liger-kernel 0.3.0__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/ops/cross_entropy.py +5 -39
- liger_kernel/ops/experimental/mm_int8int2.py +355 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +13 -10
- liger_kernel/ops/fused_linear_jsd.py +245 -0
- liger_kernel/ops/geglu.py +2 -2
- liger_kernel/ops/jsd.py +176 -0
- liger_kernel/ops/kl_div.py +45 -34
- liger_kernel/ops/rms_norm.py +67 -42
- liger_kernel/ops/swiglu.py +2 -2
- liger_kernel/ops/utils.py +62 -1
- liger_kernel/transformers/__init__.py +3 -0
- liger_kernel/transformers/auto_model.py +18 -6
- liger_kernel/transformers/functional.py +4 -0
- liger_kernel/transformers/fused_linear_jsd.py +98 -0
- liger_kernel/transformers/jsd.py +75 -0
- liger_kernel/transformers/kl_div.py +3 -2
- liger_kernel/transformers/model/gemma.py +124 -1
- liger_kernel/transformers/model/llama.py +135 -4
- liger_kernel/transformers/model/mistral.py +3 -0
- liger_kernel/transformers/model/mixtral.py +153 -2
- liger_kernel/transformers/model/mllama.py +274 -0
- liger_kernel/transformers/model/phi3.py +140 -2
- liger_kernel/transformers/model/qwen2.py +123 -2
- liger_kernel/transformers/model/qwen2_vl.py +8 -1
- liger_kernel/transformers/monkey_patch.py +254 -129
- {liger_kernel-0.3.0.dist-info → liger_kernel-0.4.0.dist-info}/METADATA +74 -35
- liger_kernel-0.4.0.dist-info/NOTICE +58 -0
- liger_kernel-0.4.0.dist-info/RECORD +48 -0
- {liger_kernel-0.3.0.dist-info → liger_kernel-0.4.0.dist-info}/WHEEL +1 -1
- liger_kernel-0.3.0.dist-info/NOTICE +0 -4
- liger_kernel-0.3.0.dist-info/RECORD +0 -42
- {liger_kernel-0.3.0.dist-info → liger_kernel-0.4.0.dist-info}/LICENSE +0 -0
- {liger_kernel-0.3.0.dist-info → liger_kernel-0.4.0.dist-info}/top_level.txt +0 -0
liger_kernel/ops/rms_norm.py
CHANGED
|
@@ -10,6 +10,7 @@ https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddec
|
|
|
10
10
|
Modifications made by Yanning Chen, 2024.
|
|
11
11
|
"""
|
|
12
12
|
|
|
13
|
+
import math
|
|
13
14
|
import operator
|
|
14
15
|
|
|
15
16
|
import torch
|
|
@@ -20,6 +21,7 @@ from liger_kernel.ops.utils import (
|
|
|
20
21
|
calculate_settings,
|
|
21
22
|
compare_version,
|
|
22
23
|
ensure_contiguous,
|
|
24
|
+
torch_to_triton_dtype,
|
|
23
25
|
)
|
|
24
26
|
|
|
25
27
|
if compare_version("triton", operator.ge, "3.0.0"):
|
|
@@ -84,6 +86,10 @@ def _rms_norm_forward_kernel(
|
|
|
84
86
|
W_row = W_row.to(tl.float32)
|
|
85
87
|
X_row = X_row.to(tl.float32)
|
|
86
88
|
|
|
89
|
+
if casting_mode == _CASTING_MODE_NONE:
|
|
90
|
+
eps = eps.to(X_row_dtype)
|
|
91
|
+
offset = offset.to(X_row_dtype)
|
|
92
|
+
|
|
87
93
|
mean_square = tl.sum(X_row * X_row, axis=0) / n_cols
|
|
88
94
|
rstd = rsqrt(mean_square + eps)
|
|
89
95
|
|
|
@@ -100,6 +106,9 @@ def _rms_norm_forward_kernel(
|
|
|
100
106
|
|
|
101
107
|
Y_row = X_row * (offset + W_row)
|
|
102
108
|
|
|
109
|
+
if casting_mode == _CASTING_MODE_GEMMA:
|
|
110
|
+
Y_row = Y_row.to(X_row_dtype)
|
|
111
|
+
|
|
103
112
|
tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
|
|
104
113
|
|
|
105
114
|
|
|
@@ -109,14 +118,17 @@ def _rms_norm_backward_kernel(
