liger-kernel-nightly 0.6.2.dev20251011154427__py3-none-any.whl → 0.6.4.dev20260107111351__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/chunked_loss/cosine_similarity_loss.py +20 -5
- liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
- liger_kernel/chunked_loss/fused_linear_ppo.py +21 -5
- liger_kernel/chunked_loss/grpo_loss.py +8 -5
- liger_kernel/chunked_loss/jsd_loss.py +39 -11
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +485 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +43 -0
- liger_kernel/ops/backends/_ascend/ops/geglu.py +244 -0
- liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +285 -0
- liger_kernel/ops/backends/_ascend/ops/rope.py +290 -0
- liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
- liger_kernel/ops/backends/_ascend/ub_manager.py +349 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +75 -12
- liger_kernel/ops/dyt.py +5 -2
- liger_kernel/ops/fused_add_rms_norm.py +5 -1
- liger_kernel/ops/fused_linear_cross_entropy.py +45 -14
- liger_kernel/ops/geglu.py +5 -3
- liger_kernel/ops/group_norm.py +2 -1
- liger_kernel/ops/grpo_loss.py +3 -1
- liger_kernel/ops/layer_norm.py +86 -66
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/rms_norm.py +131 -49
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/utils.py +14 -0
- liger_kernel/transformers/__init__.py +30 -0
- liger_kernel/transformers/auto_model.py +21 -0
- liger_kernel/transformers/cross_entropy.py +9 -4
- liger_kernel/transformers/dyt.py +1 -1
- liger_kernel/transformers/experimental/embedding.py +1 -1
- liger_kernel/transformers/functional.py +48 -25
- liger_kernel/transformers/fused_add_rms_norm.py +1 -1
- liger_kernel/transformers/fused_linear_cross_entropy.py +9 -4
- liger_kernel/transformers/fused_linear_jsd.py +1 -1
- liger_kernel/transformers/fused_neighborhood_attention.py +1 -1
- liger_kernel/transformers/geglu.py +1 -1
- liger_kernel/transformers/group_norm.py +1 -1
- liger_kernel/transformers/grpo_loss.py +57 -2
- liger_kernel/transformers/jsd.py +1 -1
- liger_kernel/transformers/kl_div.py +1 -1
- liger_kernel/transformers/layer_norm.py +1 -1
- liger_kernel/transformers/llama4_rope.py +1 -1
- liger_kernel/transformers/model/falcon_h1.py +19 -5
- liger_kernel/transformers/model/gemma.py +17 -6
- liger_kernel/transformers/model/gemma2.py +14 -5
- liger_kernel/transformers/model/gemma3.py +26 -12
- liger_kernel/transformers/model/glm4.py +16 -4
- liger_kernel/transformers/model/glm4v.py +16 -4
- liger_kernel/transformers/model/glm4v_moe.py +23 -4
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +12 -5
- liger_kernel/transformers/model/llama.py +14 -5
- liger_kernel/transformers/model/llama4.py +16 -4
- liger_kernel/transformers/model/llava.py +12 -4
- liger_kernel/transformers/model/loss_utils.py +31 -3
- liger_kernel/transformers/model/mistral.py +15 -6
- liger_kernel/transformers/model/mixtral.py +16 -7
- liger_kernel/transformers/model/mllama.py +12 -4
- liger_kernel/transformers/model/olmo2.py +16 -4
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +23 -5
- liger_kernel/transformers/model/phi3.py +14 -7
- liger_kernel/transformers/model/qwen2.py +16 -3
- liger_kernel/transformers/model/qwen2_5_vl.py +14 -6
- liger_kernel/transformers/model/qwen2_vl.py +16 -4
- liger_kernel/transformers/model/qwen3.py +20 -5
- liger_kernel/transformers/model/qwen3_moe.py +19 -5
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +15 -6
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +702 -48
- liger_kernel/transformers/multi_token_attention.py +1 -1
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +1 -1
- liger_kernel/transformers/rms_norm.py +15 -3
- liger_kernel/transformers/rope.py +45 -1
- liger_kernel/transformers/softmax.py +1 -1
- liger_kernel/transformers/sparsemax.py +1 -1
- liger_kernel/transformers/swiglu.py +18 -1
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/transformers/tvd.py +1 -1
- liger_kernel/utils.py +52 -0
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20260107111351.dist-info}/METADATA +12 -3
- liger_kernel_nightly-0.6.4.dev20260107111351.dist-info/RECORD +130 -0
- liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/RECORD +0 -107
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20260107111351.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20260107111351.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20260107111351.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20260107111351.dist-info}/top_level.txt +0 -0
|
@@ -15,6 +15,7 @@ from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
|
|
|
15
15
|
from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
|
|
16
16
|
from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
|
|
17
17
|
from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
|
|
18
|
+
from liger_kernel.transformers.poly_norm import LigerPolyNorm # noqa: F401
|
|
18
19
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
|
|
19
20
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
|
|
20
21
|
from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
|
|
@@ -23,6 +24,8 @@ from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F4
|
|
|
23
24
|
from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
|
|
24
25
|
from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
|
|
25
26
|
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
|
|
27
|
+
from liger_kernel.transformers.tiled_mlp import LigerTiledGEGLUMLP # noqa: F401
|
|
28
|
+
from liger_kernel.transformers.tiled_mlp import LigerTiledSwiGLUMLP # noqa: F401
|
|
26
29
|
from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
|
|
27
30
|
|
|
28
31
|
# Static-only imports for IDEs and type checkers
|
|
@@ -38,7 +41,10 @@ if TYPE_CHECKING:
|
|
|
38
41
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
|
|
39
42
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
|
|
40
43
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
|
|
44
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gpt_oss # noqa: F401
|
|
41
45
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
|
46
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_dense # noqa: F401
|
|
47
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_moe # noqa: F401
|
|
42
48
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
|
|
43
49
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
|
44
50
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
|
|
@@ -47,6 +53,7 @@ if TYPE_CHECKING:
|
|
|
47
53
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
|
|
48
54
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
|
|
49
55
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
|
|
56
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo3 # noqa: F401
|
|
50
57
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
|
|
51
58
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
|
|
52
59
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
|
|
@@ -54,7 +61,11 @@ if TYPE_CHECKING:
|
|
|
54
61
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
|
55
62
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
|
|
56
63
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
|
|
64
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_next # noqa: F401
|
|
65
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl # noqa: F401
|
|
66
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl_moe # noqa: F401
|
|
57
67
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
|
|
68
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smolvlm # noqa: F401
|
|
58
69
|
|
|
59
70
|
|
|
60
71
|
# Check if 'transformers' is installed
|
|
@@ -100,6 +111,7 @@ def __getattr__(name: str):
|
|
|
100
111
|
"apply_liger_kernel_to_glm4",
|
|
101
112
|
"apply_liger_kernel_to_glm4v",
|
|
102
113
|
"apply_liger_kernel_to_glm4v_moe",
|
|
114
|
+
"apply_liger_kernel_to_gpt_oss",
|
|
103
115
|
"apply_liger_kernel_to_granite",
|
|
104
116
|
"apply_liger_kernel_to_internvl",
|
|
105
117
|
"apply_liger_kernel_to_llama",
|
|
@@ -109,6 +121,7 @@ def __getattr__(name: str):
|
|
|
109
121
|
"apply_liger_kernel_to_mixtral",
|
|
110
122
|
"apply_liger_kernel_to_mllama",
|
|
111
123
|
"apply_liger_kernel_to_olmo2",
|
