liger-kernel 0.3.0__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/ops/cross_entropy.py +5 -39
- liger_kernel/ops/experimental/mm_int8int2.py +355 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +13 -10
- liger_kernel/ops/fused_linear_jsd.py +245 -0
- liger_kernel/ops/geglu.py +2 -2
- liger_kernel/ops/jsd.py +176 -0
- liger_kernel/ops/kl_div.py +45 -34
- liger_kernel/ops/rms_norm.py +67 -42
- liger_kernel/ops/swiglu.py +2 -2
- liger_kernel/ops/utils.py +62 -1
- liger_kernel/transformers/__init__.py +3 -0
- liger_kernel/transformers/auto_model.py +18 -6
- liger_kernel/transformers/functional.py +4 -0
- liger_kernel/transformers/fused_linear_jsd.py +98 -0
- liger_kernel/transformers/jsd.py +75 -0
- liger_kernel/transformers/kl_div.py +3 -2
- liger_kernel/transformers/model/gemma.py +124 -1
- liger_kernel/transformers/model/llama.py +135 -4
- liger_kernel/transformers/model/mistral.py +3 -0
- liger_kernel/transformers/model/mixtral.py +153 -2
- liger_kernel/transformers/model/mllama.py +274 -0
- liger_kernel/transformers/model/phi3.py +140 -2
- liger_kernel/transformers/model/qwen2.py +123 -2
- liger_kernel/transformers/model/qwen2_vl.py +8 -1
- liger_kernel/transformers/monkey_patch.py +254 -129
- {liger_kernel-0.3.0.dist-info → liger_kernel-0.4.0.dist-info}/METADATA +74 -35
- liger_kernel-0.4.0.dist-info/NOTICE +58 -0
- liger_kernel-0.4.0.dist-info/RECORD +48 -0
- {liger_kernel-0.3.0.dist-info → liger_kernel-0.4.0.dist-info}/WHEEL +1 -1
- liger_kernel-0.3.0.dist-info/NOTICE +0 -4
- liger_kernel-0.3.0.dist-info/RECORD +0 -42
- {liger_kernel-0.3.0.dist-info → liger_kernel-0.4.0.dist-info}/LICENSE +0 -0
- {liger_kernel-0.3.0.dist-info → liger_kernel-0.4.0.dist-info}/top_level.txt +0 -0
|
@@ -1,19 +1,36 @@
|
|
|
1
1
|
import inspect
|
|
2
2
|
import logging
|
|
3
3
|
from functools import partial
|
|
4
|
+
from typing import Callable
|
|
4
5
|
|
|
5
|
-
|
|
6
|
-
from
|
|
6
|
+
import transformers
|
|
7
|
+
from packaging import version
|
|
8
|
+
from transformers import PreTrainedModel
|
|
7
9
|
|
|
8
10
|
from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
|
|
9
11
|
from liger_kernel.transformers.geglu import LigerGEGLUMLP
|
|
10
12
|
from liger_kernel.transformers.layer_norm import LigerLayerNorm
|
|
11
13
|
from liger_kernel.transformers.model.gemma import lce_forward as gemma_lce_forward
|
|
14
|
+
from liger_kernel.transformers.model.gemma import (
|
|
15
|
+
lce_forward_deprecated as gemma_lce_forward_deprecated,
|
|
16
|
+
)
|
|
12
17
|
from liger_kernel.transformers.model.llama import lce_forward as llama_lce_forward
|
|
18
|
+
from liger_kernel.transformers.model.llama import (
|
|
19
|
+
lce_forward_deprecated as llama_lce_forward_deprecated,
|
|
20
|
+
)
|
|
13
21
|
from liger_kernel.transformers.model.mistral import lce_forward as mistral_lce_forward
|
|
14
22
|
from liger_kernel.transformers.model.mixtral import lce_forward as mixtral_lce_forward
|
|
23
|
+
from liger_kernel.transformers.model.mixtral import (
|
|
24
|
+
lce_forward_deprecated as mixtral_lce_forward_deprecated,
|
|
25
|
+
)
|
|
15
26
|
from liger_kernel.transformers.model.phi3 import lce_forward as phi3_lce_forward
|
|
27
|
+
from liger_kernel.transformers.model.phi3 import (
|
|
28
|
+
lce_forward_deprecated as phi3_lce_forward_deprecated,
|
|
29
|
+
)
|
|
16
30
|
from liger_kernel.transformers.model.qwen2 import lce_forward as qwen2_lce_forward
|
|
31
|
+
from liger_kernel.transformers.model.qwen2 import (
|
|
32
|
+
lce_forward_deprecated as qwen2_lce_forward_deprecated,
|
|
33
|
+
)
|
|
17
34
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm
|
|
18
35
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb
|
|
19
36
|
from liger_kernel.transformers.swiglu import (
|
|
@@ -22,7 +39,35 @@ from liger_kernel.transformers.swiglu import (
|
|
|
22
39
|
LigerSwiGLUMLP,
|
|
23
40
|
)
|
|
24
41
|
|
|
42
|
+
transformer_version = version.parse(transformers.__version__)
|