|
|
|
109
118
|
dY_row_stride,
|
|
110
119
|
X_ptr,
|
|
111
120
|
X_row_stride,
|
|
121
|
+
X_dtype: tl.constexpr,
|
|
112
122
|
W_ptr,
|
|
113
123
|
W_row_stride,
|
|
114
124
|
RSTD_ptr,
|
|
115
125
|
RSTD_row_stride,
|
|
116
126
|
dW_ptr,
|
|
117
127
|
dW_row_stride,
|
|
128
|
+
n_rows,
|
|
118
129
|
n_cols,
|
|
119
130
|
offset,
|
|
131
|
+
rows_per_program: tl.constexpr,
|
|
120
132
|
casting_mode: tl.constexpr,
|
|
121
133
|
BLOCK_SIZE: tl.constexpr,
|
|
122
134
|
):
|
|
@@ -125,54 +137,60 @@ def _rms_norm_backward_kernel(
|
|
|
125
137
|
dw = sum(dy * (x / RMS)). summation over BxT dimension
|
|
126
138
|
"""
|
|
127
139
|
|
|
128
|
-
|
|
140
|
+
row_block_id = tl.program_id(0)
|
|
141
|
+
row_start = row_block_id * rows_per_program
|
|
142
|
+
row_end = min((row_block_id + 1) * rows_per_program, n_rows)
|
|
129
143
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
130
144
|
mask = col_offsets < n_cols
|
|
131
145
|
|
|
132
|
-
|
|
133
|
-
X_ptr += row_idx * X_row_stride
|
|
134
|
-
RSTD_ptr += row_idx * RSTD_row_stride
|
|
135
|
-
dW_ptr += row_idx * dW_row_stride
|
|
146
|
+
dW_row = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
|
|
136
147
|
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
original_x_dtype = X_row.dtype
|
|
141
|
-
|
|
142
|
-
# Get cached rms
|
|
143
|
-
rstd_row = tl.load(RSTD_ptr)
|
|
148
|
+
dY_ptr += row_start * dY_row_stride
|
|
149
|
+
X_ptr += row_start * X_row_stride
|
|
150
|
+
RSTD_ptr += row_start
|
|
144
151
|
|
|
152
|
+
W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0.0)
|
|
145
153
|
W_row = W_row + offset
|
|
146
154
|
|
|
147
|
-
|
|
155
|
+
for _ in range(row_start, row_end):
|
|
156
|
+
dY_row = tl.load(dY_ptr + col_offsets, mask=mask, other=0.0)
|
|
157
|
+
X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0.0)
|
|
148
158
|
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
m = (dY_row * W_row).to(tl.float32)
|
|
159
|
+
# Get cached rms
|
|
160
|
+
rstd_row = tl.load(RSTD_ptr)
|
|
152
161
|
|
|
153
|
-
|
|
154
|
-
dY_row, W_row = (
|
|
155
|
-
dY_row.to(tl.float32),
|
|
156
|
-
W_row.to(tl.float32),
|
|
157
|
-
)
|
|
162
|
+
X_row = X_row.to(tl.float32)
|
|
158
163
|
|
|
159
|
-
|
|
164
|
+
# Different bacward graphs for different casting modes
|
|
165
|
+
if casting_mode == _CASTING_MODE_LLAMA:
|
|
166
|
+
m = (dY_row * W_row).to(tl.float32)
|
|
160
167
|
|
|
161
|
-
|
|
168
|
+
elif casting_mode == _CASTING_MODE_GEMMA:
|
|
169
|
+
dY_row = dY_row.to(tl.float32)
|
|
170
|
+
m = dY_row * W_row
|
|
171
|
+
else:
|
|
172
|
+
m = dY_row * W_row
|
|
162
173
|
|
|
163
|
-
|
|
164
|
-
-(1 / n_cols) * rstd_row * rstd_row * tl.sum(m * X_row, axis=0) * X_row
|
|
165
|
-
)
|
|
174
|
+
dX_row = rstd_row * m
|
|
166
175
|
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
#
|
|
172
|
-
|
|
176
|
+
dX_row += (rstd_row) * (
|
|
177
|
+
-(1 / n_cols) * rstd_row * rstd_row * tl.sum(m * X_row, axis=0) * X_row
|
|
178
|
+
)
|
|
179
|
+
|
|
180
|
+
# calculate the gradient of W
|
|
181
|
+
if casting_mode == _CASTING_MODE_LLAMA:
|
|
182
|
+