|
124
|
+
"apply_liger_kernel_to_olmo3",
|
|
112
125
|
"apply_liger_kernel_to_paligemma",
|
|
113
126
|
"apply_liger_kernel_to_phi3",
|
|
114
127
|
"apply_liger_kernel_to_qwen2",
|
|
@@ -116,7 +129,13 @@ def __getattr__(name: str):
|
|
|
116
129
|
"apply_liger_kernel_to_qwen2_vl",
|
|
117
130
|
"apply_liger_kernel_to_qwen3",
|
|
118
131
|
"apply_liger_kernel_to_qwen3_moe",
|
|
132
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
133
|
+
"apply_liger_kernel_to_qwen3_vl",
|
|
134
|
+
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
119
135
|
"apply_liger_kernel_to_smollm3",
|
|
136
|
+
"apply_liger_kernel_to_smolvlm",
|
|
137
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
138
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
120
139
|
}
|
|
121
140
|
|
|
122
141
|
if name in monkey_patch_symbols:
|
|
@@ -137,6 +156,7 @@ __all__ = [
|
|
|
137
156
|
"LigerJSD",
|
|
138
157
|
"LigerLayerNorm",
|
|
139
158
|
"LigerFusedAddRMSNorm",
|
|
159
|
+
"LigerPolyNorm",
|
|
140
160
|
"LigerRMSNorm",
|
|
141
161
|
"liger_rotary_pos_emb",
|
|
142
162
|
"liger_llama4_text_rotary_pos_emb",
|
|
@@ -145,6 +165,8 @@ __all__ = [
|
|
|
145
165
|
"LigerPhi3SwiGLUMLP",
|
|
146
166
|
"LigerQwen3MoeSwiGLUMLP",
|
|
147
167
|
"LigerSwiGLUMLP",
|
|
168
|
+
"LigerTiledGEGLUMLP",
|
|
169
|
+
"LigerTiledSwiGLUMLP",
|
|
148
170
|
"LigerTVDLoss",
|
|
149
171
|
"LigerKLDIVLoss",
|
|
150
172
|
"LigerMultiTokenAttention",
|
|
@@ -167,6 +189,7 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
167
189
|
"apply_liger_kernel_to_glm4",
|
|
168
190
|
"apply_liger_kernel_to_glm4v",
|
|
169
191
|
"apply_liger_kernel_to_glm4v_moe",
|
|
192
|
+
"apply_liger_kernel_to_gpt_oss",
|
|
170
193
|
"apply_liger_kernel_to_granite",
|
|
171
194
|
"apply_liger_kernel_to_internvl",
|
|
172
195
|
"apply_liger_kernel_to_llama",
|
|
@@ -176,6 +199,7 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
176
199
|
"apply_liger_kernel_to_mixtral",
|
|
177
200
|
"apply_liger_kernel_to_mllama",
|
|
178
201
|
"apply_liger_kernel_to_olmo2",
|
|
202
|
+
"apply_liger_kernel_to_olmo3",
|
|
179
203
|
"apply_liger_kernel_to_paligemma",
|
|
180
204
|
"apply_liger_kernel_to_phi3",
|
|
181
205
|
"apply_liger_kernel_to_qwen2",
|
|
@@ -183,6 +207,12 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
183
207
|
"apply_liger_kernel_to_qwen2_vl",
|
|
184
208
|
"apply_liger_kernel_to_qwen3",
|
|
185
209
|
"apply_liger_kernel_to_qwen3_moe",
|
|
210
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
211
|
+
"apply_liger_kernel_to_qwen3_vl",
|
|
212
|
+
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
186
213
|
"apply_liger_kernel_to_smollm3",
|
|
214
|
+
"apply_liger_kernel_to_smolvlm",
|
|
215
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
216
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
187
217
|
]
|
|
188
218
|
)
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
import inspect
|
|
2
|
+
import logging
|
|
2
3
|
|
|
3
4
|
from transformers import AutoConfig
|
|
4
5
|
from transformers import AutoModelForCausalLM
|
|
@@ -6,6 +7,8 @@ from transformers import AutoModelForCausalLM
|
|
|
6
7
|
from liger_kernel.transformers.monkey_patch import MODEL_TYPE_TO_APPLY_LIGER_FN
|
|
7
8
|
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel
|
|
8
9
|
|
|
10
|
+
logger = logging.getLogger(__name__)
|
|
11
|
+
|
|
9
12
|
|
|
10
13
|
def _get_model_config(model_dir, **model_init_kwargs):
|
|
11
14
|
config = AutoConfig.from_pretrained(model_dir, **model_init_kwargs)
|
|
@@ -36,3 +39,21 @@ class AutoLigerKernelForCausalLM(AutoModelForCausalLM):
|
|
|
36
39
|
applicable_kwargs = {key: value for key, value in kwargs.items() if key not in apply_fn_signature.parameters}
|
|
37
40
|
|
|
38
41
|
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **applicable_kwargs)
|
|
42
|
+
|
|
43
|
+
@classmethod
|
|
44
|
+
def from_config(cls, config, **kwargs):
|
|
45
|
+
model_type = getattr(config, "model_type", None)
|
|
46
|
+
if not model_type:
|
|
47
|
+
logger.info("Model type could not be determined from model config. No Liger kernels will be applied.")