|
43
|
+
|
|
25
44
|
logger = logging.getLogger(__name__)
|
|
45
|
+
SUPPORTED_TRANSFORMER_VERSION = "4.46.1"
|
|
46
|
+
TRANSFORMER_DEPRECATION_WARNING = "Support for transformers versions < 4.46.1 will soon be discontinued due to issues with incorrect gradient accumulation. \n Please consider upgrading to avoid potential issues. See details: https://github.com/huggingface/transformers/pull/34191"
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def _bind_method_to_module(module, method_name: str, new_method: Callable):
|
|
50
|
+
# Binds a new method to a module instance so that self is passed as the first argument
|
|
51
|
+
module.__dict__[method_name] = new_method.__get__(module, module.__class__)
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def _patch_rms_norm_module(module, offset=0.0, eps=1e-6, casting_mode="llama"):
|
|
55
|
+
module.offset = offset
|
|
56
|
+
module.casting_mode = casting_mode
|
|
57
|
+
module.variance_epsilon = (
|
|
58
|
+
getattr(module, "variance_epsilon", None) or getattr(module, "eps", None) or eps
|
|
59
|
+
)
|
|
60
|
+
_bind_method_to_module(module, "forward", LigerRMSNorm.forward)
|
|
61
|
+
_bind_method_to_module(module, "extra_repr", LigerRMSNorm.extra_repr)
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
def _patch_layer_norm_module(module, eps=1e-6):
|
|
65
|
+
module.variance_epsilon = (
|
|
66
|
+
getattr(module, "variance_epsilon", None) or getattr(module, "eps", None) or eps
|
|
67
|
+
)
|
|
68
|
+
module.hidden_size = module.normalized_shape
|
|
69
|
+
_bind_method_to_module(module, "forward", LigerLayerNorm.forward)
|
|
70
|
+
_bind_method_to_module(module, "extra_repr", LigerLayerNorm.extra_repr)
|
|
26
71
|
|
|
27
72
|
|
|
28
73
|
def apply_liger_kernel_to_llama(
|
|
@@ -64,12 +109,15 @@ def apply_liger_kernel_to_llama(
|
|
|
64
109
|
if cross_entropy:
|
|
65
110
|
modeling_llama.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
66
111
|
if fused_linear_cross_entropy:
|
|
67
|
-
|
|
112
|
+
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
113
|
+
modeling_llama.LlamaForCausalLM.forward = llama_lce_forward
|
|
114
|
+
else: # if version < 4.46.1
|
|
115
|
+
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
|
116
|
+
modeling_llama.LlamaForCausalLM.forward = llama_lce_forward_deprecated
|
|
68
117
|
|
|
69
118
|
if model is not None:
|
|
70
119
|
# The model instance already exists, so we need to additionally patch the
|
|
71
120
|
# instance variables that reference already-instantiated modules (e.g. LlamaRMSNorm or LlamaMLP)
|
|
72
|
-
config: PretrainedConfig = model.config
|
|
73
121
|
|
|
74
122
|
if hasattr(model, "model"):
|
|
75
123
|
# The case for LlamaForCausalLM or LlamaForSequenceClassification, for example
|
|
@@ -81,22 +129,121 @@ def apply_liger_kernel_to_llama(
|
|
|
81
129
|
# Direct LlamaModel
|
|
82
130
|
base_model = model
|
|
83
131
|
|
|
84
|
-
torch_dtype = config.torch_dtype
|
|
85
132
|
if rms_norm:
|
|
86
|
-
base_model.norm
|
|
87
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
88
|
-
).to(torch_dtype)
|
|
133
|
+
_patch_rms_norm_module(base_model.norm)
|
|
89
134
|
|
|
90
135
|
for decoder_layer in base_model.layers:
|
|
91
136
|
if swiglu:
|
|
92
|
-
|
|
137
|
+
_bind_method_to_module(
|
|
138
|
+
decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward
|
|
139
|
+
)
|
|
140
|
+
if rms_norm:
|
|
141
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
|
142
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
def apply_liger_kernel_to_mllama(
|
|
146
|
+
rope: bool = True,
|
|
147
|
+
cross_entropy: bool = False,
|
|
148
|
+
fused_linear_cross_entropy: bool = True,
|
|
149
|
+
layer_norm: bool = True,
|
|
150
|
+
rms_norm: bool = True,
|
|
151
|
+
swiglu: bool = True,
|
|
152
|
+
model: PreTrainedModel = None,
|
|
153
|
+
) -> None:
|
|
154
|
+
"""
|
|
155
|
+
Apply Liger kernels to replace original implementation in HuggingFace MLlama models.