dW_row += dY_row * (X_row * rstd_row).to(X_dtype)
|
|
183
|
+
else:
|
|
184
|
+
# here X_row is already in fp32 (see previous if block)
|
|
185
|
+
dW_row += dY_row * (X_row * rstd_row)
|
|
173
186
|
|
|
174
|
-
|
|
175
|
-
|
|
187
|
+
tl.store(dY_ptr + col_offsets, dX_row.to(X_dtype), mask=mask)
|
|
188
|
+
|
|
189
|
+
dY_ptr += dY_row_stride
|
|
190
|
+
X_ptr += X_row_stride
|
|
191
|
+
RSTD_ptr += RSTD_row_stride
|
|
192
|
+
|
|
193
|
+
tl.store(dW_ptr + row_block_id * dW_row_stride + col_offsets, dW_row, mask=mask)
|
|
176
194
|
|
|
177
195
|
|
|
178
196
|
_str_to_casting_mode = {
|
|
@@ -238,31 +256,38 @@ def rms_norm_backward(dY, X, W, RSTD, offset, casting_mode, BLOCK_SIZE, num_warp
|
|
|
238
256
|
dim = shape[-1]
|
|
239
257
|
dY = dY.view(-1, dim)
|
|
240
258
|
n_rows, n_cols = dY.shape
|
|
241
|
-
dW = torch.empty_like(
|
|
242
|
-
X,
|
|
243
|
-
dtype=(torch.float32 if casting_mode == _CASTING_MODE_GEMMA.value else W.dtype),
|
|
244
|
-
)
|
|
245
259
|
|
|
260
|
+
sm_count = torch.cuda.get_device_properties(X.device).multi_processor_count
|
|
261
|
+
# fp32 for numerical stability especially.
|
|
262
|
+
_dW = torch.empty((sm_count, n_cols), dtype=torch.float32, device=W.device)
|
|
263
|
+
|
|
264
|
+
if n_cols > BLOCK_SIZE:
|
|
265
|
+
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
|
266
|
+
rows_per_program = math.ceil(n_rows / sm_count)
|
|
267
|
+
grid = (sm_count,)
|
|
246
268
|
# Here we use dY to store the value of dX to save memory
|
|
247
|
-
_rms_norm_backward_kernel[
|
|
269
|
+
_rms_norm_backward_kernel[grid](
|
|
248
270
|
dY,
|
|
249
271
|
dY.stride(0),
|
|
250
272
|
X,
|
|
251
273
|
X.stride(0),
|
|
274
|
+
torch_to_triton_dtype[X.dtype],
|
|
252
275
|
W,
|
|
253
276
|
W.stride(0),
|
|
254
277
|
RSTD,
|
|
255
278
|
RSTD.stride(0),
|
|
256
|
-
|
|
257
|
-
|
|
279
|
+
_dW,
|
|
280
|
+
_dW.stride(0),
|
|
281
|
+
n_rows,
|
|
258
282
|
n_cols,
|
|
259
283
|
offset,
|
|
284
|
+
rows_per_program,
|
|
260
285
|
casting_mode,
|
|
261
286
|
BLOCK_SIZE=BLOCK_SIZE,
|
|
262
287
|
num_warps=num_warps,
|
|
263
288
|
)
|
|
264
289
|
dX = dY.view(*shape)
|
|
265
|
-
dW =
|
|
290
|
+
dW = _dW.sum(dim=0).to(W.dtype)
|
|
266
291
|
return dX, dW
|
|
267
292
|
|
|
268
293
|
|
liger_kernel/ops/swiglu.py
CHANGED
|
@@ -14,7 +14,7 @@ def silu(x):
|
|
|
14
14
|
def _swiglu_forward_kernel(
|
|
15
15
|
a_ptr, b_ptr, c_ptr, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
|
|
16
16
|
):
|
|
17
|
-
program_id = tl.program_id(0)
|
|
17
|
+
program_id = tl.program_id(0).to(tl.int64)
|
|
18
18
|
|
|
19
19
|
# locate start index
|
|
20
20
|
a_ptr += program_id * stride
|
|
@@ -35,7 +35,7 @@ def _swiglu_forward_kernel(
|
|
|
35
35
|
def _swiglu_backward_kernel(
|
|
36
36
|
dc_ptr, a_ptr, b_ptr, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
|
|
37
37
|
):
|
|
38
|
-
program_id = tl.program_id(0)
|
|
38
|
+
program_id = tl.program_id(0).to(tl.int64)
|
|
39
39
|
|
|
40
40
|
# locate start index
|
|
41
41
|
dc_ptr += program_id * stride
|
liger_kernel/ops/utils.py
CHANGED
|
@@ -12,13 +12,19 @@ Modifications made by Yanning Chen, 2024.