|
|
48
|
+
return
|
|
49
|
+
model_type = config.model_type
|
|
50
|
+
|
|
51
|
+
_apply_liger_kernel(model_type, **kwargs)
|
|
52
|
+
|
|
53
|
+
# Filter out kwargs that were passed to the apply_liger_* function, which will cause
|
|
54
|
+
# model initialization errors otherwise
|
|
55
|
+
apply_fn = MODEL_TYPE_TO_APPLY_LIGER_FN[model_type]
|
|
56
|
+
apply_fn_signature = inspect.signature(apply_fn)
|
|
57
|
+
applicable_kwargs = {key: value for key, value in kwargs.items() if key not in apply_fn_signature.parameters}
|
|
58
|
+
|
|
59
|
+
return super().from_config(config, **applicable_kwargs)
|
|
@@ -2,7 +2,8 @@ from typing import Optional
|
|
|
2
2
|
|
|
3
3
|
import torch
|
|
4
4
|
|
|
5
|
-
from liger_kernel.ops
|
|
5
|
+
from liger_kernel.ops import LigerCrossEntropyFunction
|
|
6
|
+
from liger_kernel.transformers.functional import CrossEntropyOutput
|
|
6
7
|
|
|
7
8
|
|
|
8
9
|
class LigerCrossEntropyLoss(torch.nn.Module):
|
|
@@ -15,6 +16,7 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
15
16
|
reduction: str = "mean",
|
|
16
17
|
softcap: Optional[float] = None,
|
|
17
18
|
return_z_loss: bool = False,
|
|
19
|
+
return_token_accuracy: bool = False,
|
|
18
20
|
):
|
|
19
21
|
super().__init__()
|
|
20
22
|
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
@@ -33,9 +35,10 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
33
35
|
self.reduction = reduction
|
|
34
36
|
self.softcap = softcap
|
|
35
37
|
self.return_z_loss = return_z_loss
|
|
38
|
+
self.return_token_accuracy = return_token_accuracy
|
|
36
39
|
|
|
37
40
|
def forward(self, _input: torch.Tensor, target: torch.Tensor):
|
|
38
|
-
loss, z_loss = LigerCrossEntropyFunction.apply(
|
|
41
|
+
loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
|
|
39
42
|
_input,
|
|
40
43
|
target,
|
|
41
44
|
self.weight,
|
|
@@ -45,7 +48,9 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
45
48
|
self.reduction,
|
|
46
49
|
self.softcap,
|
|
47
50
|
self.return_z_loss,
|
|
51
|
+
self.return_token_accuracy,
|
|
48
52
|
)
|
|
49
|
-
if not self.return_z_loss:
|
|
53
|
+
if not self.return_z_loss and not self.return_token_accuracy:
|
|
50
54
|
return loss
|
|
51
|
-
|
|
55
|
+
|
|
56
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
liger_kernel/transformers/dyt.py
CHANGED
|
@@ -1,24 +1,35 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
1
2
|
from typing import Optional
|
|
2
3
|
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
from liger_kernel.ops
|
|
6
|
-
from liger_kernel.ops
|
|
7
|
-
from liger_kernel.ops
|
|
8
|
-
from liger_kernel.ops
|
|
9
|
-
from liger_kernel.ops
|
|
10
|
-
from liger_kernel.ops
|
|
11
|
-
from liger_kernel.ops
|
|
12
|
-
from liger_kernel.ops
|
|
13
|
-
from liger_kernel.ops
|
|
14
|
-
from liger_kernel.ops
|
|
15
|
-
from liger_kernel.ops
|
|
16
|
-
from liger_kernel.ops
|
|
17
|
-
from liger_kernel.ops
|
|
18
|
-
from liger_kernel.ops
|
|
19
|
-
from liger_kernel.ops
|
|
20
|
-
from liger_kernel.ops
|
|
21
|
-
from liger_kernel.ops
|
|
4
|
+
import torch
|
|
5
|
+
|
|
6
|
+
from liger_kernel.ops import LigerCrossEntropyFunction
|
|
7
|
+
from liger_kernel.ops import LigerDyTFunction
|
|
8
|
+
from liger_kernel.ops import LigerFusedAddRMSNormFunction
|
|
9
|
+