|
|
156
|
+
NOTE: MLlama is not available in transformers<4.45.0
|
|
157
|
+
|
|
158
|
+
Args:
|
|
159
|
+
rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
|
|
160
|
+
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
|
|
161
|
+
fused_linear_cross_entropy (bool):
|
|
162
|
+
Whether to apply Liger's fused linear cross entropy loss. Default is True.
|
|
163
|
+
`cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
|
|
164
|
+
If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
|
|
165
|
+
rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
|
|
166
|
+
swiglu (bool): Whether to apply Liger's SwiGLU MLP. Default is True.
|
|
167
|
+
model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
|
|
168
|
+
loaded. Default is None.
|
|
169
|
+
"""
|
|
170
|
+
|
|
171
|
+
assert not (
|
|
172
|
+
cross_entropy and fused_linear_cross_entropy
|
|
173
|
+
), "cross_entropy and fused_linear_cross_entropy cannot both be True."
|
|
174
|
+
|
|
175
|
+
from transformers.models.mllama import modeling_mllama
|
|
176
|
+
from transformers.models.mllama.modeling_mllama import (
|
|
177
|
+
MllamaForCausalLM,
|
|
178
|
+
MllamaForConditionalGeneration,
|
|
179
|
+
MllamaTextModel,
|
|
180
|
+
MllamaVisionModel,
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
from liger_kernel.transformers.model.mllama import lce_forward as mllama_lce_forward
|
|
184
|
+
from liger_kernel.transformers.model.mllama import (
|
|
185
|
+
lce_forward_deprecated as mllama_lce_forward_deprecated,
|
|
186
|
+
)
|
|
187
|
+
|
|
188
|
+
if rope:
|
|
189
|
+
modeling_mllama.apply_rotary_pos_emb = liger_rotary_pos_emb
|
|
190
|
+
if layer_norm:
|
|
191
|
+
modeling_mllama.nn.LayerNorm = LigerLayerNorm
|
|
192
|
+
if rms_norm:
|
|
193
|
+
modeling_mllama.MllamaTextRMSNorm = LigerRMSNorm
|
|
194
|
+
if swiglu:
|
|
195
|
+
modeling_mllama.MllamaTextMLP = LigerSwiGLUMLP
|
|
196
|
+
if cross_entropy:
|
|
197
|
+
modeling_mllama.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
198
|
+
if fused_linear_cross_entropy:
|
|
199
|
+
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
200
|
+
modeling_mllama.MllamaForCausalLM.forward = mllama_lce_forward
|
|
201
|
+
else: # if version < 4.46.1
|
|
202
|
+
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
|
203
|
+
modeling_mllama.MllamaForCausalLM.forward = mllama_lce_forward_deprecated
|
|
204
|
+
|
|
205
|
+
if model is not None:
|
|
206
|
+
# The model instance already exists, so we need to additionally patch the
|
|
207
|
+
# instance variables that reference already-instantiated modules
|
|
208
|
+
|
|
209
|
+
if isinstance(model, MllamaForConditionalGeneration):
|
|
210
|
+
language_model: MllamaForCausalLM = model.language_model
|
|
211
|
+
vision_model: MllamaVisionModel = model.vision_model
|
|
212
|
+
text_model: MllamaTextModel = language_model.model
|
|
213
|
+
elif isinstance(model, MllamaForCausalLM):
|
|
214
|
+
text_model = model.model
|
|
215
|
+
vision_model = None
|
|
216
|
+
elif isinstance(model, MllamaTextModel):
|
|
217
|
+
text_model = model
|
|
218
|
+
vision_model = None
|
|
219
|
+
else:
|
|
220
|
+
raise ValueError(f"Unsupported Mllama model type: {type(model)}")
|
|
221
|
+
|
|
222
|
+
if text_model:
|
|
93
223
|
if rms_norm:
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
224
|
+
_patch_rms_norm_module(text_model.norm)
|
|
225
|
+
for decoder_layer in text_model.layers:
|
|
226
|
+
if swiglu:
|
|
227
|
+
_bind_method_to_module(
|
|
228
|
+
decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward
|
|
229
|
+
)
|
|
230
|
+
if rms_norm:
|
|
231
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
|
232
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