|
|
|
12
12
|
|
|
13
13
|
import functools
|
|
14
14
|
import importlib
|
|
15
|
+
import operator
|
|
15
16
|
from typing import Callable
|
|
16
17
|
|
|
17
18
|
import torch
|
|
18
19
|
import triton
|
|
20
|
+
import triton.language as tl
|
|
19
21
|
from packaging.version import Version
|
|
20
22
|
|
|
21
23
|
|
|
24
|
+
def is_hip() -> bool:
|
|
25
|
+
return torch.version.hip is not None
|
|
26
|
+
|
|
27
|
+
|
|
22
28
|
def ensure_contiguous(fn):
|
|
23
29
|
@functools.wraps(fn)
|
|
24
30
|
def wrapper(ctx, *args, **kwargs):
|
|
@@ -45,7 +51,7 @@ def calculate_settings(n):
|
|
|
45
51
|
|
|
46
52
|
num_warps = 4
|
|
47
53
|
if BLOCK_SIZE >= 32768:
|
|
48
|
-
num_warps = 32
|
|
54
|
+
num_warps = 32 if not is_hip() else 16
|
|
49
55
|
elif BLOCK_SIZE >= 8192:
|
|
50
56
|
num_warps = 16
|
|
51
57
|
elif BLOCK_SIZE >= 2048:
|
|
@@ -60,3 +66,58 @@ def compare_version(package: str, operator: Callable, target: str):
|
|
|
60
66
|
return False
|
|
61
67
|
pkg_version = Version(pkg.__version__)
|
|
62
68
|
return operator(pkg_version, Version(target))
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def get_amp_custom_fwd_bwd() -> Callable:
|
|
72
|
+
if compare_version("torch", operator.ge, "2.4.0"):
|
|
73
|
+
return (
|
|
74
|
+
functools.partial(torch.amp.custom_fwd, device_type="cuda"),
|
|
75
|
+
functools.partial(torch.amp.custom_bwd, device_type="cuda"),
|
|
76
|
+
)
|
|
77
|
+
return torch.cuda.amp.custom_fwd, torch.cuda.amp.custom_bwd
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
amp_custom_fwd, amp_custom_bwd = get_amp_custom_fwd_bwd()
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
torch_to_triton_dtype = {
|
|
84
|
+
torch.float32: tl.float32,
|
|
85
|
+
torch.float16: tl.float16,
|
|
86
|
+
torch.bfloat16: tl.bfloat16,
|
|
87
|
+
}
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
@triton.jit
|
|
91
|
+
def element_mul_kernel(
|
|
92
|
+
X_ptr,
|
|
93
|
+
X_stride,
|
|
94
|
+
grad_output_ptr,
|
|
95
|
+
n_cols,
|
|
96
|
+
BLOCK_SIZE: tl.constexpr,
|
|
97
|
+
):
|
|
98
|
+
"""
|
|
99
|
+
This function multiplies each element of the tensor pointed by X_ptr with the value pointed by grad_output_ptr.
|
|
100
|
+
The multiplication is performed in-place on the tensor pointed by X_ptr.
|
|
101
|
+
|
|
102
|
+
Parameters:
|
|
103
|
+
X_ptr: Pointer to the input tensor.
|
|
104
|
+
X_stride (int): The stride of the input tensor.
|
|
105
|
+
grad_output_ptr: Pointer to the gradient output value.
|
|
106
|
+
n_cols (int): The number of columns in the input tensor.
|
|
107
|
+
BLOCK_SIZE (int): The block size for Triton operations.
