hidden_size_per_channel, BLOCK_SIZE):
|
|
82
|
+
hidden_size_offsets = i + block_range
|
|
83
|
+
mask = hidden_size_offsets < hidden_size_per_channel
|
|
84
|
+
X = tl.load(X_ptr + hidden_size_offsets, mask=mask, other=m)
|
|
85
|
+
Y = (X - m) * rstd * W + B
|
|
86
|
+
tl.store(Y_ptr + hidden_size_offsets, Y, mask=mask)
|
|
87
|
+
|
|
88
|
+
X_ptr += hidden_size_per_channel
|
|
89
|
+
Y_ptr += hidden_size_per_channel
|
|
90
|
+
|
|
91
|
+
tl.store(Mean_ptr + batch_idx * Mean_row_stride + group_idx * Mean_col_stride, m)
|
|
92
|
+
tl.store(RSTD_ptr + batch_idx * RSTD_row_stride + group_idx * RSTD_col_stride, rstd)
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
@triton.jit
|
|
96
|
+
def _group_norm_backward_kernel(
|
|
97
|
+
X_ptr, # pointer to input, shape (n_rows, n_channels, hidden_size)
|
|
98
|
+
X_row_stride, # stride of each row in input
|
|
99
|
+
X_col_stride, # stride of each column in input
|
|
100
|
+
W_ptr, # pointer to weights, shape (n_channels)
|
|
101
|
+
Mean_ptr, # pointer to mean, shape (n_rows, n_groups)
|
|
102
|
+
Mean_ptr_row_stride, # stride of each column in mean
|
|
103
|
+
Mean_ptr_col_stride, # stride of each column in mean
|
|
104
|
+
RSTD_ptr, # pointer to rstd, shape (n_rows, n_groups)
|
|
105
|
+
DX_ptr, # pointer to input grad, shape (n_rows, n_groups, hidden_size)
|
|
106
|
+
DW_ptr, # pointer to weights grad, shape (n_channels)
|
|
107
|
+
DB_ptr, # pointer to bias grad, shape (n_channels)
|
|
108
|
+
UPSTREAM_ptr, # pointer to output grad, shape (n_rows, n_channels, hidden_size)
|
|
109
|
+
hidden_size: tl.constexpr, # hidden size
|
|
110
|
+
channels_per_group: tl.constexpr, # number of groups in group norm
|
|
111
|
+
BLOCK_SIZE: tl.constexpr,
|
|
112
|
+
dtype: tl.constexpr,
|
|
113
|
+
):
|
|
114
|
+
"""
|
|
115
|
+
References:
|
|
116
|
+
https://nn.labml.ai/normalization/group_norm/index.html
|
|
117
|
+
https://github.com/karpathy/llm.c/blob/master/doc/layernorm/layernorm.md
|
|
118
|
+
|
|
119
|
+
The backprop equations are the same for group_norm and layer_norm
|
|
120
|
+
the only difference here is that we load the Mean, Rstd corresponding to the
|
|
121
|
+
group we're computing gradients for and the mean and rstd are computed over n-channels
|
|
122
|
+
so the total number of elements we compute the mean over is num_channels_per_group * hidden_size
|
|
123
|
+
|
|
124
|
+
We also need to load the Weights corresponding to the current channel to compute the gradients.
|
|
125
|
+
"""
|
|
126
|
+
batch_idx = tl.program_id(0)
|
|
127
|
+
group_idx = tl.program_id(1)
|
|
128
|
+
|
|
129
|
+
# Move the pointers to the correct batch
|
|
130
|
+
X_ptr += batch_idx * X_row_stride
|
|
131
|
+
DX_ptr += batch_idx * X_row_stride
|
|
132
|
+
UPSTREAM_ptr += batch_idx * X_row_stride
|
|
133
|
+
|
|
134
|
+
# Mean and rstd are the same shape so have the same strides
|
|
135
|
+
mean = tl.load(
|
|
136
|
+
Mean_ptr + batch_idx * Mean_ptr_row_stride + group_idx * Mean_ptr_col_stride
|
|
137
|
+
)
|
|
138
|
+
rstd = tl.load(
|
|
139
|
+
RSTD_ptr + batch_idx * Mean_ptr_row_stride + group_idx * Mean_ptr_col_stride
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
c1 = 0.0
|
|
143
|
+
c2 = 0.0
|
|
144
|
+
block_range = tl.arange(0, BLOCK_SIZE)