|
233
|
+
|
|
234
|
+
if vision_model:
|
|
235
|
+
_patch_layer_norm_module(vision_model.layernorm_pre)
|
|
236
|
+
_patch_layer_norm_module(vision_model.layernorm_post)
|
|
237
|
+
|
|
238
|
+
for layer in vision_model.transformer.layers:
|
|
239
|
+
if layer_norm:
|
|
240
|
+
_patch_layer_norm_module(layer.input_layernorm)
|
|
241
|
+
_patch_layer_norm_module(layer.post_attention_layernorm)
|
|
242
|
+
|
|
243
|
+
for layer in vision_model.global_transformer.layers:
|
|
244
|
+
if layer_norm:
|
|
245
|
+
_patch_layer_norm_module(layer.input_layernorm)
|
|
246
|
+
_patch_layer_norm_module(layer.post_attention_layernorm)
|
|
100
247
|
|
|
101
248
|
|
|
102
249
|
def apply_liger_kernel_to_mistral(
|
|
@@ -143,7 +290,6 @@ def apply_liger_kernel_to_mistral(
|
|
|
143
290
|
if model is not None:
|
|
144
291
|
# The model instance already exists, so we need to additionally patch the
|
|
145
292
|
# instance variables that reference already-instantiated modules
|
|
146
|
-
config: PretrainedConfig = model.config
|
|
147
293
|
|
|
148
294
|
if hasattr(model, "model"):
|
|
149
295
|
# The case for MistralForCausalLM, MistralForTokenClassification for example
|
|
@@ -152,22 +298,17 @@ def apply_liger_kernel_to_mistral(
|
|
|
152
298
|
# Direct MistralModel
|
|
153
299
|
base_model = model
|
|
154
300
|
|
|
155
|
-
torch_dtype = config.torch_dtype
|
|
156
301
|
if rms_norm:
|
|
157
|
-
base_model.norm
|
|
158
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
159
|
-
).to(torch_dtype)
|
|
302
|
+
_patch_rms_norm_module(base_model.norm)
|
|
160
303
|
|
|
161
304
|
for decoder_layer in base_model.layers:
|
|
162
305
|
if swiglu:
|
|
163
|
-
|
|
306
|
+
_bind_method_to_module(
|
|
307
|
+
decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward
|
|
308
|
+
)
|
|
164
309
|
if rms_norm:
|
|
165
|
-
decoder_layer.input_layernorm
|
|
166
|
-
|
|
167
|
-
).to(torch_dtype)
|
|
168
|
-
decoder_layer.post_attention_layernorm = LigerRMSNorm(
|
|
169
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
170
|
-
).to(torch_dtype)
|
|
310
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
|
311
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
|
171
312
|
|
|
172
313
|
|
|
173
314
|
def apply_liger_kernel_to_mixtral(
|
|
@@ -207,14 +348,17 @@ def apply_liger_kernel_to_mixtral(
|
|
|
207
348
|
if cross_entropy:
|
|
208
349
|
modeling_mixtral.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
209
350
|
if fused_linear_cross_entropy:
|
|
210
|
-
|
|
351
|
+
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
352
|
+
modeling_mixtral.MixtralForCausalLM.forward = mixtral_lce_forward
|
|
353
|
+
else: # if version < 4.46.1
|
|
354
|
+
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
|
355
|
+
modeling_mixtral.MixtralForCausalLM.forward = mixtral_lce_forward_deprecated
|
|
211
356
|
if swiglu:
|
|
212
357
|
modeling_mixtral.MixtralBlockSparseTop2MLP = LigerBlockSparseTop2MLP
|
|
213
358
|
|
|
214
359
|
if model is not None:
|
|
215
360
|
# The model instance already exists, so we need to additionally patch the
|
|
216
361
|
# instance variables that reference already-instantiated modules
|
|
217
|
-
config: PretrainedConfig = model.config
|
|
218
362
|
|
|
219
363
|
if hasattr(model, "model"):
|
|
220
364
|
# The case for MixtralForCausalLM, MixtralForTokenClassification for example
|
|
@@ -223,29 +367,18 @@ def apply_liger_kernel_to_mixtral(
|
|
|
223
367
|
# Direct MixtralModel
|
|
224
368
|
base_model = model
|
|
225
369
|
|
|
226
|
-
torch_dtype = config.torch_dtype
|
|
227
370
|
if rms_norm:
|
|
228
|
-
base_model.norm
|
|
229
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
230
|
-
).to(torch_dtype)