|
|
108
|
+
"""
|
|
109
|
+
|
|
110
|
+
# Get the program ID and convert it to int64 to avoid overflow
|
|
111
|
+
program_id = tl.program_id(0).to(tl.int64)
|
|
112
|
+
|
|
113
|
+
# Locate the start index
|
|
114
|
+
X_ptr += program_id * X_stride
|
|
115
|
+
|
|
116
|
+
# Load the gradient output value
|
|
117
|
+
grad_output = tl.load(grad_output_ptr)
|
|
118
|
+
|
|
119
|
+
# Perform the element-wise multiplication
|
|
120
|
+
for i in range(0, n_cols, BLOCK_SIZE):
|
|
121
|
+
X_offsets = i + tl.arange(0, BLOCK_SIZE)
|
|
122
|
+
X_block = tl.load(X_ptr + X_offsets, mask=X_offsets < n_cols)
|
|
123
|
+
tl.store(X_ptr + X_offsets, X_block * grad_output, mask=X_offsets < n_cols)
|
|
@@ -5,7 +5,9 @@ from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss # noq
|
|
|
5
5
|
from liger_kernel.transformers.fused_linear_cross_entropy import ( # noqa: F401
|
|
6
6
|
LigerFusedLinearCrossEntropyLoss,
|
|
7
7
|
)
|
|
8
|
+
from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # noqa: F401
|
|
8
9
|
from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
|
|
10
|
+
from liger_kernel.transformers.jsd import LigerJSD # noqa: F401
|
|
9
11
|
from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
|
|
10
12
|
from liger_kernel.transformers.monkey_patch import ( # noqa: F401
|
|
11
13
|
_apply_liger_kernel,
|
|
@@ -15,6 +17,7 @@ from liger_kernel.transformers.monkey_patch import ( # noqa: F401
|
|
|
15
17
|
apply_liger_kernel_to_llama,
|
|
16
18
|
apply_liger_kernel_to_mistral,
|
|
17
19
|
apply_liger_kernel_to_mixtral,
|
|
20
|
+
apply_liger_kernel_to_mllama,
|
|
18
21
|
apply_liger_kernel_to_phi3,
|
|
19
22
|
apply_liger_kernel_to_qwen2,
|
|
20
23
|
apply_liger_kernel_to_qwen2_vl,
|
|
@@ -1,6 +1,11 @@
|
|
|
1
|
+
import inspect
|
|
2
|
+
|
|
1
3
|
from transformers import AutoConfig, AutoModelForCausalLM
|
|
2
4
|
|
|
3
|
-
from liger_kernel.transformers.monkey_patch import
|
|
5
|
+
from liger_kernel.transformers.monkey_patch import (
|
|
6
|
+
MODEL_TYPE_TO_APPLY_LIGER_FN,
|
|
7
|
+
_apply_liger_kernel,
|
|
8
|
+
)
|
|
4
9
|
|
|
5
10
|
|
|
6
11
|
def _get_model_config(model_dir, **model_init_kwargs):
|
|
@@ -21,13 +26,20 @@ class AutoLigerKernelForCausalLM(AutoModelForCausalLM):
|
|
|
21
26
|
# Determine the model type and apply the Liger Kernel if applicable
|
|
22
27
|
# Note: _apply_liger_kernel will only pass relevant kwargs to the apply_liger_kernel_to_* function
|
|
23
28
|
model_type = model_config.model_type
|
|
29
|
+
|
|
24
30
|
_apply_liger_kernel(model_type, **kwargs)
|
|
25
31
|
|
|
26
|
-
#
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
32
|
+
# Filter out kwargs that were passed to the apply_liger_* function, which will cause
|
|
33
|
+
# model initialization errors otherwise
|
|
34
|
+
apply_fn = MODEL_TYPE_TO_APPLY_LIGER_FN[model_type]
|
|
35
|
+
apply_fn_signature = inspect.signature(apply_fn)
|
|
36
|
+
|
|
37
|
+
applicable_kwargs = {
|
|
38
|
+
key: value
|
|
39
|
+
for key, value in kwargs.items()
|
|
40
|
+
if key not in apply_fn_signature.parameters
|
|
41
|
+
}
|
|
30
42
|
|
|
31
43
|
return super().from_pretrained(
|
|
32
|
-
pretrained_model_name_or_path, *model_args, **
|
|
44
|
+
pretrained_model_name_or_path, *model_args, **applicable_kwargs
|
|
33
45
|
)
|
|
@@ -2,7 +2,9 @@ from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
|
|
|
2
2
|
from liger_kernel.ops.fused_linear_cross_entropy import (
|
|
3
3
|
LigerFusedLinearCrossEntropyFunction,
|
|
4
4
|
)
|
|
5
|
+
from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
|
|
5
6
|
from liger_kernel.ops.geglu import LigerGELUMulFunction
|
|
7
|
+
from liger_kernel.ops.jsd import LigerJSDFunction
|
|
6
8
|
from liger_kernel.ops.kl_div import LigerKLDivLossFunction
|
|
7
9
|
from liger_kernel.ops.layer_norm import LigerLayerNormFunction
|
|
8
10
|
from liger_kernel.ops.rms_norm import LigerRMSNormFunction
|
|
@@ -17,3 +19,5 @@ liger_rms_norm = LigerRMSNormFunction.apply
|
|
|
17
19
|
liger_rope = LigerRopeFunction.apply
|
|
18
20
|
liger_layer_norm = LigerLayerNormFunction.apply
|
|
19
21
|
liger_kl_div = LigerKLDivLossFunction.apply
|
|
22
|
+
liger_jsd = LigerJSDFunction.apply
|
|
23
|
+
liger_fused_linear_jsd = LigerFusedLinearJSDFunction.apply
|
|
@@ -0,0 +1,98 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
|
|
5
|
+
from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class LigerFusedLinearJSD(torch.nn.Module):
|
|
9
|
+
r"""Fusing the last linear layer with generalized JSD
|
|
10
|
+
|
|
11
|
+
Handle the forward and backward pass of the final linear layer via JSD by avoiding
|
|
12
|
+
the materialization of the large logits tensor.