from liger_kernel.ops import LigerFusedLinearCrossEntropyFunction
|
|
10
|
+
from liger_kernel.ops import LigerFusedLinearJSDFunction
|
|
11
|
+
from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
|
|
12
|
+
from liger_kernel.ops import LigerGELUMulFunction
|
|
13
|
+
from liger_kernel.ops import LigerGroupNormFunction
|
|
14
|
+
from liger_kernel.ops import LigerJSDFunction
|
|
15
|
+
from liger_kernel.ops import LigerKLDivLossFunction
|
|
16
|
+
from liger_kernel.ops import LigerLayerNormFunction
|
|
17
|
+
from liger_kernel.ops import LigerMultiTokenAttentionFunction
|
|
18
|
+
from liger_kernel.ops import LigerPolyNormFunction
|
|
19
|
+
from liger_kernel.ops import LigerQwen2VLMRopeFunction
|
|
20
|
+
from liger_kernel.ops import LigerRMSNormFunction
|
|
21
|
+
from liger_kernel.ops import LigerRopeFunction
|
|
22
|
+
from liger_kernel.ops import LigerSiLUMulFunction
|
|
23
|
+
from liger_kernel.ops import LigerSoftmaxFunction
|
|
24
|
+
from liger_kernel.ops import LigerSparsemaxFunction
|
|
25
|
+
from liger_kernel.ops import LigerTVDLossFunction
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
@dataclass
|
|
29
|
+
class CrossEntropyOutput:
|
|
30
|
+
loss: torch.Tensor
|
|
31
|
+
z_loss: Optional[torch.Tensor] = None
|
|
32
|
+
token_accuracy: Optional[torch.Tensor] = None
|
|
22
33
|
|
|
23
34
|
|
|
24
35
|
# conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
|
|
@@ -35,8 +46,9 @@ def liger_cross_entropy(
|
|
|
35
46
|
lse_square_scale: float = 0.0,
|
|
36
47
|
softcap: Optional[float] = None,
|
|
37
48
|
return_z_loss: bool = False,
|
|
49
|
+
return_token_accuracy: bool = False,
|
|
38
50
|
):
|
|
39
|
-
loss, z_loss = LigerCrossEntropyFunction.apply(
|
|
51
|
+
loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
|
|
40
52
|
input,
|
|
41
53
|
target,
|
|
42
54
|
weight,
|
|
@@ -46,10 +58,13 @@ def liger_cross_entropy(
|
|
|
46
58
|
reduction,
|
|
47
59
|
softcap,
|
|
48
60
|
return_z_loss,
|
|
61
|
+
return_token_accuracy,
|
|
49
62
|
)
|
|
50
|
-
|
|
63
|
+
|
|
64
|
+
if not return_z_loss and not return_token_accuracy:
|
|
51
65
|
return loss
|
|
52
|
-
|
|
66
|
+
|
|
67
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
53
68
|
|
|
54
69
|
|
|
55
70
|
def liger_fused_linear_cross_entropy(
|
|
@@ -66,8 +81,9 @@ def liger_fused_linear_cross_entropy(
|
|
|
66
81
|
return_z_loss: bool = False,
|
|
67
82
|
accum_dtype=None,
|
|
68
83
|
use_token_scaling: bool = False,
|
|
84
|
+
return_token_accuracy: bool = False,
|
|
69
85
|
):
|
|
70
|
-
loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
|
|
86
|
+
loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
|
|
71
87
|
input,
|
|
72
88
|
weight,
|
|
73
89
|
target,
|
|
@@ -81,10 +97,13 @@ def liger_fused_linear_cross_entropy(
|
|
|
81
97
|
return_z_loss,
|
|
82
98
|
accum_dtype,
|
|
83
99
|
use_token_scaling,
|
|
100
|
+
return_token_accuracy,
|
|
84
101
|
)
|
|
85
|
-
|
|
102
|
+
|
|
103
|
+
if not return_z_loss and not return_token_accuracy:
|
|
86
104
|
return loss
|
|
87
|
-
|
|
105
|
+
|
|
106
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
88
107
|
|
|
89
108
|
|
|
90
109
|
def liger_fused_linear_jsd(
|
|
@@ -258,6 +277,10 @@ def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama",
|
|
|
258
277
|
return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