|
|
371
|
+
_patch_rms_norm_module(base_model.norm)
|
|
231
372
|
|
|
232
373
|
for decoder_layer in base_model.layers:
|
|
233
374
|
if swiglu:
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
for _ in range(block_sparse_moe.num_experts)
|
|
239
|
-
]
|
|
240
|
-
)
|
|
241
|
-
decoder_layer.block_sparse_moe.experts = patched_experts.to(torch_dtype)
|
|
375
|
+
for expert in decoder_layer.block_sparse_moe.experts:
|
|
376
|
+
_bind_method_to_module(
|
|
377
|
+
expert, "forward", LigerBlockSparseTop2MLP.forward
|
|
378
|
+
)
|
|
242
379
|
if rms_norm:
|
|
243
|
-
decoder_layer.input_layernorm
|
|
244
|
-
|
|
245
|
-
).to(torch_dtype)
|
|
246
|
-
decoder_layer.post_attention_layernorm = LigerRMSNorm(
|
|
247
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
248
|
-
).to(torch_dtype)
|
|
380
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
|
381
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
|
249
382
|
|
|
250
383
|
|
|
251
384
|
def apply_liger_kernel_to_gemma(
|
|
@@ -282,6 +415,9 @@ def apply_liger_kernel_to_gemma(
|
|
|
282
415
|
LigerRMSNormForGemma = partial(
|
|
283
416
|
LigerRMSNorm, offset=1.0, init_fn="zeros", casting_mode="gemma"
|
|
284
417
|
)
|
|
418
|
+
_patch_rms_norm_module_for_gemma = partial(
|
|
419
|
+
_patch_rms_norm_module, casting_mode="gemma", offset=1.0
|
|
420
|
+
)
|
|
285
421
|
|
|
286
422
|
if rope:
|
|
287
423
|
modeling_gemma.apply_rotary_pos_emb = liger_rotary_pos_emb
|
|
@@ -292,12 +428,15 @@ def apply_liger_kernel_to_gemma(
|
|
|
292
428
|
if geglu:
|
|
293
429
|
modeling_gemma.GemmaMLP = LigerGEGLUMLP
|
|
294
430
|
if fused_linear_cross_entropy:
|
|
295
|
-
|
|
431
|
+
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
432
|
+
modeling_gemma.GemmaForCausalLM.forward = gemma_lce_forward
|
|
433
|
+
else: # if version < 4.46.1
|
|
434
|
+
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
|
435
|
+
modeling_gemma.GemmaForCausalLM.forward = gemma_lce_forward_deprecated
|
|
296
436
|
|
|
297
437
|
if model is not None:
|
|
298
438
|
# The model instance already exists, so we need to additionally patch the
|
|
299
439
|
# instance variables that reference already-instantiated modules
|
|
300
|
-
config: PretrainedConfig = model.config
|
|
301
440
|
|
|
302
441
|
if hasattr(model, "model"):
|
|
303
442
|
# The case for GemmaForCausalLM, GemmaForTokenClassification for example
|
|
@@ -306,22 +445,17 @@ def apply_liger_kernel_to_gemma(
|
|
|
306
445
|
# Direct GemmaModel
|
|
307
446
|
base_model = model
|
|
308
447
|
|
|
309
|
-
torch_dtype = config.torch_dtype
|
|
310
448
|
if rms_norm:
|
|
311
|
-
base_model.norm
|
|
312
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
313
|
-
).to(torch_dtype)
|
|
449
|
+
_patch_rms_norm_module_for_gemma(base_model.norm)
|
|
314
450
|
|
|
315
451
|
for decoder_layer in base_model.layers:
|
|
316
452
|
if geglu:
|
|
317
|
-
|
|
453
|
+
_bind_method_to_module(
|
|
454
|
+
decoder_layer.mlp, "forward", LigerGEGLUMLP.forward
|
|
455
|
+
)
|
|
318
456
|
if rms_norm:
|
|
319
|
-
decoder_layer.input_layernorm
|
|
320
|
-
|
|
321
|
-
).to(torch_dtype)
|
|
322
|
-
decoder_layer.post_attention_layernorm = LigerRMSNormForGemma(
|
|
323
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
324
|
-
).to(torch_dtype)
|
|
457
|
+
_patch_rms_norm_module_for_gemma(decoder_layer.input_layernorm)
|
|
458
|
+
_patch_rms_norm_module_for_gemma(decoder_layer.post_attention_layernorm)
|
|
325
459
|
|
|
326
460
|
|
|
327
461
|
def apply_liger_kernel_to_gemma2(
|
|
@@ -343,10 +477,15 @@ def apply_liger_kernel_to_gemma2(
|
|
|
343
477
|
model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
|
|
344
478
|
loaded. Default is None.