|
|
13
|
+
|
|
14
|
+
Args:
|
|
15
|
+
jsd_beta (float): coefficient beta of generalized JSD in the open interval (0, 1). Default: `0.5`
|
|
16
|
+
ignore_index (int): The index to ignore in the target. Default: `-100`
|
|
17
|
+
temperature (float): temperature in softmax function to control the output probability distribution. Default: `1.0`
|
|
18
|
+
|
|
19
|
+
Shape:
|
|
20
|
+
- student_input: :math:`(BT, H)`, where B is batch size, T is sequence length, H is hidden dimension.
|
|
21
|
+
- student_weight: :math:`(V, H)`, where V is vocab size.
|
|
22
|
+
- teacher_input: :math:`(BT, H')`, where H' is hidden dimension of the teacher model.
|
|
23
|
+
- teacher_weight: :math:`(V, H')`, where hidden size H and H' can be different.
|
|
24
|
+
- shift_labels: :math:`(BT,)`
|
|
25
|
+
- Output: a scalar.
|
|
26
|
+
|
|
27
|
+
Examples:
|
|
28
|
+
```python
|
|
29
|
+
>>> (B, T, H_s, H_t, V) = (2, 2, 3, 5, 10)
|
|
30
|
+
>>> fused_jsd = LigerFusedLinearJSD(jsd_beta=0.1, temperature=2.0)
|
|
31
|
+
>>> # generate inputs and weights
|
|
32
|
+
>>> student_input = torch.rand(B * T, H_s, device="cuda", requires_grad=True)
|
|
33
|
+
>>> student_lin = torch.nn.Linear(H_s, V, bias=False, device="cuda")
|
|
34
|
+
>>> # teacher input doesn't require grad, hidden_dim can be different from student's
|
|
35
|
+
>>> teacher_input = torch.rand(B * T, H_t, device="cuda")
|
|
36
|
+
>>> teacher_lin = torch.nn.Linear(H_t, V, bias=False, device="cuda")
|
|
37
|
+
>>> output = fused_jsd(student_input, student_lin.weight, teacher_input, teacher_lin.weight)
|
|
38
|
+
>>> output.backward()
|
|
39
|
+
>>>
|
|
40
|
+
>>> # Example with labels for supervised fine-tuning (SFT) context:
|
|
41
|
+
>>>
|
|
42
|
+
>>> # Assume hidden_states, lm_heads and corresponding labels are given
|
|
43
|
+
>>> student_lm_head = torch.nn.Linear(H_s, V, bias=False)
|
|
44
|
+
>>> student_hidden_states = torch.randn(B * T, H_s, requires_grad=True).log_softmax(dim=-1)
|
|
45
|
+
>>> teacher_lm_head = torch.nn.Linear(H_t, V, bias=False)
|
|
46
|
+
>>> teacher_hidden_states = torch.randn(B * T, H_t).log_softmax(dim=-1)
|
|
47
|
+
>>> labels = torch.randint(0, V, (B * T,), torch.long)
|
|
48
|
+
>>>
|
|
49
|
+
>>> # Shift so that tokens < n predict n
|
|
50
|
+
>>> shift_student_hidden_states = student_hidden_states[..., :-1, :].contiguous()
|
|
51
|
+
>>> shift_teacher_hidden_states = teacher_hidden_states[..., :-1, :].contiguous()
|
|
52
|
+
>>> shift_labels = labels[..., 1:].contiguous()
|
|
53
|
+
>>>
|
|
54
|
+
>>> # Flatten tokens
|
|
55
|
+
>>> shift_student_hidden_states = shift_student_hidden_states.view(-1, V)
|
|
56
|
+
>>> shift_teacher_hidden_states = shift_teacher_hidden_states.view(-1, V)
|