|
|
145
|
+
|
|
146
|
+
# We need to compute the sum terms of the backprop equations across all channels in the group
|
|
147
|
+
for channel_idx in range(
|
|
148
|
+
group_idx * channels_per_group, (group_idx + 1) * channels_per_group
|
|
149
|
+
):
|
|
150
|
+
dW = 0.0
|
|
151
|
+
dB = 0.0
|
|
152
|
+
# Move the pointers to the correct channel
|
|
153
|
+
W = tl.load(W_ptr + channel_idx)
|
|
154
|
+
for i in tl.range(0, hidden_size, BLOCK_SIZE):
|
|
155
|
+
hidden_size_offsets = i + block_range
|
|
156
|
+
mask = hidden_size_offsets < hidden_size
|
|
157
|
+
X = tl.load(
|
|
158
|
+
X_ptr + channel_idx * X_col_stride + hidden_size_offsets,
|
|
159
|
+
mask=mask,
|
|
160
|
+
other=0.0,
|
|
161
|
+
)
|
|
162
|
+
UPSTREAM_grad = tl.load(
|
|
163
|
+
UPSTREAM_ptr + channel_idx * X_col_stride + hidden_size_offsets,
|
|
164
|
+
mask=mask,
|
|
165
|
+
other=0.0,
|
|
166
|
+
)
|
|
167
|
+
|
|
168
|
+
x_hat = (X - mean) * rstd
|
|
169
|
+
dW += tl.sum(UPSTREAM_grad * x_hat)
|
|
170
|
+
dB += tl.sum(UPSTREAM_grad)
|
|
171
|
+
|
|
172
|
+
wdy = W * UPSTREAM_grad
|
|
173
|
+
c1 += tl.sum(x_hat * wdy)
|
|
174
|
+
c2 += tl.sum(wdy)
|
|
175
|
+
|
|
176
|
+
# Need to ensure additions to the same channel are atomic
|
|
177
|
+
tl.atomic_add(DW_ptr + channel_idx, dW.to(dtype))
|
|
178
|
+
tl.atomic_add(DB_ptr + channel_idx, dB.to(dtype))
|
|
179
|
+
|
|
180
|
+
N = hidden_size * channels_per_group
|
|
181
|
+
c1 = c1 / N
|
|
182
|
+
c2 = c2 / N
|
|
183
|
+
|
|
184
|
+
for channel_idx in tl.range(
|
|
185
|
+
group_idx * channels_per_group, (group_idx + 1) * channels_per_group
|
|
186
|
+
):
|
|
187
|
+
# Move the pointers to the correct channel
|
|
188
|
+
W = tl.load(W_ptr + channel_idx)
|
|
189
|
+
for i in range(0, hidden_size, BLOCK_SIZE):
|
|
190
|
+
hidden_size_offsets = i + block_range
|
|
191
|
+
mask = hidden_size_offsets < hidden_size
|
|
192
|
+
X = tl.load(
|
|
193
|
+
X_ptr + channel_idx * X_col_stride + hidden_size_offsets,
|
|
194
|
+
mask=mask,
|
|
195
|
+
other=0.0,
|
|
196
|
+
)
|
|
197
|
+
UPSTREAM_grad = tl.load(
|
|
198
|
+
UPSTREAM_ptr + channel_idx * X_col_stride + hidden_size_offsets,
|
|
199
|
+
mask=mask,
|
|
200
|
+
other=0.0,
|
|
201
|
+
)
|
|
202
|
+
|
|
203
|
+
x_hat = (X - mean) * rstd
|
|
204
|
+
wdy = W * UPSTREAM_grad
|
|
205
|
+
dx = (wdy - (x_hat * c1 + c2)) * rstd
|
|
206
|
+
tl.store(
|
|
207
|
+
DX_ptr + channel_idx * X_col_stride + hidden_size_offsets, dx, mask=mask
|
|
208
|
+
)
|
|
209
|
+
|
|
210
|
+
|
|
211
|
+
def group_norm_forward(X, num_channels, num_groups, W, B, eps):
|
|
212
|
+
shape = X.shape
|
|
213
|
+
batch_size = shape[0]
|
|
214
|
+
channels_per_group = num_channels // num_groups
|
|
215
|
+
# Reshape X so that the mean and std are computed across the groups
|
|
216
|
+
X = X.view(batch_size, num_groups, -1).contiguous()
|
|
217
|
+
hidden_size = X.shape[-1]
|
|
218
|
+
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(hidden_size))
|
|
219
|
+
Y = torch.empty(
|
|
220
|
+
(batch_size, num_groups, hidden_size), dtype=X.dtype, device=X.device
|
|
221
|
+
)
|
|
222
|
+
Mean = torch.zeros((batch_size, num_groups), dtype=X.dtype, device=X.device)
|
|
223
|
+
RSTD = torch.zeros((batch_size, num_groups), dtype=X.dtype, device=X.device)