|
|
345
479
|
"""
|
|
346
|
-
print("Got here!")
|
|
347
480
|
from transformers.models.gemma2 import modeling_gemma2
|
|
348
481
|
|
|
349
|
-
LigerRMSNormForGemma2 = partial(
|
|
482
|
+
LigerRMSNormForGemma2 = partial(
|
|
483
|
+
LigerRMSNorm, offset=1.0, casting_mode="gemma", init_fn="zeros"
|
|
484
|
+
)
|
|
485
|
+
_patch_rms_norm_module_for_gemma2 = partial(
|
|
486
|
+
_patch_rms_norm_module, offset=1.0, casting_mode="gemma"
|
|
487
|
+
)
|
|
488
|
+
|
|
350
489
|
if rope:
|
|
351
490
|
modeling_gemma2.apply_rotary_pos_emb = liger_rotary_pos_emb
|
|
352
491
|
if rms_norm:
|
|
@@ -360,7 +499,6 @@ def apply_liger_kernel_to_gemma2(
|
|
|
360
499
|
if model is not None:
|
|
361
500
|
# The model instance already exists, so we need to additionally patch the
|
|
362
501
|
# instance variables that reference already-instantiated modules
|
|
363
|
-
config: PretrainedConfig = model.config
|
|
364
502
|
|
|
365
503
|
if hasattr(model, "model"):
|
|
366
504
|
# The case for Gemma2ForCausalLM, Gemma2ForTokenClassification for example
|
|
@@ -369,28 +507,25 @@ def apply_liger_kernel_to_gemma2(
|
|
|
369
507
|
# Direct Gemma2Model
|
|
370
508
|
base_model = model
|
|
371
509
|
|
|
372
|
-
torch_dtype = config.torch_dtype
|
|
373
510
|
if rms_norm:
|
|
374
|
-
base_model.norm
|
|
375
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
376
|
-
).to(torch_dtype)
|
|
511
|
+
_patch_rms_norm_module_for_gemma2(base_model.norm)
|
|
377
512
|
|
|
378
513
|
for decoder_layer in base_model.layers:
|
|
379
514
|
if geglu:
|
|
380
|
-
|
|
515
|
+
_bind_method_to_module(
|
|
516
|
+
decoder_layer.mlp, "forward", LigerGEGLUMLP.forward
|
|
517
|
+
)
|
|
381
518
|
if rms_norm:
|
|
382
|
-
decoder_layer.input_layernorm
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
|
|
392
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
393
|
-
).to(torch_dtype)
|
|
519
|
+
_patch_rms_norm_module_for_gemma2(decoder_layer.input_layernorm)
|
|
520
|
+
_patch_rms_norm_module_for_gemma2(
|
|
521
|
+
decoder_layer.post_attention_layernorm
|
|
522
|
+
)
|
|
523
|
+
_patch_rms_norm_module_for_gemma2(
|
|
524
|
+
decoder_layer.pre_feedforward_layernorm
|
|
525
|
+
)
|
|
526
|
+
_patch_rms_norm_module_for_gemma2(
|
|
527
|
+
decoder_layer.post_feedforward_layernorm
|
|
528
|
+
)
|
|
394
529
|
|
|
395
530
|
|
|
396
531
|
def apply_liger_kernel_to_qwen2(
|
|
@@ -428,15 +563,22 @@ def apply_liger_kernel_to_qwen2(
|
|
|
428
563
|
modeling_qwen2.Qwen2RMSNorm = LigerRMSNorm
|
|
429
564
|
if cross_entropy:
|
|
430
565
|
modeling_qwen2.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
566
|
+
|
|
567
|
+
# import pdb; pdb.set_trace()
|
|
431
568
|
if fused_linear_cross_entropy:
|
|
432
|
-
|
|
569
|
+
|
|
570
|
+
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
571
|
+
modeling_qwen2.Qwen2ForCausalLM.forward = qwen2_lce_forward
|
|
572
|
+
else: # if version < 4.46.1
|
|
573
|
+
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
|
574
|
+
modeling_qwen2.Qwen2ForCausalLM.forward = qwen2_lce_forward_deprecated
|
|
575
|
+