|
|
259
278
|
|
|
260
279
|
|
|
280
|
+
def liger_poly_norm(X, W, B, eps=1e-6, in_place=True):
|
|
281
|
+
return LigerPolyNormFunction.apply(X, W, B, eps, in_place)
|
|
282
|
+
|
|
283
|
+
|
|
261
284
|
def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
|
|
262
285
|
return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
|
|
263
286
|
|
|
@@ -2,7 +2,8 @@ from typing import Optional
|
|
|
2
2
|
|
|
3
3
|
import torch
|
|
4
4
|
|
|
5
|
-
from liger_kernel.ops
|
|
5
|
+
from liger_kernel.ops import LigerFusedLinearCrossEntropyFunction
|
|
6
|
+
from liger_kernel.transformers.functional import CrossEntropyOutput
|
|
6
7
|
|
|
7
8
|
|
|
8
9
|
class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
@@ -17,6 +18,7 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
17
18
|
return_z_loss: bool = False,
|
|
18
19
|
accum_dtype: Optional[torch.dtype] = None,
|
|
19
20
|
use_token_scaling: bool = False,
|
|
21
|
+
return_token_accuracy: bool = False,
|
|
20
22
|
):
|
|
21
23
|
super().__init__()
|
|
22
24
|
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
@@ -37,9 +39,10 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
37
39
|
self.return_z_loss = return_z_loss
|
|
38
40
|
self.accum_dtype = accum_dtype
|
|
39
41
|
self.use_token_scaling = use_token_scaling
|
|
42
|
+
self.return_token_accuracy = return_token_accuracy
|
|
40
43
|
|
|
41
44
|
def forward(self, lin_weight, _input, target, bias=None):
|
|
42
|
-
loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
|
|
45
|
+
loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
|
|
43
46
|
_input,
|
|
44
47
|
lin_weight,
|
|
45
48
|
target,
|
|
@@ -53,7 +56,9 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
53
56
|
self.return_z_loss,
|
|
54
57
|
self.accum_dtype,
|
|
55
58
|
self.use_token_scaling,
|
|
59
|
+
self.return_token_accuracy,
|
|
56
60
|
)
|
|
57
|
-
if not self.return_z_loss:
|
|
61
|
+
if not self.return_z_loss and not self.return_token_accuracy:
|
|
58
62
|
return loss
|
|
59
|
-
|
|
63
|
+
|
|
64
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
@@ -5,7 +5,7 @@ from typing import Optional
|
|
|
5
5
|
import torch
|
|
6
6
|
import torch.nn as nn
|
|
7
7
|
|
|
8
|
-
from liger_kernel.ops
|
|
8
|
+
from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
class LigerFusedNeighborhoodAttention(nn.Module):
|
|
@@ -1,4 +1,7 @@
|
|
|
1
|
-
|
|
1
|
+
import torch
|
|
2
|
+
|
|
3
|
+
from liger_kernel.chunked_loss.fused_linear_ppo import LigerFusedLinearPPOBase
|
|
4
|
+
from liger_kernel.ops import GrpoLossFunction
|
|
2
5
|
|
|
3
6
|
|
|
4
7
|
def triton_grpo_loss(
|
|
@@ -13,12 +16,20 @@ def triton_grpo_loss(
|
|
|
13
16
|
eps_low=0.2,
|
|
14
17
|
eps_high=0.4,
|
|
15
18
|
inplace=True,
|
|
19
|
+
loss_type="dapo",
|
|
20
|
+
max_completion_length=None,
|
|
21
|
+
importance_sampling_level="token",
|
|
22
|
+
reduce=False,
|
|
16
23
|
):
|
|
17
24
|
assert logits is not None and completion_ids is not None and advantages is not None, (
|
|
18
25
|
"must provide logits、completion_ids and advantages"
|
|
19
26
|
)
|
|
27
|
+
if importance_sampling_level != "token":
|
|
28
|
+
raise ValueError(
|
|
29
|
+
f"Triton GRPO loss only supports token-level importance sampling. Got {importance_sampling_level}."