|
|
224
|
+
|
|
225
|
+
_group_norm_forward_kernel[(batch_size, num_groups)](
|
|
226
|
+
Y,
|
|
227
|
+
Y.stride(0),
|
|
228
|
+
Y.stride(1),
|
|
229
|
+
X,
|
|
230
|
+
X.stride(0),
|
|
231
|
+
X.stride(1),
|
|
232
|
+
Mean,
|
|
233
|
+
Mean.stride(0),
|
|
234
|
+
Mean.stride(1),
|
|
235
|
+
RSTD,
|
|
236
|
+
RSTD.stride(0),
|
|
237
|
+
RSTD.stride(1),
|
|
238
|
+
W,
|
|
239
|
+
B,
|
|
240
|
+
hidden_size,
|
|
241
|
+
channels_per_group,
|
|
242
|
+
eps,
|
|
243
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
244
|
+
)
|
|
245
|
+
# Return tensors in the original shape
|
|
246
|
+
return Y.view(*shape), X.view(*shape), Mean, RSTD, BLOCK_SIZE
|
|
247
|
+
|
|
248
|
+
|
|
249
|
+
def group_norm_backward(dY, X, W, B, Mean, RSTD, num_channels, num_groups):
|
|
250
|
+
shape = dY.shape
|
|
251
|
+
batch_size = shape[0]
|
|
252
|
+
hidden_size = dY.shape[-1]
|
|
253
|
+
channels_per_group = num_channels // num_groups
|
|
254
|
+
dY = dY.view(batch_size, num_groups, -1)
|
|
255
|
+
DX = torch.empty(
|
|
256
|
+
(batch_size, num_groups, hidden_size * channels_per_group),
|
|
257
|
+
dtype=X.dtype,
|
|
258
|
+
device=X.device,
|
|
259
|
+
)
|
|
260
|
+
DW = torch.zeros((num_channels), dtype=W.dtype, device=W.device)
|
|
261
|
+
DB = torch.zeros((num_channels), dtype=B.dtype, device=B.device)
|
|
262
|
+
triton_dtype = tl.float32 if X.dtype == torch.float32 else tl.bfloat16
|
|
263
|
+
|
|
264
|
+
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(hidden_size))
|
|
265
|
+
_group_norm_backward_kernel[(batch_size, num_groups)](
|
|
266
|
+
X,
|
|
267
|
+
X.stride(0),
|
|
268
|
+
X.stride(1),
|
|
269
|
+
W,
|
|
270
|
+
Mean,
|
|
271
|
+
Mean.stride(0),
|
|
272
|
+
Mean.stride(1),
|
|
273
|
+
RSTD,
|
|
274
|
+
DX,
|
|
275
|
+
DW,
|
|
276
|
+
DB,
|
|
277
|
+
dY,
|
|
278
|
+
hidden_size,
|
|
279
|
+
channels_per_group,
|
|
280
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
281
|
+
dtype=triton_dtype,
|
|
282
|
+
)
|
|
283
|
+
|
|
284
|
+
# Return tensors in the original shape
|
|
285
|
+
return DX.view(*shape), DW, DB
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
class LigerGroupNormFunction(torch.autograd.Function):
|
|
289
|
+
@staticmethod
|
|
290
|
+
@ensure_contiguous
|
|
291
|
+
def forward(
|
|
292
|
+
ctx,
|
|
293
|
+
X,
|
|
294
|
+
affine_scaling_weight,
|
|
295
|
+
affine_shifting_bias,
|
|
296
|
+
num_channels,
|
|
297
|
+
num_groups,
|
|
298
|
+
eps,
|
|
299
|
+
):
|
|
300
|
+
Y, X, Mean, RSTD, BLOCK_SIZE = group_norm_forward(
|
|
301
|
+
X,
|
|
302
|
+
num_channels,
|
|
303
|
+
num_groups,
|
|
304
|
+
affine_scaling_weight,
|
|
305
|
+
affine_shifting_bias,
|
|
306
|
+
eps,
|
|
307
|
+
)
|
|
308
|
+
ctx.num_channels = num_channels
|
|
309
|
+
ctx.num_groups = num_groups
|
|
310
|
+
ctx.save_for_backward(
|
|
311
|
+
X, affine_scaling_weight, affine_shifting_bias, Mean, RSTD
|
|
312
|
+
)
|
|
313
|
+
return Y
|
|
314
|
+
|
|
315
|
+
@staticmethod
|
|
316
|
+
@ensure_contiguous
|
|
317
|
+
def backward(ctx, dY):
|
|
318
|
+
X, W, B, Mean, RSTD = ctx.saved_tensors
|
|
319
|
+
DX, DW, DB = group_norm_backward(
|
|
320
|
+
dY, X, W, B, Mean, RSTD, ctx.num_channels, ctx.num_groups
|
|
321
|
+
)
|
|
322
|
+
return DX, DW, DB, None, None, None
|