|
|
433
576
|
if swiglu:
|
|
434
577
|
modeling_qwen2.Qwen2MLP = LigerSwiGLUMLP
|
|
435
578
|
|
|
436
579
|
if model is not None:
|
|
437
580
|
# The model instance already exists, so we need to additionally patch the
|
|
438
581
|
# instance variables that reference already-instantiated modules
|
|
439
|
-
config: PretrainedConfig = model.config
|
|
440
582
|
|
|
441
583
|
if hasattr(model, "model"):
|
|
442
584
|
# The case for Qwen2ForCausalLM, Qwen2ForTokenClassification for example
|
|
@@ -445,22 +587,18 @@ def apply_liger_kernel_to_qwen2(
|
|
|
445
587
|
# Direct Qwen2Model
|
|
446
588
|
base_model = model
|
|
447
589
|
|
|
448
|
-
torch_dtype = config.torch_dtype
|
|
449
590
|
if rms_norm:
|
|
450
|
-
base_model.norm
|
|
451
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
452
|
-
).to(torch_dtype)
|
|
591
|
+
_patch_rms_norm_module(base_model.norm)
|
|
453
592
|
|
|
454
593
|
for decoder_layer in base_model.layers:
|
|
455
594
|
if swiglu:
|
|
456
|
-
|
|
595
|
+
_bind_method_to_module(
|
|
596
|
+
decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward
|
|
597
|
+
)
|
|
457
598
|
if rms_norm:
|
|
458
|
-
decoder_layer.input_layernorm
|
|
459
|
-
|
|
460
|
-
|
|
461
|
-
decoder_layer.post_attention_layernorm = LigerRMSNorm(
|
|
462
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
463
|
-
).to(torch_dtype)
|
|
599
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
|
600
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
|
601
|
+
print("Applied Liger kernels to Qwen2")
|
|
464
602
|
|
|
465
603
|
|
|
466
604
|
def apply_liger_kernel_to_qwen2_vl(
|
|
@@ -473,7 +611,7 @@ def apply_liger_kernel_to_qwen2_vl(
|
|
|
473
611
|
) -> None:
|
|
474
612
|
"""
|
|
475
613
|
Apply Liger kernels to replace original implementation in HuggingFace Qwen2-VL models.
|
|
476
|
-
NOTE: Qwen2-VL is not available in transformers
|
|
614
|
+
NOTE: Qwen2-VL is not available in transformers<4.45.0
|
|
477
615
|
|
|
478
616
|
Args:
|
|
479
617
|
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
|
|
@@ -499,10 +637,9 @@ def apply_liger_kernel_to_qwen2_vl(
|
|
|
499
637
|
|
|
500
638
|
# TODO: Support Qwen2-VL's multimodal RoPE implementation
|
|
501
639
|
|
|
502
|
-
LigerRMSNormForQwen2VL = partial(LigerRMSNorm, init_fn="ones", casting_mode="gemma")
|
|
503
640
|
if rms_norm:
|
|
504
641
|
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py#L439
|
|
505
|
-
modeling_qwen2_vl.Qwen2RMSNorm =
|
|
642
|
+
modeling_qwen2_vl.Qwen2RMSNorm = LigerRMSNorm
|
|
506
643
|
if layer_norm:
|
|
507
644
|
modeling_qwen2_vl.LayerNorm = LigerLayerNorm
|
|
508
645
|
if cross_entropy:
|
|
@@ -515,9 +652,6 @@ def apply_liger_kernel_to_qwen2_vl(
|
|
|
515
652
|
if model is not None:
|
|
516
653
|
# The model instance already exists, so we need to additionally patch the
|
|
517
654
|
# instance variables that reference already-instantiated modules
|
|
518
|
-
config: PretrainedConfig = model.config
|
|
519
|
-
|
|
520
|
-
torch_dtype = config.torch_dtype
|
|
521
655
|
|
|
522
656
|
if hasattr(model, "model"):