|
57
|
+
>>> shift_labels = shift_labels.view(-1)
|
|
58
|
+
>>>
|
|
59
|
+
>>> # Calculate loss
|
|
60
|
+
>>> loss_fct = LigerJSD(beta=0.1)
|
|
61
|
+
>>> loss = loss_fct(
|
|
62
|
+
>>> shift_studetn_hidden_states,
|
|
63
|
+
>>> student_lm_head.weight,
|
|
64
|
+
>>> shift_teacher_hidden_states,
|
|
65
|
+
>>> teacher_lm_head.weight,
|
|
66
|
+
>>> shift_labels
|
|
67
|
+
>>> )
|
|
68
|
+
```
|
|
69
|
+
"""
|
|
70
|
+
|
|
71
|
+
def __init__(self, jsd_beta=0.5, ignore_index=-100, temperature=1.0):
|
|
72
|
+
super().__init__()
|
|
73
|
+
assert (
|
|
74
|
+
jsd_beta > 0 and jsd_beta < 1
|
|
75
|
+
), f"beta must be greater than 0 and less than 1. Got: {jsd_beta}"
|
|
76
|
+
assert temperature != 0, "temperature cannot be 0."
|
|
77
|
+
self.jsd_beta = jsd_beta
|
|
78
|
+
self.temperature = temperature
|
|
79
|
+
self.ignore_index = ignore_index
|
|
80
|
+
|
|
81
|
+
def forward(
|
|
82
|
+
self,
|
|
83
|
+
student_input: torch.Tensor,
|
|
84
|
+
student_weight: torch.Tensor,
|
|
85
|
+
teacher_input: torch.Tensor,
|
|
86
|
+
teacher_weight: torch.Tensor,
|
|
87
|
+
shift_labels: Optional[torch.LongTensor],
|
|
88
|
+
):
|
|
89
|
+
return LigerFusedLinearJSDFunction.apply(
|
|
90
|
+
student_input,
|
|
91
|
+
student_weight,
|
|
92
|
+
teacher_input,
|
|
93
|
+
teacher_weight,
|
|
94
|
+
shift_labels,
|
|
95
|
+
self.jsd_beta,
|
|
96
|
+
self.ignore_index,
|
|
97
|
+
self.temperature,
|
|
98
|
+
)
|
|
@@ -0,0 +1,75 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
|
|
5
|
+
from liger_kernel.ops.jsd import LigerJSDFunction
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class LigerJSD(torch.nn.Module):
|
|
9
|
+
r"""The generalized Jensen-Shannon Divergence.
|
|
10
|
+
.. math::
|
|
11
|
+
JSD(\beta)(P || Q)
|
|
12
|
+
= \beta * KLDiv(P || (\beta * P + (1 - \beta) * Q)) + (1 - \beta) * KLDiv(Q || (\beta * P + (1 - \beta) * Q))
|
|
13
|
+
.. note::
|
|
14
|
+
As all the other losses in PyTorch, this function expects the first argument,
|
|
15
|
+
:attr:`log_q`, to be the predictions, the output of the student model in log-space,
|
|
16
|
+
and the second, :attr:`log_p`, to be the observations, the output of the teacher model in log-space.
|
|
17
|
+
This differs from the standard mathematical notation :math:`JSD(P || Q)` where
|
|
18
|
+
:math:`P` denotes the teacher model and :math:`Q` denotes the student model.
|
|
19
|
+
|
|
20
|
+
Args:
|
|
21
|
+
beta (float): coefficient beta of generalized JSD in the open interval (0, 1). Default: `0.5`
|
|
22
|
+
ignore_index (int): The index to ignore in the target. Default: `-100`
|
|
23
|
+
|
|
24
|
+
Shape:
|
|
25
|
+
- Input: :math:`(BT, V)`, where B is batch size, T is sequence length, V is vocab size.