|
|
30
|
+
)
|
|
20
31
|
|
|
21
|
-
|
|
32
|
+
per_token_loss, per_token_kl, is_clipped = GrpoLossFunction.apply(
|
|
22
33
|
logits,
|
|
23
34
|
old_logp,
|
|
24
35
|
ref_logp,
|
|
@@ -31,6 +42,50 @@ def triton_grpo_loss(
|
|
|
31
42
|
eps_high,
|
|
32
43
|
inplace,
|
|
33
44
|
)
|
|
45
|
+
if not reduce:
|
|
46
|
+
return per_token_loss, per_token_kl, is_clipped
|
|
47
|
+
|
|
48
|
+
loss = _reduce_grpo_loss(
|
|
49
|
+
per_token_loss,
|
|
50
|
+
completion_mask,
|
|
51
|
+
loss_type=loss_type,
|
|
52
|
+
max_completion_length=max_completion_length,
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
metrics = []
|
|
56
|
+
if beta != 0.0 and per_token_kl is not None:
|
|
57
|
+
metrics.append(_masked_mean(per_token_kl, completion_mask))
|
|
58
|
+
metrics.append(_masked_mean(is_clipped.float(), completion_mask))
|
|
59
|
+
return loss, metrics
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def _reduce_grpo_loss(per_token_loss, completion_mask, loss_type, max_completion_length):
|
|
63
|
+
mask = completion_mask
|
|
64
|
+
if mask is None:
|
|
65
|
+
mask = torch.ones_like(per_token_loss, dtype=per_token_loss.dtype, device=per_token_loss.device)
|
|
66
|
+
mask = mask.to(per_token_loss.dtype)
|
|
67
|
+
|
|
68
|
+
if loss_type == "grpo":
|
|
69
|
+
per_seq = (per_token_loss * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)
|
|
70
|
+
return per_seq.mean()
|
|
71
|
+
if loss_type == "bnpo":
|
|
72
|
+
return (per_token_loss * mask).sum() / mask.sum().clamp(min=1.0)
|
|
73
|
+
if loss_type == "dr_grpo":
|
|
74
|
+
if max_completion_length is None:
|
|
75
|
+
raise ValueError("max_completion_length must be provided when using loss_type='dr_grpo'")
|
|
76
|
+
batch = per_token_loss.shape[0]
|
|
77
|
+
return (per_token_loss * mask).sum() / (batch * max_completion_length)
|
|
78
|
+
if loss_type == "dapo":
|
|
79
|
+
normalizer = LigerFusedLinearPPOBase._compute_dapo_normalizer(mask)
|
|
80
|
+
return (per_token_loss * mask).sum() / normalizer
|
|
81
|
+
raise ValueError(f"Unsupported loss_type '{loss_type}' for Triton GRPO loss.")