|
|
523
657
|
# The case for Qwen2VLForConditionalGeneration.
|
|
@@ -530,27 +664,19 @@ def apply_liger_kernel_to_qwen2_vl(
|
|
|
530
664
|
# Patch Qwen2VisionTransformerPretrainedModel
|
|
531
665
|
for vision_block in model.visual.blocks:
|
|
532
666
|
if layer_norm:
|
|
533
|
-
vision_block.norm1
|
|
534
|
-
|
|
535
|
-
)
|
|
536
|
-
vision_block.norm2 = LigerLayerNorm(config.embed_dim, eps=1e-6).to(
|
|
537
|
-
torch_dtype
|
|
538
|
-
)
|
|
667
|
+
_patch_layer_norm_module(vision_block.norm1)
|
|
668
|
+
_patch_layer_norm_module(vision_block.norm2)
|
|
539
669
|
|
|
540
670
|
if rms_norm:
|
|
541
|
-
base_model.norm
|
|
542
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
543
|
-
).to(torch_dtype)
|
|
671
|
+
_patch_rms_norm_module(base_model.norm)
|
|
544
672
|
for decoder_layer in base_model.layers:
|
|
545
673
|
if swiglu:
|
|
546
|
-
|
|
674
|
+
_bind_method_to_module(
|
|
675
|
+
decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward
|
|
676
|
+
)
|
|
547
677
|
if rms_norm:
|
|
548
|
-
decoder_layer.input_layernorm
|
|
549
|
-
|
|
550
|
-
).to(torch_dtype)
|
|
551
|
-
decoder_layer.post_attention_layernorm = LigerRMSNormForQwen2VL(
|
|
552
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
553
|
-
).to(torch_dtype)
|
|
678
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
|
679
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
|
554
680
|
|
|
555
681
|
|
|
556
682
|
def apply_liger_kernel_to_phi3(
|
|
@@ -591,12 +717,15 @@ def apply_liger_kernel_to_phi3(
|
|
|
591
717
|
if cross_entropy:
|
|
592
718
|
modeling_phi3.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
593
719
|
if fused_linear_cross_entropy:
|
|
594
|
-
|
|
720
|
+
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
|
721
|
+
modeling_phi3.Phi3ForCausalLM.forward = phi3_lce_forward
|
|
722
|
+
else: # if version < 4.46.1
|
|
723
|
+
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
|
724
|
+
modeling_phi3.Phi3ForCausalLM.forward = phi3_lce_forward_deprecated
|
|
595
725
|
|
|
596
726
|
if model is not None:
|
|
597
727
|
# The model instance already exists, so we need to additionally patch the
|
|
598
728
|
# instance variables that reference already-instantiated modules
|
|
599
|
-
config: PretrainedConfig = model.config
|
|
600
729
|
|
|
601
730
|
if hasattr(model, "model"):
|
|
602
731
|
# The case for Phi3ForCausalLM, Phi3ForTokenClassification for example
|
|
@@ -605,22 +734,17 @@ def apply_liger_kernel_to_phi3(
|
|
|
605
734
|
# Direct Phi3Model
|
|
606
735
|
base_model = model
|
|
607
736
|
|
|
608
|
-
torch_dtype = config.torch_dtype
|
|
609
737
|
if rms_norm:
|
|
610
|
-
base_model.norm
|
|
611
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
612
|
-
).to(torch_dtype)
|
|
738
|
+
_patch_rms_norm_module(base_model.norm)
|
|
613
739
|
|
|
614
740
|
for decoder_layer in base_model.layers:
|
|
615
741
|
if swiglu:
|
|
616
|
-
|
|
742
|
+
_bind_method_to_module(
|
|
743
|
+
decoder_layer.mlp, "forward", LigerPhi3SwiGLUMLP.forward
|
|
744
|
+
)
|
|
617
745
|
if rms_norm:
|
|
618
|
-
decoder_layer.input_layernorm
|
|
619
|
-
|
|
620
|
-
).to(torch_dtype)
|
|
621
|
-
decoder_layer.post_attention_layernorm = LigerRMSNorm(
|
|
622
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
623
|
-
).to(torch_dtype)
|
|
746
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
|
747
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
|
624
748
|
|
|
625
749
|
|
|
626
750
|
# Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
|
|
@@ -628,6 +752,8 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
|
628
752
|
"gemma": apply_liger_kernel_to_gemma,
|
|
629
753
|
"gemma2": apply_liger_kernel_to_gemma2,
|
|
630
754
|
"llama": apply_liger_kernel_to_llama,
|
|
755
|
+
"mllama": apply_liger_kernel_to_mllama,
|
|
756
|
+
"mllama_text_model": apply_liger_kernel_to_mllama,
|
|
631
757
|
"mistral": apply_liger_kernel_to_mistral,
|
|
632
758
|
"mixtral": apply_liger_kernel_to_mixtral,
|
|
633
759
|
"qwen2": apply_liger_kernel_to_qwen2,
|
|
@@ -713,7 +839,6 @@ def _apply_liger_kernel_to_instance(model: PreTrainedModel, **kwargs) -> None:
|
|
|
713
839
|
for key, value in kwargs.items()
|
|
714
840
|
if key in apply_fn_signature.parameters
|
|
715
841
|
}
|
|
716
|
-
|
|
717
842
|
logger.info(
|
|
718
843
|
f"Applying Liger kernels to model instance with model type: {model_type} with kwargs: {applicable_kwargs}"
|
|
719
844
|
)
|