|
|
26
|
+
- Target: :math:`(BT, V)`, same shape as the input.
|
|
27
|
+
- shift_labels (Optional): :math:`(BT,)`
|
|
28
|
+
- Output: a scalar.
|
|
29
|
+
|
|
30
|
+
Examples:
|
|
31
|
+
```python
|
|
32
|
+
>>> (B, T, V) = (2, 2, 5)
|
|
33
|
+
>>> jsd = LigerJSD(beta=0.1)
|
|
34
|
+
>>> # input should be a distribution in the log space
|
|
35
|
+
>>> input = torch.randn(B * T, V, requires_grad=True).log_softmax(dim=-1)
|
|
36
|
+
>>> target = torch.randn(B * T, V).log_softmax(dim=-1)
|
|
37
|
+
>>> output = jsd(input, target)
|
|
38
|
+
>>>
|
|
39
|
+
>>> # Example with labels for supervised fine-tuning (SFT) context
|
|
40
|
+
>>> # Assume logits and corresponding labels are given
|
|
41
|
+
>>> student_logits = torch.randn(B * T, V, requires_grad=True).log_softmax(dim=-1)
|
|
42
|
+
>>> teacher_logits = torch.randn(B * T, V).log_softmax(dim=-1)
|
|
43
|
+
>>> labels = torch.randint(0, V, (B * T,), torch.long)
|
|
44
|
+
>>> # Shift so that tokens < n predict n
|
|
45
|
+
>>> shift_student_logits = student_logits[..., :-1, :].contiguous()
|
|
46
|
+
>>> shift_teacher_logits = teacher_logits[..., :-1, :].contiguous()
|
|
47
|
+
>>> shift_labels = labels[..., 1:].contiguous()
|
|
48
|
+
>>> # Flatten tokens
|
|
49
|
+
>>> shift_student_logits = shift_student_logits.view(-1, V)
|
|
50
|
+
>>> shift_teacher_logits = shift_teacher_logits.view(-1, V)
|
|
51
|
+
>>> shift_labels = shift_labels.view(-1)
|
|
52
|
+
>>> # Calculate loss
|
|
53
|
+
>>> loss_fct = LigerJSD(beta=0.1)
|
|
54
|
+
>>> loss = loss_fct(shift_studetn_logits, shift_teacher_logits, shift_labels)
|
|
55
|
+
|
|
56
|
+
```
|
|
57
|
+
"""
|
|
58
|
+
|
|
59
|
+
def __init__(self, beta: float = 0.5, ignore_index: int = -100):
|
|
60
|
+
super().__init__()
|
|
61
|
+
assert (
|
|
62
|
+
beta > 0 and beta < 1
|
|
63
|
+
), f"beta must be greater than 0 and less than 1. Got: {beta}"
|
|
64
|
+
self.beta = beta
|
|
65
|
+
self.ignore_index = ignore_index
|
|
66
|
+
|
|
67
|
+
def forward(
|
|
68
|
+
self,
|
|
69
|
+
log_q: torch.Tensor,
|
|
70
|
+
log_p: torch.Tensor,
|
|
71
|
+
shift_labels: Optional[torch.LongTensor] = None,
|
|
72
|
+
):
|
|
73
|
+
return LigerJSDFunction.apply(
|
|
74
|
+
log_q, log_p, shift_labels, self.beta, self.ignore_index
|
|
75
|
+
)
|
|
@@ -4,10 +4,11 @@ from liger_kernel.ops.kl_div import LigerKLDivLossFunction
|
|
|
4
4
|
|
|
5
5
|
|
|
6
6
|
class LigerKLDIVLoss(nn.KLDivLoss):
|
|
7
|
-
def __init__(self, *args, **kwargs):
|
|
7
|
+
def __init__(self, eps: float = 1e-10, *args, **kwargs):
|
|
8
8
|
super(LigerKLDIVLoss, self).__init__(*args, **kwargs)
|
|
9
|
+
self.eps = eps
|
|
9
10
|
|
|
10
11
|
def forward(self, y_pred, y_true):
|
|
11
12
|
return LigerKLDivLossFunction.apply(
|
|
12
|
-
y_pred, y_true, self.reduction, self.log_target
|
|
13
|
+
y_pred, y_true, self.reduction, self.log_target, self.eps
|
|
13
14
|
)
|