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def _masked_mean(values, mask):
|
|
85
|
+
if mask is None:
|
|
86
|
+
mask = torch.ones_like(values, dtype=values.dtype, device=values.device)
|
|
87
|
+
mask = mask.to(values.dtype)
|
|
88
|
+
return (values * mask).sum() / mask.sum().clamp(min=1.0)
|
|
34
89
|
|
|
35
90
|
|
|
36
91
|
# This is a demo how to use grpo_loss in GRPOTrainer. The Trl version must be 0.16
|
liger_kernel/transformers/jsd.py
CHANGED
|
@@ -5,7 +5,7 @@ Supports both text and vision RoPE variants with fused operations for optimal pe
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from liger_kernel.ops
|
|
8
|
+
from liger_kernel.ops import LigerLlama4RopeFunction
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
def liger_llama4_text_rotary_pos_emb(
|
|
@@ -4,12 +4,12 @@ from typing import Union
|
|
|
4
4
|
|
|
5
5
|
import torch
|
|
6
6
|
|
|
7
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
8
|
-
|
|
9
7
|
if TYPE_CHECKING:
|
|
10
8
|
from transformers.models.falcon_h1.modeling_falcon_h1 import FalconHybridMambaAttentionDynamicCache
|
|
11
9
|
|
|
12
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
13
13
|
|
|
14
14
|
|
|
15
15
|
def lce_forward(
|
|
@@ -26,8 +26,9 @@ def lce_forward(
|
|
|
26
26
|
cache_position: Optional[torch.LongTensor] = None,
|
|
27
27
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
28
28
|
skip_logits: Optional[bool] = None,
|
|
29
|
+
return_dict: Optional[bool] = None,
|
|
29
30
|
**kwargs,
|
|
30
|
-
) -> Union[tuple,
|
|
31
|
+
) -> Union[tuple, LigerCausalLMOutputWithPast]:
|
|
31
32
|
r"""
|
|
32
33
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
33
34
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -54,6 +55,7 @@ def lce_forward(
|
|
|
54
55
|
output_hidden_states = (
|
|
55
56
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
56
57
|
)
|
|
58
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
57
59
|
|
|
58
60
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
59
61
|
outputs = self.model(
|
|
@@ -77,6 +79,8 @@ def lce_forward(
|
|
|
77
79
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
78
80
|
logits = None
|
|
79
81
|
loss = None
|
|
82
|
+
token_accuracy = None
|
|
83
|
+
|
|
80
84
|
# if in training mode, don't materialize logits
|
|
81
85
|
if skip_logits and labels is None:
|
|
82
86
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -85,8 +89,9 @@ def lce_forward(
|
|
|
85
89
|
# By default, if in training mode, don't materialize logits
|
|
86
90
|
skip_logits = self.training and labels is not None
|
|
87
91
|
|
|
92
|
+
# Compute loss
|
|
88
93
|
if skip_logits:
|
|
89
|
-
|
|
94
|
+
result = LigerForCausalLMLoss(
|
|
90
95
|
hidden_states=kept_hidden_states,
|
|
91
96
|
lm_head_weight=self.lm_head.weight,
|
|
92
97
|
labels=labels,
|
|
@@ -94,15 +99,24 @@ def lce_forward(
|
|
|
94
99
|
hidden_size=self.config.hidden_size,
|
|
95
100
|
**kwargs,
|
|
96
101
|
)
|
|
102
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
97
103
|
else:
|
|
98
104
|
logits = self.lm_head(kept_hidden_states)
|
|
99
105
|
if labels is not None or shift_labels is not None:
|
|
100
106
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
|
101
107
|
|
|
102
|
-
|
|
108
|
+
if not return_dict:
|
|
109
|
+
output = (logits,) + outputs[1:]
|
|
110
|
+
output = ((loss,) + output) if loss is not None else output
|
|
111
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
112
|
+
return output
|
|
113
|
+
|
|
114
|
+
# Return custom output class with token_accuracy field
|
|
115
|
+
return LigerCausalLMOutputWithPast(
|
|
103
116
|
loss=loss,
|
|
104
117
|
logits=logits,
|
|
105
118
|
past_key_values=outputs.past_key_values,
|
|
106
119
|
hidden_states=outputs.hidden_states,
|
|
107
120
|
attentions=outputs.attentions,
|
|
121
|
+
token_accuracy=token_accuracy,
|
|
108
122
|
)
|